Mathematical Statistics, Winter semester 2020/21

Problem sheet 6

- 17) (i) Show that the family of distributions $\{Bin(n,\theta): \theta \in (0,1)\}$ has a monotone likelihood ratio.
 - (ii) For $X \sim \text{Bin}(n, \theta)$, construct a UMP test of size $\alpha \in (0, 1)$ for the problem

 $H_0: \quad \theta \le 1/2 \quad \text{vs.} \quad H_1: \quad \theta > 1/2.$

- 18) Assume that a random variable X has a density $p_{\theta} = dP_{\theta}^{X}/d\lambda$ with $p_{\theta}(x) = \frac{1}{2}e^{-|x-\theta|}$, where $\theta \in \mathbb{R}$.
 - (i) Does the family $\{P_{\theta}^X : \theta \in \mathbb{R}\}$ have a monotone likelihood ratio?
 - (ii) Construct a UMP test of size $\alpha \in (0,1)$ for

 H_0 : $\theta \le \theta_0$ vs. H_1 : $\theta > \theta_0$.

19) Let $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ be independent random variables, where $X_i \sim \mathcal{N}(\theta_1, 1)$ and $Y_i \sim \mathcal{N}(\theta_2, 1)$.

Find a likelihood ratio test of size $\alpha > 0$ for

 H_0 : $\theta_1 = \theta_2$ vs. $\theta_1 \neq \theta_2$.