Measure Theory, Winter semester 2021/22

Solutions to Problem sheet 1

- 1) Let Ω be a non-empty set and let \mathcal{A} be a σ -algebra on Ω . Suppose that P_1 and P_2 are probability measures on (Ω, \mathcal{A}) , i.e. P_i : $\mathcal{A} \to [0, 1]$ satisfies
 - (i) $P_i(\emptyset) = 0, P_i(\Omega) = 1,$
 - (ii) if A_1, A_2, \ldots are disjoint sets that belong to \mathcal{A} , then

$$P_i\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P_i(A_i).$$

Show that the collection of sets $\mathcal{D} := \{A \in \mathcal{A}: P_1(A) = P_2(A)\}$ is a Dynkin system on Ω .

Hint: Note that $P_i(A^c) = P_i(\Omega \setminus A) = P_i(\Omega) - P_i(A)$.

Solution

We verify that the system \mathcal{D} satisfies the axioms of a Dynkin system on Ω :

a) Since $P_1(\Omega) = 1 = P_2(\Omega)$ we have that

$$\Omega \in \mathcal{D}$$
.

b) Suppose that $A \in \mathcal{D}$. Then $P_1(A) = P_2(A)$, which implies by (i) that

$$P_1(A^c) = P_1(\Omega) - P_1(A) = P_2(\Omega) - P_2(A) = P_2(A^c).$$

Hence,

$$A \in \mathcal{D}$$
 implies that $A^c \in \mathcal{D}$.

c) Suppose that A_1, A_2, \ldots are disjoint sets that belong to \mathcal{D} , i.e. $P_1(A_i) = P_2(A_i)$ for all $i \in \mathbb{N}$. Then

$$P_1\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P_1(A_i) = \sum_{i=1}^{\infty} P_2(A_i) = P_2\left(\bigcup_{i=1}^{\infty} A_i\right).$$

Hence,

$$A_1, A_2, \ldots \in \mathcal{D}$$
 for disjoint sets implies that $\bigcup_{i=1}^{\infty} A_i \in \mathcal{D}$.

It follows that \mathcal{D} is a Dynkin system on Ω .

2) Let Ω be a non-empty set and let $(\mathcal{A}_i)_{i\in I}$ be a non-empty collection of σ -algebras on Ω , where I is an arbitrary (finite, countably infinite or even uncountable) index set. Show that the intersection of these σ -algebras,

$$\bigcap_{i \in I} \mathcal{A}_i = \{ A \subseteq \Omega : A \in \mathcal{A}_i \text{ for all } i \in I \},$$

is a σ -algebra on Ω .

Solution

Let $\mathcal{A} = \bigcap_{i \in I} \mathcal{A}_i$ We verify that \mathcal{A} satisfies the axions of a σ -algebra on Ω :

a) Since $\Omega \in \mathcal{A}_i$ for all $i \in I$ we have that

$$\Omega \in \mathcal{A}$$
.

b) Let $A \in \mathcal{A}$ be arbitrary. Then $A \in \mathcal{A}_i$ for all $i \in I$, and so $A^c \in \mathcal{A}_i$ for all $i \in I$. Hence,

$$A \in \mathcal{D}$$
 implies that $A^c \in \mathcal{D}$.

c) Suppose that A_1, A_2, \ldots are arbitrary sets that belong to \mathcal{A} . Then, for all $i \in I$, $A_1, A_2, \ldots \in \mathcal{A}_i$, which implies $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}_i$ for all $i \in I$, i.e. $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$. Hence,

$$A_1, A_2, \ldots \in \mathcal{A}$$
 implies that
$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}.$$

It follows that \mathcal{A} is a σ -algebra on Ω .