Solutions to Problem sheet 4

7) Consider the measure space $(\mathbb{R}, \mathcal{B}, \delta_0)$, where δ_0 denotes the Dirac measure concentrated at 0, i.e.

$$\delta_0(A) = \begin{cases} 1 & \text{if } 0 \in A, \\ 0 & \text{if } 0 \notin A. \end{cases}$$

Find the completion of \mathcal{B} .

Solution

First we identify the collection \mathcal{N} of δ_0 -null sets: For $A \in \mathcal{B}$, we have that $\delta_0(A) = 0$ if and only if $0 \notin A$. Therefore,

$$\mathcal{N} = \{ N \subseteq \mathbb{R} \colon 0 \notin N \}.$$

The completion $\widetilde{\mathcal{B}}$ of \mathcal{B} is given by

$$\widetilde{\mathcal{B}} = \{ A \cup N \colon A \in \mathcal{B}, N \in \mathcal{N} \}.$$

Since the singleton $\{0\}$ belongs to \mathcal{B} we obtain that

$$\widetilde{\mathcal{B}} = 2^{\mathbb{R}} = \{A: A \subseteq \mathbb{R}\}.$$

8) Show that there is a Lebesgue measurable subset of \mathbb{R}^2 whose projection on \mathbb{R} under the map $(x, y) \mapsto x$ is not Lebesgue measurable.

Solution

Let *E* be the set described in the proof of Corollary 1.4.2. Then $E \subseteq \mathbb{R}$ but $E \notin \mathcal{M}_{\lambda^*}$. Now we consider the set

$$F := E \times \{0\}.$$

Then $F \subseteq \mathbb{R} \times \{0\}, \lambda^2(\mathbb{R} \times \{0\}) = 0$. Since \mathcal{M}_{λ^*} is complete we see that F is a Lebesgue measurable subset of \mathbb{R}^2 .

Let $\pi: \mathbb{R}^2 \to \mathbb{R}$ be the projection onto the first coordinate, i.e. $\pi((x, y)) = x$. Then the projection of the set F under the map π is given by

$$\pi(F) = \{ \pi((x, y)) : (x, y) \in F \} = E.$$