Mathematical Statistics, Winter semester 2020/21 Problem sheet 3

7) Let X_1, \ldots, X_n be independent and identically distributed random variables with $P_{\theta}(X_i = 1) = \theta = 1 - P_{\theta}(X_i = 0)$, where $\theta \in \Theta = (0, 1)$.

Show that there is no unbiased estimator $T = T(X_1, \ldots, X_n)$ of the parameter $g(\theta) = 1/\theta$.

8) Suppose that a realization of a random variable X is observed, $X \sim P_{\theta}$, where $\theta \in \Theta$. Suppose further that there exists some $\theta_0 \in \Theta$ such that $P_{\theta} \ll P_{\theta_0} \ \forall \theta \in \Theta$, that is, $P_{\theta_0}(B) = 0$ implies $P_{\theta}(B) = 0$.

Show that $T \equiv \theta_0$ is an admissible estimator of θ when the mean squared error is taken as a measure of performance.

- Show that the Hellinger affinity, and therefore the Hellinger distance as well, do not depend on the choice of a dominating σ-finite measure μ.
 Hint: See the proof of Lemma 2.1.
- 10) Let $X \sim P_{\theta} = \text{Poisson}(\theta)$, where $\theta \in \Theta = (0, \infty)$.
 - (i) Compute the Fisher information of the family $\{P_{\theta}: \theta \in \Theta\}$.
 - (ii) Compute the mean squared error of the estimator T(X) = X for the parameter θ . Hint: Compute first $E_{\theta}X$ and $E_{\theta}[X(X-1)]$.