Mathematical Statistics, Winter semester 2020/21 Problem sheet 4

- 11) Compute the Fisher information number $I(\theta)$ of the family $\{N(\theta, \sigma^2): \theta \in \mathbb{R}\}$. $(\sigma^2 > 0$ is fixed.)
- 12) Let X_1, \ldots, X_n be i.i.d. with $P_{\theta}(X_i = 1) = \theta = 1 P_{\theta}(X_i = 0)$, where $\theta \in \Theta = (0, 1)$. Show with the aid of Proposition 2.10 that $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ is admissible (w.r.t. the mean squared error) in the class of all estimators.
- 13) Suppose that a realization of $X \sim P_{\theta} := \text{Bin}(\theta, p)$ is observed, where $\theta \in \Theta := \mathbb{N}$ and $p \in (0, 1)$ is known. Let $\pi = \text{Poisson}(\lambda), \lambda > 0$, be the prior distribution for θ .
 - (i) Find the posterior distribution of θ given X = k.
 - (ii) Suppose that the mean squared error is chosen as measure of the performance of an estimator. Compute the Bayes estimator.