
A Appendix

A.1 Notations
Throughout the book we use the following standard notations:

1. The natural numbers starting at 1 are always denoted by N. In the case 0 is

included we write N0.

2. As usual the integers Z are given by Z = {. . . , –2, –1, 0, 1, 2, . . .} .

3. By R we denote the field of real numbers endowed with the usual algebraic op-

erations and its natural order. The subset Q ⊂ R is the union of all rational
numbers, that is, of numbersm/n wherem, n ∈ Z and n /= 0.

4. Given n ≥ 1 let Rn be the n-dimensional Euclidean vector space, that is,

Rn = {x = (x1, . . . , xn) : xj ∈ R} .

Addition and scalar multiplication in Rn are carried out coordinate-wise,

x + y = (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . xn + yn)

and if ! ∈ R, then

! x = (!x1, . . . , !xn) .

A.2 Elements of Set Theory
Given a setM its powersetP(M) consists of all subsets ofM. In the case thatM is finite

we have #(P(M)) = 2#(M), where #(A) denotes the cardinality (number of elements) of

a finite set A.

If A and B are subsets ofM, written as A,B ⊆ M or also as A,B ∈ P(M), their union
and their intersection are, as usual, defined by

A ∪ B = {x ∈ M : x ∈ A or x ∈ B} and A ∩ B = {x ∈ M : x ∈ A and x ∈ B} .

Of course, it always holds that

A ∩ B ⊆ A ⊆ A ∪ B and A ∩ B ⊆ B ⊆ A ∪ B .

In the same way, given subsets A1,A2, . . . of M their union
⋃

∞

j=1 Aj and their intersec-

tion
⋂

∞

j=1 Aj is the set of those x ∈ M that belong to at least one of the Aj or that belong

to all Aj, respectively.
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Quite often we use the distributive law for intersection and union. This asserts

A ∩

⎛
⎝∞⋃

j=1

Bj

⎞
⎠ =

∞⋃
j=1

(A ∩ Bj) .

Two sets A and B are said to be disjoint1 provided that A ∩ B = ø. A sequence of sets

A1,A2, . . . is called disjoint
2 whenever Ai ∩ Aj = ø if i /= j.

An element x ∈ M belongs to the set difference A\B provided that x ∈ A but x ∉ B.

Using the notion of the complementary set Bc := {x ∈ M : x ∉ B}, the set difference

may also be written as

A\B = A ∩ Bc .

Another useful identity is

A\B = A\(A ∩ B) .

Conversely, the complementary set may be represented as the set difference Bc = M\B.
We still mention the obvious (Bc)

c
= B.

Finally we introduce the symmetric difference ABB of two sets A and B as

ABB := (A\B) ∪ (B\A) = (A ∩ Bc) ∪ (B ∩ Ac) = (A ∪ B)\(A ∩ B) .

Note that an element x ∈ M belongs to ABB if and only if x belongs exactly to one of

the sets A or B.

De Morgan’s rules are very important and assert the following:

⎛
⎝∞⋃

j=1

Aj

⎞
⎠
c

=

∞⋂
j=1

Acj and

⎛
⎝∞⋂

j=1

Aj

⎞
⎠
c

=

∞⋃
j=1

Acj .

Given sets A1, . . . ,An their Cartesian product A1 × ⋅ ⋅ ⋅ × An is defined by

A1 × ⋅ ⋅ ⋅ × An := {(a1, . . . , an) : aj ∈ Aj} .

Note that #(A1 × ⋯ × An) = #(A1)⋯#(An).

Let S be another set, for example, S = R, and let f : M → S be some mapping from

M to S. Given a subset B ⊆ S, we denote the preimage of B with respect to f by

f –1(B) := {x ∈ M : f (x) ∈ B} . (A.1)

1 Sometimes called “mutually exclusive.”

2 More precisely, one should say “pairwise disjoint.”
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In other words, an element x ∈ M belongs to f –1(B) if and only if its image with respect

to f is an element of B.

We summarize some crucial properties of the preimage in a proposition.

Proposition A.2.1. Let f : M → S be a mapping from M into another set S.

(1) f–1(ø) = ø and f–1(S) = M.

(2) For any subsets Bj ⊆ S the following equalities are valid:

f–1

⎛
⎝⋃

j≥1

Bj

⎞
⎠ =

⋃
j≥1

f–1(Bj) and f–1

⎛
⎝⋂

j≥1

Bj

⎞
⎠ =

⋂
j≥1

f–1(Bj) . (A.2)

Proof: We only prove the left-hand equality in eq. (A.2). The right-hand one is proved

by the same methods. Furthermore, assertion (1) follows immediately.

Take x ∈ f –1
(⋃

j≥1 Bj

)
. This happens if and only if

f (x) ∈
⋃
j≥1

Bj (A.3)

is satisfied. But this is equivalent to the existence of a certain j0 ≥ 1 with f (x) ∈ Bj0 .

By definition of the preimage the last statement may be reformulated as follows: there

exists a j0 ≥ 1 such that x ∈ f –1(Bj0 ). But this implies

x ∈
⋃
j≥1

f–1(Bj) . (A.4)

Consequently, an element x ∈ M satisfies condition (A.3) if and only if property (A.4)

holds. This proves the left-hand identity in formulas (A.2). ∎

A.3 Combinatorics

A.3.1 Binomial Coefficients
A one-to-one mapping 0 from {1, . . . , n} to {1, . . . , n} is called a permutation (of or-

der n). Any permutation reorders the numbers from 1 to n as 0(1),0(2), . . . ,0(n) and,
vice versa, each reordering of these numbers generates a permutation. One way to

write a permutations is

0 =

(
1 2 . . . n

0(1) 0(2) . . . 0(n)

)

For example, if n = 3, then 0 =

(
1 2 3

2 3 1

)
is equivalent to the order 2, 3, 1 or to

0(1) = 2,0(2) = 3 and 0(3) = 1.
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Let Sn be the set of all permutations of order n. Then one may ask for #(Sn) or,

equivalently, for the number of possible orderings of the numbers {1, . . . , n}.

To treat this problem we need the following definition.

Definition A.3.1. For n ∈ N we define n-factorial by setting

n! = 1 ⋅ 2 ⋅ ⋅ ⋅ (n – 1) ⋅ n

Furthermore, let 0! = 1.

Now we may answer the question about the cardinality of Sn.

Proposition A.3.2. We have

#(Sn) = n! (A.5)

or, equivalently, there are n! different ways to order n distinguishable objects.

Proof: The proof is done by induction over n. If n = 1 then #(S1) = 1 = 1! and eq. (A.5)

is valid.

Now suppose that eq. (A.5) is true for n. In order to prove eq. (A.5) for n+ 1 we split

Sn+1 as follows:

Sn+1 =

n+1⋃
k=1

Ak,

where

Ak = {0 ∈ Sn+1 : 0(n + 1) = k} , k = 1, . . . , n + 1 .

Each 0 ∈ Ak generates a one-to-one mapping 0̃ from {1, . . . , n} onto the set

{1, . . . , k – 1, k + 1, . . . , n} by letting 0̃(j) = 0(j), 1 ≤ j ≤ n. Vice versa, each such 0̃ defines
a permutation 0 ∈ Ak by setting 0(j) = 0̃(j), j ≤ n, and 0(n + 1) = k. Consequently, since

eq. (A.5) holds for n we get #(Ak) = n!. Furthermore, the Aks are disjoint, and

#(Sn+1) =

n+1∑
k=1

#(Ak) = (n + 1) ⋅ n! = (n + 1)! ,

hence eq. (A.5) also holds for n + 1. This completes the proof. ∎

Next we treat a tightly related problem. Say we have n different objects and we want to

distribute them into two disjoint groups, one having k elements, the other n–k. Hereby

it is of no interest in which order the elements are distributed, only the composition of

the two sets matters.
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Example A.3.3. There are 52 cards in a deck that are distributed to two players, so that

each of them gets 26 cards. For this game it is only important which cards each player

has, not in which order the cards were received. Here n = 52 and k = n – k = 26.

The main question is: howmany ways can n elements be distributed, say the numbers

from 1 to n, into one group of k elements and into another of n – k elements? In

the above example, that is how many ways can 52 cards be distributed into two

groups of 26.

To answer this question we use the following auxiliary model. Let us take any

permutation 0 ∈ Sn. We place the numbers 0(1), . . . ,0(k) into group 1 and the remain-

ing 0(k + 1), . . . ,0(n) into group 2. In this way we obtain all possible distributions but
many of them appear several times. Say two permutations 01 and 02 are equivalent if
(as sets)

{01(1), . . . ,01(k)} = {02(1), . . . ,02(k)} .

Of course, this also implies

{01(k + 1), . . . ,01(n)} = {02(k + 1), . . . ,02(n)} ,

and two permutations generate the same partition if and only if they are equivalent.

Equivalent permutations are achieved by taking one fixed permutation 0, then per-

muting {0(1), . . . ,0(k)} and also {0(k + 1), . . . ,0(n)}. Consequently, there are exactly
k!(n – k)! permutations that are equivalent to a given one. Summing up, we get that

there are n!
k!(n–k)!

different classes of equivalent permutations. Setting

(
n

k

)
=

n!

k! (n – k)!

we see the following.

There are
(n
k
)
different ways to distribute n objects into one group of k and into another

one of n – k elements.

The numbers
(
n
k

)
are called binomial coefficients, read “n chosen k.” We let

(
n
k

)
= 0

in case of k > n or k < 0.

Example A.3.4. A digital word of length n consists of n zeroes or ones. Since at every

position we may have either 0 or 1, there are 2n different words of length n. How many

of these words possess exactly k ones or, equivalently, n– k zeroes? To answer this put

all positions where there is a “1” into a first group and those where there is a “0” into a

second one. In this way the numbers from 1 to n are divided into two different groups
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of size k and n – k, respectively. But we already know howmany such partitions exist,

namely
(
n
k

)
. As a consequence we get

There are
(n
k
)
words of length n possessing exactly k ones and n – k zeroes.

The next proposition summarizes some crucial properties of binomial coefficients.

Proposition A.3.5. Let n be a natural number, k = 0, . . . , n and let r ≥ 0 be an integer.

Then the following equations hold:

(
n

k

)
=

(
n

n – k

)
(A.6)

(
n

k

)
=

(
n – 1

k

)
+

(
n – 1

k – 1

)
and (A.7)

(
n + r

n

)
=

n∑
j=0

(
n + r – j – 1

n – j

)
=

n∑
j=0

(
r + j – 1

j

)
. (A.8)

Proof: Equations (A.6) and (A.7) follow immediately by the definition of the binomial

coefficients. Note that eq. (A.7) also holds if k = n because we agreed that
(
n–1
n

)
= 0.

An iteration of eq. (A.7) leads to

(
n

k

)
=

k∑
j=0

(
n – j – 1

k – j

)
.

Replacing in the last equation n by n + r as well as k by n we obtain the left-hand

identity (A.8). The right-hand equation follows by inverting the summation, that is,

one replaces j by n – j. ∎

Remark A.3.6. Equation (A.7) allows a graphical interpretation by Pascal’s triangle.
The coefficient

(
n
k

)
in the nth row follows by summing the two values

(
n–1
k–1

)
and

(
n–1
k

)
above

(
n
k

)
in the (n – 1)th row.

1

1 1

1 2 1

1 3 3 1

⋅ ⋅ ⋅ ⋅ ⋅

1 ⋅ ⋅ ⋅
(
n–1
k–1

) (
n–1
k

)
⋅ ⋅ ⋅ 1

1
(
n
1

)
⋅ ⋅ ⋅ ⋅

(
n
k

)
⋅ ⋅ ⋅ ⋅

(
n
n–1

)
1

Next we state and prove the important binomial theorem.
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Proposition A.3.7 (Binomial theorem). For real numbers a and b and any n ∈ N0,

(a + b)n =

n∑
k=0

(
n

k

)
ak bn–k . (A.9)

Proof: The binomial theorem is proved by induction over n. If n = 0, then eq. (A.9)

holds trivially.

Suppose now that eq. (A.9) has been proven for n – 1. Our aim is to verify that it is

also true for n. Using that the expansion holds for n – 1 we get

(a + b)n = (a + b)n–1(a + b)

=

n–1∑
k=0

(
n – 1

k

)
ak+1bn–1–k +

n–1∑
k=0

(
n – 1

k

)
akbn–k

= an +

n–2∑
k=0

(
n – 1

k

)
ak+1bn–1–k + bn +

n–1∑
k=1

(
n – 1

k

)
akbn–k

= an + bn +

n–1∑
k=1

[(
n – 1

k – 1

)
+

(
n – 1

k

)]
akbn–k

=

n∑
k=0

(
n

k

)
ak bn–k ,

where we used eq. (A.7) in the last step . ∎

The following property of binomial coefficients plays an important role when in-

troducing the hypergeometric distribution (compare Proposition 1.4.24). It is also

used during the investigation of sums of independent binomial distributed random

variables (compare Proposition 4.6.1).

Proposition A.3.8 (Vandermonde’s identity). If k, m, and n in N0, then

k∑
j=0

(
n

j

)(
m

k – j

)
=

(
n +m

k

)
. (A.10)

Proof: An application of the binomial theorem leads to

(1 + x)n+m =

n+m∑
k=0

(
n +m

k

)
xk , x ∈ R . (A.11)
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On the other hand, another use of Proposition A.3.7 implies3

(1 + x)n+m = (1 + x)n(1 + x)m

=

⎡
⎣ n∑

j=0

(
n

j

)
xj

⎤
⎦
[

m∑
i=0

(
m

i

)
xi

]
=

n∑
j=0

m∑
i=0

(
n

j

)(
m

i

)
xi+j

=

n+m∑
k=0

⎡
⎣∑
i+j=k

(
n

j

)(
m

i

)⎤⎦ xk =

n+m∑
k=0

⎡
⎣ k∑

j=0

(
n

j

)(
m

k – j

)⎤⎦ xk . (A.12)

The coefficients in an expansion of a polynomial are unique. Hence, in view of eqs.

(A.11) and (A.12), we get for all k ≤ m + n the identity

(
n +m

k

)
=

k∑
j=0

(
n

j

)(
m

k – j

)
.

Hereby note that both sides of eq. (A.10) become zero whenever k > n + m. This

completes the proof. ∎

Our next objective is to generalize the binomial coefficients. In view of

(
n

k

)
=
n (n – 1) ⋅ ⋅ ⋅ (n – k + 1)

k!

for k ≥ 1 and n ∈ N the generalized binomial coefficient is introduced as
(
–n

k

)
:=

–n (–n – 1) ⋅ ⋅ ⋅ (–n – k + 1)

k!
. (A.13)

The next lemma shows the tight relation between generalized and “ordinary” bino-

mial coefficients.

Lemma A.3.9. For k ≥ 1 and n ∈ N,

(
–n

k

)
= (–1)k

(
n + k – 1

k

)
.

3 When passing from line 2 to line 3 the order of summation is changed. One no longer sums over the

rectangle [0,m] × [0, n]. Instead one sums along the diagonals, where i + j = k.
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Proof: By definition of the generalized binomial coefficient we obtain

(
–n

k

)
=
(–n) (–n – 1) ⋅ ⋅ ⋅ (–n – k + 1)

k!

= (–1)k
(n + k – 1) (n + k – 2) ⋅ ⋅ ⋅ (n + 1) n

k!
= (–1)k

(
n + k – 1

k

)
.

This completes the proof. ∎

For example, Lemma A.3.9 implies
(
–1
k

)
= (–1)k and

(
–n
1

)
= –n.

A.3.2 Drawing Balls out of an Urn
Assume that there are n balls labeled from 1 to n in an urn. We draw k balls out of

the urn, thus observing a sequence of length k with entries from {1, . . . , n}. How many

different results (sequences) may be observed? To answer this question we have to

decide the arrangement of drawing. Do we or do we not replace the chosen ball? Is

it important in which order the balls were chosen or is it only of importance which

balls were chosen at all? Thus, we see that there are four different ways to answer this

question (replacement or nonreplacement, recording the order or nonrecording).

Example A.3.10. Let us regard the drawing of two balls out of four, that is, n = 4

and k = 2. Depending on the different arrangements the following results may be

observed. Note, for example, that in the two latter cases (3, 2) does not appear because

it is identical to (2, 3).

Replacement and order is

important

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(4, 1) (4, 2) (4, 3) (4, 4)

Nonreplacement and order is

important

⋅ (1, 2) (1, 3) (1, 4)

(2, 1) ⋅ (2, 3) (2, 4)

(3, 1) (3, 2) ⋅ (3, 4)

(4, 1) (4, 2) (4, 3) ⋅

16 different results 12 different results

Replacement and order is not

important

(1, 1) (1, 2) (1, 3) (1, 4)

⋅ (2, 2) (2, 3) (2, 4)

⋅ ⋅ (3, 3) (3, 4)

⋅ ⋅ ⋅ (4, 4)

Nonreplacement and order

is not important

⋅ (1, 2) (1, 3) (1, 4)

⋅ ⋅ (2, 3) (2, 4)

⋅ ⋅ ⋅ (3, 4)

⋅ ⋅ ⋅ ⋅

10 different results 6 different results
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Let us come back now to the general situation of n different balls from which we

choose k at random.

Case 1 : Drawing with replacement and taking the order into account.
Wehave n different possibilities for the choice of the first ball and since the chosen

ball is placed back there are also n possibilities for the second one and so on. Thus,

there are n possibilities for each of the k balls, leading to the following result.

The number of different results in this case is nk

Example A.3.11. Letters in Braille, a scripture for blind people, are generated by dots

or nondots at six different positions. How many letters may be generated in that way?

Answer: It holds that n = 2 (dot or no dot) at k = 6 different positions. Hence,

the number of possible representable letters is 26 = 64. In fact, there are only 63

possibilities because we have to rule out the case of no dots at all 6 positions.

Case 2 : Drawing without replacement and taking the order into account.
This case onlymakes sense if k ≤ n. There are n possibilities to choose the first ball.

After that there are still n – 1 balls in the urn. Hence there are only n – 1 possibilities

for the second choice, n– 2 for the third, and so on. Summing up we get the following.

The number of possible results in this case equals

n(n – 1) ⋅ ⋅ ⋅ (n – k + 1) = n!
(n – k)!

Example A.3.12. In a lottery 6 numbers are chosen out of 49. Of course, the chosen

numbers are not replaced. If we record the numbers as they appear (not putting them

in order) how many different sequences of six numbers exist?

Answer: Here we have n = 49 and k = 6. Hence the wanted number equals

49!

43!
= 49 ⋅ ⋅ ⋅ 44 = 10, 068, 347, 520

Case 3 : Drawing with replacement not taking the order into account.
This case ismore complicated and requires a different point of view.We count how

often each of the n balls was chosen during the k trials. Let k1 ≥ 0 be the frequency

of the first ball, k2 ≥ 0 that of the second one, and so on. In this way we obtain n

non-negative integers k1, . . . , kn satisfying

k1 + ⋅ ⋅ ⋅ + kn = k .
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Indeed, since we choose k balls, the frequencies have to sum to k. Consequently, the

number of possible results when drawing k of n balls with replacement and not taking

the order into account coincides with

#{(k1, . . . , kn) , kj ∈ N0 , k1 + ⋅ ⋅ ⋅ + kn = k} . (A.14)

In order to determine the cardinality (A.14) we use the following auxiliary model:

Let B1, . . . ,Bn be n boxes. Given n nonnegative integers k1, . . . , kn, summing to k,

we place exactly k1 dots into B1, k2 dots into B2, and so on. At the end we distributed

k nondistinguishable dots into n different boxes. Thus, we see that the value of (A.14)

coincides with the number of different possibilities to distribute k nondistinguishable

dots into n boxes. Now assume that the boxes are glued together; on the very left we

put box B1, on its right we put box B2 and continue in this way up to box Bn on the very

right. In this way we obtain n + 1 dividing walls, two outer and n – 1 inner ones. Now

we get all possible distributions of k dots into n boxes by shuffling the k dots and the

n – 1 inner dividing walls. For example, if we get the order w,w, d, d,w . . . , then this

means that there are no dots in B1 and B2, but there are two dots in B3.

Summing up, we have N = n + k – 1 objects, k of them are dots and n – 1 are walls.

As we know there are
(
N
k

)
different ways to order these N objects. Hence we arrived at

the following result.

The number of possibilities to distribute k anonymous dots into n boxes equals
(n + k – 1

k

)
=
(n + k – 1

n – 1

)
.

It coincides with #{(k1, . . . , kn) , kj ∈ N0 , k1 + ⋅ ⋅ ⋅+ kn = k} as well as with the number of
different results when choosing k balls out of nwith replacement and not taking order
into account.

Example A.3.13. Dominoes are marked on each half either with no dots, one dot or

up to six dots. Hereby the dominoes are symmetric, that is, a tile with three dots on

the left-hand side and two ones on the right-hand one is identical with one having two

dots on the left-hand side and three dots on the right-hand one. How many different

dominoes exist?

Answer: It holds n = 7 and k = 2, hence the number of different dominoes equals

(
7+ 2 – 1

2

)
=

(
8

2

)
= 28 .

Case 4 : Drawing without replacement not taking the order into account.
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Here we also have to assume k ≤ n. We already investigated this case when we

introduced the binomial coefficients. The k chosen numbers are put in group 1, the

remaining n – k balls in group 2. As we know there are
(
n
k

)
ways to split the n numbers

into such two groups. Hence we obtained the following.

The number of different results in this case is
(n
k
)

Example A.3.14. If the order of the six numbers is not taken into account in Example

A.3.12, that is, we ignore which number was chosen first, which second, and so on the

number of possible results equals(
49

6

)
=
49 ⋅ ⋅ ⋅ 43

6!
= 13, 983, 816

Let us summarize the four different cases in a table. Here O and NO stand for re-

cording or nonrecording of the order while R and NR represent replacement or

nonreplacement.

R NR

O nk n!
(n–k)!

NO
(
n+k–1
k

) (
n
k

)
A.3.3 Multinomial Coefficients
The binomial coefficient

(
n
k

)
describes the number of possibilities to distribute n ob-

jects into two groups of k and n – k elements. What happens if we have not only two

groups butm ≥ 2 ? Say the first group has k1 elements, the second has k2 elements, and

so on, up to themth group that has km elements. Of course, if we distribute n elements

the kj have to satisfy

k1 + ⋅ ⋅ ⋅ + km = n .

Using exactly the same arguments as in the case wherem = 2 we get the following.

There exists exactly n!
k1!⋅ ⋅ ⋅km! different ways to distribute n elements into m groups of

sizes k1, k2, . . . , km where k1 + ⋅ ⋅ ⋅ + km = n.

In accordance with the binomial coefficient we write(
n

k1, . . . , km

)
:=

n!

k1! ⋅ ⋅ ⋅ km!
, k1 + ⋅ ⋅ ⋅ + km = n , (A.15)

and call
(

n
k1,...,km

)
amultinomial coefficient, read “n chosen k1 up to km.”
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Remark A.3.15. Ifm = 2, then k1 + k2 = n, and

(
n

k1, k2

)
=

(
n

k1, n – k1

)
=

(
n

k1

)
=

(
n

k2

)
.

Example A.3.16. A deck of cards for playing skat consists of 32 cards. Three players

each gets 10 cards; the remaining two cards (called “skat”) are placed on the table.

How many different distributions of the cards exist?

Answer: Let us first define what it means for two distribution of cards to be

identical. Say, this happens if each of the three players has exactly the same cards as in

the previous game. Therefore, the remaining two cards on the table are also identical.

Hence we distribute 32 cards into 4 groups possessing 10, 10, 10, and 2 elements.

Consequently, the number of different distributions equals 4

(
32

10, 10, 10, 2

)
=

32!

(10!)3 2!
= 2.753294409 × 1015 .

Remark A.3.17. One may also look at multinomial coefficients from a different point

of view. Suppose we are given n balls of m different colors. Say there are k1 balls of

color 1, k2 balls of color 2, up to km balls of color m where, of course, k1 +⋯ + km = n.

Then there exist (
n

k1, . . . , km

)

different ways to order these n balls. This is followed by the same arguments as we

used in Example A.3.4 form = 2.

For instance, given 3 blue, 4 red and 2 white balls, then there are

(
9

3, 4, 2

)
=

9!

3! 4! 2!
= 1260

different ways to order them.

Finally, let us still mention that in the literature one sometimes finds another

(equivalent) way for the introduction of the multinomial coefficients. Given nonnegat-

ive integers k1, . . . , km with k1 +⋯ + km = n, it follows that

(
n

k1, . . . , km

)
=

(
n

k1

)(
n – k1

k2

)(
n – k1 – k2

k3

)
⋯

(
n – k1 –⋯ – km–1

km

)
. (A.16)

A direct proof of this fact is easy and left as an exercise.

4 The huge size of this number explains why playing skat never becomes boring.
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There is a combinatorial interpretation of the expression on the right-hand side of

eq. (A.16). To reorder n balls of m different colors, one chooses first the k1 positions

for balls of color 1. There are
(
n
k1

)
ways to do this. Thus, there remain n – k1 possible

positions for balls of color 2, and there are
(
n–k1
k2

)
possible choices for this, and so on.

Note that at the end there remain km positions for km balls; hence, the last term on the

right-hand side of eq. (A.16) equals 1.

Let us come now to the announced generalization of Proposition A.3.7.

Proposition A.3.18 (Multinomial theorem). Let n ≥ 0. Then for any m ≥ 1 and real

numbers x1, . . . , xm,

(x1 + ⋅ ⋅ ⋅ + xm)
n =

∑
k1+⋅ ⋅ ⋅+km=n

ki≥0

(
n

k1, . . . , km

)
x
k1
1 ⋅ ⋅ ⋅ xkmm . (A.17)

Proof: Equality (A.17) is proved by induction. In contrast to the proof of the binomial

theorem, now induction is done overm, the number of summands.

Ifm = 1 the assertion is valid by trivial reasons.

Suppose now eq. (A.17) holds for m, all n ≥ 1 and all real numbers x1, . . . , xm. We

have to show the validity of eq. (A.17) for m + 1 and all n ≥ 1. Given real numbers

x1, . . . , xm+1 and n ≥ 1 set y := x1 + ⋅ ⋅ ⋅ + xm. Using A.3.7, by the validity of eq. (A.17) for

m and all n – j, 0 ≤ j ≤ n, we obtain

(x1 + ⋅ ⋅ ⋅ + xm+1)
n = (y + xm+1)

n =

n∑
j=1

n!

j! (n – j)!
x
j
m+1y

n–j

=

n∑
j=1

n!

j! (n – j)!

∑
k1+⋅ ⋅ ⋅+km=n–j

ki≥0

(n – j)!

k1! ⋅ ⋅ ⋅ km!
x
k1
1 ⋅ ⋅ ⋅ xkmm x

j
m+1 .

Replacing j by km+1 and combining both sums leads to

(x1 + ⋅ ⋅ ⋅ + xm+1)
n =

∑
k1+⋅ ⋅ ⋅+km+1=n

ki≥0

n!

k1! ⋅ ⋅ ⋅ km+1!
x
k1
1 ⋅ ⋅ ⋅ x

km+1
m+1 ,

hence eq. (A.17) is also valid form + 1. This completes the proof. ∎

Remark A.3.19. The number of summands in eq. (A.17) equals5
(
n+m–1

n

)
.

5 Compare case 3 in Section A.3.2.


