- 3) Let $\Omega = \mathbb{N}$ and let $\mathcal{C} := \{A \subseteq \Omega : A \text{ or } A^c \text{ is a finite subset of } \Omega\}.$
 - (i) Show that \mathcal{C} is a ring but not a σ -algebra on Ω .
 - (ii) For $A \in C$, let $\mu(A) = 0$ if A is finite and $\mu(A) = 1$ if A is infinite. Show that μ is a content on (Ω, C) . Is μ a pre-measure on (Ω, C) ?

Solution

- (i) We verify that the axioms of a ring are fulfilled by \mathcal{C} :
 - a) $\emptyset \in \mathcal{C}$ since \emptyset is a finite set.
 - b) Let A, B ∈ C. We have to show that A \ B = A ∩ B^c belongs to C. Case 1: If at least one of the sets A and B^c is finite, then A ∩ B^c is finite, and so A \ B ∈ C. Case 2: If both sets A and B^c are infinite, then A^c and B are finite. In this case (A \ B)^c = (A ∩ B^c)^c = A^c ∪ B is finite; hence A \ B ∈ C.
 - c) Let $A, B \in \mathcal{C}$. Case 1: If both A and B are finite, then $A \cup B$ is also finite. Hence, $A \cup B \in \mathcal{C}$. Case 2: If at least one of the sets A and B is infinite, then at least one of A^c and B^c is finite. Hence, $(A \cup B)^c$ is finite, and so $A \cup B \in \mathcal{C}$.

 \mathcal{C} is not a σ -algebra on \mathbb{N} since $\{1\}, \{3\}, \ldots \in \mathcal{C}$ but $\bigcup_{i=1}^{\infty} \{2i-1\} \notin \mathcal{C}$.

(ii) It is easy to see that μ is a content on C: μ is a non-negative function and $\mu(\emptyset) = 0$. Let A_1 and A_2 be disjoint sets that belong to C. Case 1: If both A and B are finite, then $\mu(A \cup B) = 0 = \mu(A) + \mu(B)$. Case 2: If one of the sets A and B is infinite and the other set is finite, then $\mu(A \cup B) = 1 = \mu(A) + \mu(B)$. Both sets A and B cannot be infinite simultaneously. Since $A \cap B = \emptyset$ we have that $A \subseteq B^c$. If A is infinite, then B^c is also infinite which implies that B is finite.

 μ is not a pre-measure on \mathcal{C} . To disprove σ -additivity, consider the singletons $A_i = \{i\}$. Then $\bigcup_{i=1}^{\infty} \{i\} = \mathbb{N} \in \mathcal{C}$, but $\mu(\bigcup_{i=1}^{\infty} \{i\}) = 1 > 0 = \sum_{i=1}^{n} \mu(\{i\})$.

4) Let $P: \mathcal{B}^d \to [0,1]$ be a probability measure on $(\mathbb{R}^d, \mathcal{B}^d)$, and let $F: \mathbb{R}^d \to [0,1]$ be the corresponding distribution function, i.e.

$$F(x_1,\ldots,x_d) = P((-\infty,x_1]\times\cdots\times(-\infty,x_d]) \quad \forall x_1,\ldots,x_d \in \mathbb{R}$$

Show that, for all $x_1, \ldots, x_d \in \mathbb{R}, y_1, \ldots, y_d \ge 0$,

$$P((x_1, x_1+y_1] \times \dots \times (x_d, x_d+y_d]) = \sum_{(\theta_1, \dots, \theta_d) \in \{0,1\}^d} (-1)^{\sum_{i=1}^d (1-\theta_i)} F(x_1+\theta_1 y_1, \dots, x_d+\theta_d y_d).$$

Hint: Consider the sets $A_i = (-\infty, x_1 + y_1] \times \cdots \times (-\infty, x_{i-1} + y_{i-1}] \times (-\infty, x_i] \times (-\infty, x_{i+1} + y_{i+1}] \times \cdots \times (-\infty, x_d + y_d].$

Solution

Let $A_i = (-\infty, x_1 + y_1] \times \cdots \times (-\infty, x_{i-1} + y_{i-1}] \times (-\infty, x_i] \times (-\infty, x_{i+1} + y_{i+1}] \times \cdots \times (-\infty, x_d + y_d].$

We obtain by the inclusion-exclusion principle that

$$P(A_1 \cup \dots \cup A_d) = \sum_{k=1}^d (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le d} P(A_{i_1} \cap \dots \cap A_{i_k})$$

=
$$\sum_{\theta \in \{0,1\}^d, \theta \ne (1,\dots,1)} (-1)^{\sum_{i=1}^d (1-\theta_i) + 1} F(x_1 + \theta_1 y_1, \dots, x_d + \theta_d y_d).$$

Then

$$P((x_1, x_1 + y_1] \times \dots \times (x_d, x_d + y_d])$$

= $P((-\infty, x_1 + y_1] \times \dots \times (-\infty, x_d + y_d]) - P(A_1 \cup \dots \cup A_d)$
= $(-1)^{d+d} F(x_1 + y_1, \dots, x_d + y_d)$
+ $\sum_{\theta \in \{0,1\}^d, \theta \neq (1,\dots,1)} (-1)^{\sum_{i=1}^d (1-\theta_i)} F(x_1 + \theta_1 y_1, \dots, x_d + \theta_d y_d).$