Solutions to Problem sheet 3
5) Let $\lambda^{*}: 2^{\mathbb{R}} \rightarrow[0, \infty]$ be the outer measure on \mathbb{R} defined by

$$
\lambda^{*}(Q)=\inf \left\{\sum_{i=1}^{\infty} \lambda_{0}^{1}\left(A_{i}\right): \quad A_{1}, A_{2}, \ldots \in \mathcal{B}_{0}^{1}, Q \subseteq \bigcup_{i=1}^{\infty} A_{i}\right\} .
$$

Using only the definition of λ^{*}, show that $\lambda^{*}(C)=0$ if C is a countable subset of \mathbb{R}.

Solution

Let C be a countable subset of \mathbb{R}, i.e. $C=\left\{r_{1}, r_{2}, \ldots\right\}$. Let $\epsilon>0$ be arbitrary. Define for each $i \in \mathbb{N}$

$$
A_{i}=\left(r_{i}-\epsilon 2^{-i}, r_{i}\right] .
$$

Then

$$
C \subseteq \bigcup_{i=1}^{\infty} A_{i}, \quad A_{i} \in \mathcal{I}_{1} \subseteq \mathcal{B}_{0}^{1}
$$

and

$$
\sum_{i=1}^{\infty} \lambda_{0}^{1}\left(A_{i}\right)=\sum_{i=1}^{\infty} \epsilon 2^{-i}=\epsilon
$$

Since $\lambda^{*}(C) \leq \sum_{i=1}^{\infty} \lambda_{0}^{1}\left(A_{i}\right)$ we obtain that $\lambda^{*}(C)=0$.
6) (A model for countably many fair coin tosses)

Let

$$
\begin{aligned}
\Omega & =\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots\right): \quad \omega_{i} \in\{0,1\} \text { for all } i \in \mathbb{N}\right\} \\
\mathcal{C}_{n} & =\left\{A \times \Omega: \quad A \subseteq\{0,1\}^{n}\right\}=\left\{\left\{\omega \in \Omega: \quad\left(\omega_{1}, \ldots \omega_{n}\right) \in A\right\} \mid A \subseteq\{0,1\}^{n}\right\}
\end{aligned}
$$

and

$$
\mathcal{C}=\bigcup_{n=1}^{\infty} \mathcal{C}_{n} .
$$

Define $P_{0}: \mathcal{C} \rightarrow[0,1]$ such that, for $A \in\{0,1\}^{n}$ and $n \in \mathbb{N}$,

$$
P_{0}(A \times \Omega)=P_{0}\left(\left\{\omega \in \Omega:\left(\omega_{1}, \ldots, \omega_{n}\right) \in A\right\}\right)=\frac{\# A}{2^{n}} .
$$

(i) Show that \mathcal{C} is an algebra (and therefore a ring) on Ω.
(ii) For each $c \in[0,1]$, let $B_{c}=\left\{\omega \in \Omega: \frac{1}{n} \sum_{i=1}^{n} \omega_{i} \underset{n \rightarrow \infty}{\longrightarrow} c\right\}$.

Show that $B_{c} \in \sigma(\mathcal{C})$.
(Hint: Use that $\left\{\omega \in \Omega:\left|\frac{1}{n} \sum_{i=1}^{n} \omega_{i}-c\right| \leq \frac{1}{m}\right\} \in \mathcal{C}$.)
(iii) Let $A \times \Omega=B \times \Omega$, where $A \subseteq\{0,1\}^{m}$ and $B \subseteq\{0,1\}^{n}$.

Show that

$$
P_{0}(A \times \Omega)=P_{0}(B \times \Omega)
$$

(iv) Show that P_{0} is a content on \mathcal{C}.
(Actually, it can also be shown that P_{0} is a pre-measure on \mathcal{C}.)

Solution

(i) We verify that \mathcal{C} satisfies the axioms of an algebra on Ω :
a) \quad Since $\Omega=\{0,1\} \times \Omega$ we have $\Omega \in \mathcal{C}_{n} \forall n \in \mathbb{N}$, and so $\Omega \in \mathcal{C}$.
b) Let $B \in \mathcal{C}$. Then B has the representation $B=A \times \Omega$, where $A \subseteq\{0,1\}^{n}$ for some $n \in \mathbb{N}$. Since $B^{c}=A^{c} \times \Omega$ we obtain that $B^{c} \in \mathcal{C}$.
c) Let $B_{1}, B_{2} \in \mathcal{C}$. Then

$$
B_{1}=A_{1} \times \Omega \quad \text { and } \quad B_{2}=A_{2} \times \Omega
$$

where $A_{1} \subseteq\{0,1\}^{m}$ and $A_{2} \subseteq\{0,1\}^{n}$. Let without loss of generality $m \geq n$.
Then $B_{2}=\underbrace{A_{2} \times\{0,1\}^{m-n}}_{=: A_{3}} \times \Omega$, and so

$$
B_{1} \cup B_{2}=\left(A_{1} \cup A_{3}\right) \times \Omega,
$$

i.e. $B_{1} \cup B_{2} \in \mathcal{C}$.
(ii) This follows from

$$
B_{c}=\bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} \underbrace{\left\{\omega \in \Omega: \quad\left|\frac{1}{n} \sum_{i=1}^{n} \omega_{i}-c\right| \leq \frac{1}{m}\right\}}_{\in \mathcal{C}_{n}=\mathcal{C}}
$$

(iii) Suppose that $A \times \Omega=B \times \Omega$, where $A \subseteq\{0,1\}^{m}$ and $B \subseteq\{0,1\}^{n}$. Let w.l.o.g. $m \geq n$. Then it follows from $A \times \Omega=B \times \Omega$ that

$$
A=B \times\{0,1\}^{m-n}
$$

This implies

$$
\begin{aligned}
P_{0}(A \times \Omega) & =P_{0}(\underbrace{B \times\{0,1\}^{m-n}}_{\subseteq\{0,1\}^{m}} \times \Omega)=\frac{\#\left(B \times\{0,1\}^{m-n}\right.}{2^{m}} \\
& =\frac{\# B}{2^{n}}=P_{0}(B \times \Omega) .
\end{aligned}
$$

(iv) We verify that P_{0} satisfies the axioms of a content on \mathcal{C} :
a) $\quad P_{0}$ is obviously a non-negative set function on \mathcal{C}.
b) Let \emptyset_{Ω} and $\emptyset_{\{0,1\}}$ denote the respective empty sets in Ω and $\{0,1\}$. Then

$$
P_{0}\left(\emptyset_{\Omega}\right)=P_{0}\left(\emptyset_{\{0,1\}} \times \Omega\right)=0
$$

c) Let A_{1} and A_{2} be disjoint sets that belong to \mathcal{C}. Then $A_{1}=B_{1} \times \Omega$ and $A_{2}=B_{2} \times \Omega$, where $B_{1} \subseteq\{0,1\}^{m}$ and $B_{2} \subseteq\{0,1\}^{n}$. Let w.l.o.g. $m \geq n$. Then $A_{2}=\underbrace{\left(B_{2} \times\{0,1\}^{m-n}\right)}_{=: B_{3}} \times \Omega$. Since $A_{1} \cap A_{2}=\emptyset$ implies that B_{1} and B_{3} are disjoint we obtain that

$$
P_{0}\left(A_{1} \cup A_{2}\right)=\frac{\#\left(B_{1} \cup B_{3}\right)}{2^{m}}=\frac{\# B_{1}}{2^{m}}+\underbrace{\frac{\# B_{3}}{2^{m}}}_{=\# B_{2} / 2^{n}}=P_{0}\left(A_{1}\right)+P_{0}\left(A_{2}\right)
$$

