Measure Theory, Winter semester 2021/22

Solutions to Problem sheet 2
3) Let $\Omega=\mathbb{N}$ and let $\mathcal{C}:=\left\{A \subseteq \Omega: A\right.$ or A^{c} is a finite subset of $\left.\Omega\right\}$.
(i) Show that \mathcal{C} is a ring but not a σ-algebra on Ω.
(ii) For $A \in \mathcal{C}$, let $\mu(A)=0$ if A is finite and $\mu(A)=1$ if A is infinite. Show that μ is a content on (Ω, \mathcal{C}). Is μ a pre-measure on (Ω, \mathcal{C}) ?

Solution

(i) We verify that the axioms of a ring are fulfilled by \mathcal{C} :
a) $\emptyset \in \mathcal{C}$ since \emptyset is a finite set.
b) Let $A, B \in \mathcal{C}$. We have to show that $A \backslash B=A \cap B^{c}$ belongs to \mathcal{C}.

Case 1: If at least one of the sets A and B^{c} is finite, then $A \cap B^{c}$ is finite, and so $A \backslash B \in \mathcal{C}$.
Case 2: If both sets A and B^{c} are infinite, then A^{c} and B are finite. In this case $(A \backslash B)^{c}=\left(A \cap B^{c}\right)^{c}=A^{c} \cup B$ is finite; hence $A \backslash B \in \mathcal{C}$.
c) Let $A, B \in \mathcal{C}$.

Case 1: If both A and B are finite, then $A \cup B$ is also finite. Hence, $A \cup B \in \mathcal{C}$.
Case 2: If at least one of the sets A and B is infinite, then at least one of A^{c} and B^{c} is finite. Hence, $(A \cup B)^{c}$ is finite, and so $A \cup B \in \mathcal{C}$.
\mathcal{C} is not a σ-algebra on \mathbb{N} since $\{1\},\{3\}, \ldots \in \mathcal{C}$ but $\bigcup_{i=1}^{\infty}\{2 i-1\} \notin \mathcal{C}$.
(ii) It is easy to see that μ is a content on \mathcal{C} :
μ is a non-negative function and $\mu(\emptyset)=0$.
Let A_{1} and A_{2} be disjoint sets that belong to \mathcal{C}.
Case 1: If both A and B are finite, then $\mu(A \cup B)=0=\mu(A)+\mu(B)$.
Case 2: If one of the sets A and B is infinite and the other set is finite, then $\mu(A \cup B)=1=\mu(A)+\mu(B)$.
Both sets A and B cannot be infinite simultaneously. Since $A \cap B=\emptyset$ we have that $A \subseteq B^{c}$. If A is infinite, then B^{c} is also infinite which implies that B is finite.
μ is not a pre-measure on \mathcal{C}. To disprove σ-additivity, consider the singletons $A_{i}=\{i\}$. Then $\bigcup_{i=1}^{\infty}\{i\}=\mathbb{N} \in \mathcal{C}$, but $\mu\left(\bigcup_{i=1}^{\infty}\{i\}\right)=1>0=\sum_{i=1}^{n} \mu(\{i\})$.
4) Let $P: \mathcal{B}^{d} \rightarrow[0,1]$ be a probability measure on $\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$, and let $F: \mathbb{R}^{d} \rightarrow[0,1]$ be the corresponding distribution function, i.e.

$$
F\left(x_{1}, \ldots, x_{d}\right)=P\left(\left(-\infty, x_{1}\right] \times \cdots \times\left(-\infty, x_{d}\right]\right) \quad \forall x_{1}, \ldots, x_{d} \in \mathbb{R}
$$

Show that, for all $x_{1}, \ldots, x_{d} \in \mathbb{R}, y_{1}, \ldots, y_{d} \geq 0$,

$$
P\left(\left(x_{1}, x_{1}+y_{1}\right] \times \cdots \times\left(x_{d}, x_{d}+y_{d}\right]\right)=\sum_{\left(\theta_{1}, \ldots, \theta_{d}\right) \in\{0,1\}^{d}}(-1)^{\sum_{i=1}^{d}\left(1-\theta_{i}\right)} F\left(x_{1}+\theta_{1} y_{1}, \ldots, x_{d}+\theta_{d} y_{d}\right) .
$$

Hint: Consider the sets $A_{i}=\left(-\infty, x_{1}+y_{1}\right] \times \cdots \times\left(-\infty, x_{i-1}+y_{i-1}\right] \times\left(-\infty, x_{i}\right] \times$ $\left(-\infty, x_{i+1}+y_{i+1}\right] \times \cdots \times\left(-\infty, x_{d}+y_{d}\right]$.

Solution

Let $A_{i}=\left(-\infty, x_{1}+y_{1}\right] \times \cdots \times\left(-\infty, x_{i-1}+y_{i-1}\right] \times\left(-\infty, x_{i}\right] \times\left(-\infty, x_{i+1}+y_{i+1}\right] \times \cdots \times$ $\left(-\infty, x_{d}+y_{d}\right]$.
We obtain by the inclusion-exclusion principle that

$$
\begin{aligned}
P\left(A_{1} \cup \cdots \cup A_{d}\right) & =\sum_{k=1}^{d}(-1)^{k+1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq d} P\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right) \\
& =\sum_{\theta \in\{0,1\}^{d}, \theta \neq(1, \ldots, 1)}(-1)^{\sum_{i=1}^{d}\left(1-\theta_{i}\right)+1} F\left(x_{1}+\theta_{1} y_{1}, \ldots, x_{d}+\theta_{d} y_{d}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& P\left(\left(x_{1}, x_{1}+y_{1}\right] \times \cdots \times\left(x_{d}, x_{d}+y_{d}\right]\right) \\
& =P\left(\left(-\infty, x_{1}+y_{1}\right] \times \cdots \times\left(-\infty, x_{d}+y_{d}\right]\right)-P\left(A_{1} \cup \cdots \cup A_{d}\right) \\
& =(-1)^{d+d} F\left(x_{1}+y_{1}, \ldots, x_{d}+y_{d}\right) \\
& \quad+\sum_{\theta \in\{0,1\}^{d}, \theta \neq(1, \ldots, 1)}(-1)^{\sum_{i=1}^{d}\left(1-\theta_{i}\right)} F\left(x_{1}+\theta_{1} y_{1}, \ldots, x_{d}+\theta_{d} y_{d}\right) .
\end{aligned}
$$

