Measure Theory, Winter semester 2021/22

Solutions to Problem sheet 3

5) Let $\lambda^*: 2^{\mathbb{R}} \to [0,\infty]$ be the outer measure on \mathbb{R} defined by

$$\lambda^*(Q) = \inf \{ \sum_{i=1}^{\infty} \lambda_0^1(A_i) \colon A_1, A_2, \dots \in \mathcal{B}_0^1, \ Q \subseteq \bigcup_{i=1}^{\infty} A_i \}.$$

Using only the definition of λ^* , show that $\lambda^*(C) = 0$ if C is a countable subset of \mathbb{R} .

Solution

Let C be a countable subset of \mathbb{R} , i.e. $C = \{r_1, r_2, \ldots\}$. Let $\epsilon > 0$ be arbitrary. Define for each $i \in \mathbb{N}$

$$A_i = (r_i - \epsilon 2^{-i}, r_i].$$

Then

$$C \subseteq \bigcup_{i=1}^{\infty} A_i, \qquad A_i \in \mathcal{I}_1 \subseteq \mathcal{B}_0^1,$$

and

$$\sum_{i=1}^{\infty} \lambda_0^1(A_i) = \sum_{i=1}^{\infty} \epsilon \, 2^{-i} = \epsilon.$$

Since $\lambda^*(C) \leq \sum_{i=1}^{\infty} \lambda_0^1(A_i)$ we obtain that $\lambda^*(C) = 0$.

6) (A model for countably many fair coin tosses) Let

$$\Omega = \left\{ \omega = (\omega_1, \omega_2, \ldots) : \quad \omega_i \in \{0, 1\} \text{ for all } i \in \mathbb{N} \right\},$$

$$\mathcal{C}_n = \left\{ A \times \Omega : \quad A \subseteq \{0, 1\}^n \right\} = \left\{ \left\{ \omega \in \Omega : \quad (\omega_1, \ldots, \omega_n) \in A \right\} \middle| A \subseteq \{0, 1\}^n \right\}$$

and

$$\mathcal{C} = \bigcup_{n=1}^{\infty} \mathcal{C}_n.$$

Define $P_0: \mathcal{C} \to [0, 1]$ such that, for $A \in \{0, 1\}^n$ and $n \in \mathbb{N}$,

$$P_0(A \times \Omega) = P_0(\{\omega \in \Omega: (\omega_1, \dots, \omega_n) \in A\}) = \frac{\#A}{2^n}.$$

- (i) Show that \mathcal{C} is an algebra (and therefore a ring) on Ω .
- (ii) For each $c \in [0, 1]$, let $B_c = \{ \omega \in \Omega : \frac{1}{n} \sum_{i=1}^n \omega_i \xrightarrow[n \to \infty]{m \to \infty} c \}$. Show that $B_c \in \sigma(\mathcal{C})$. (*Hint: Use that* $\{ \omega \in \Omega : |\frac{1}{n} \sum_{i=1}^n \omega_i - c| \leq \frac{1}{m} \} \in \mathcal{C}.$)
- (iii) Let $A \times \Omega = B \times \Omega$, where $A \subseteq \{0,1\}^m$ and $B \subseteq \{0,1\}^n$. Show that

$$P_0(A \times \Omega) = P_0(B \times \Omega).$$

(iv) Show that P_0 is a content on C. (Actually, it can also be shown that P_0 is a pre-measure on C.)

Solution

- (i) We verify that \mathcal{C} satisfies the axioms of an algebra on Ω :
 - a) Since $\Omega = \{0, 1\} \times \Omega$ we have $\Omega \in \mathcal{C}_n \ \forall n \in \mathbb{N}$, and so $\Omega \in \mathcal{C}$.
 - b) Let $B \in \mathcal{C}$. Then B has the representation $B = A \times \Omega$, where $A \subseteq \{0, 1\}^n$ for some $n \in \mathbb{N}$. Since $B^c = A^c \times \Omega$ we obtain that $B^c \in \mathcal{C}$.
 - c) Let $B_1, B_2 \in \mathcal{C}$. Then

$$B_1 = A_1 \times \Omega$$
 and $B_2 = A_2 \times \Omega$,

where $A_1 \subseteq \{0,1\}^m$ and $A_2 \subseteq \{0,1\}^n$. Let without loss of generality $m \ge n$. Then $B_2 = \underbrace{A_2 \times \{0,1\}^{m-n}}_{=:A_3} \times \Omega$, and so

$$B_1 \cup B_2 = (A_1 \cup A_3) \times \Omega,$$

i.e. $B_1 \cup B_2 \in \mathcal{C}$.

(ii) This follows from

$$B_{c} = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} \underbrace{\left\{ \omega \in \Omega: \quad \left| \frac{1}{n} \sum_{i=1}^{n} \omega_{i} - c \right| \leq \frac{1}{m} \right\}}_{\in \mathcal{C}_{n} = \mathcal{C}}.$$

(iii) Suppose that $A \times \Omega = B \times \Omega$, where $A \subseteq \{0,1\}^m$ and $B \subseteq \{0,1\}^n$. Let w.l.o.g. $m \ge n$. Then it follows from $A \times \Omega = B \times \Omega$ that

$$A = B \times \{0, 1\}^{m-n}.$$

This implies

$$P_{0}(A \times \Omega) = P_{0}(\underbrace{B \times \{0, 1\}^{m-n}}_{\subseteq \{0, 1\}^{m}} \times \Omega) = \frac{\#(B \times \{0, 1\}^{m-n}}{2^{m}}$$
$$= \frac{\#B}{2^{n}} = P_{0}(B \times \Omega).$$

- (iv) We verify that P_0 satisfies the axioms of a content on \mathcal{C} :
 - a) P_0 is obviously a non-negative set function on \mathcal{C} .
 - b) Let \emptyset_{Ω} and $\emptyset_{\{0,1\}}$ denote the respective empty sets in Ω and $\{0,1\}$. Then

$$P_0(\emptyset_{\Omega}) = P_0(\emptyset_{\{0,1\}} \times \Omega) = 0.$$

c) Let A_1 and A_2 be disjoint sets that belong to \mathcal{C} . Then $A_1 = B_1 \times \Omega$ and $A_2 = B_2 \times \Omega$, where $B_1 \subseteq \{0,1\}^m$ and $B_2 \subseteq \{0,1\}^n$. Let w.l.o.g. $m \ge n$. Then $A_2 = (B_2 \times \{0,1\}^{m-n}) \times \Omega$. Since $A_1 \cap A_2 = \emptyset$ implies that B_1 and B_3

are disjoint we obtain that

$$P_0(A_1 \cup A_2) = \frac{\#(B_1 \cup B_3)}{2^m} = \frac{\#B_1}{2^m} + \underbrace{\frac{\#B_3}{2^m}}_{=\#B_2/2^n} = P_0(A_1) + P_0(A_2)$$