Measure Theory, Winter semester 2021/22

Solutions to Problem sheet 5
9) Let (Ω, \mathcal{A}) be a measurable space, and let $f, g: \Omega \rightarrow \mathbb{R}$ be $(\mathcal{A}-\mathcal{B})$-measurable functions. Show that the sets $\{\omega \in \Omega: f(\omega)<g(\omega)\}$ and $\{\omega \in \Omega: f(\omega)=g(\omega)\}$ belong to \mathcal{A}.

Solution

We have that

$$
\begin{aligned}
\{\omega \in \Omega: f(\omega)<g(\omega)\} & =\bigcup_{r \in \mathbb{Q}}\{\omega: f(\omega)<r, r<g(\omega)\} \\
& =\bigcup_{r \in \mathbb{Q}} \underbrace{\{\omega: f(\omega)<r\}}_{\in \mathcal{A}} \cap \underbrace{\{\omega: r<g(\omega)\}}_{\in \mathcal{A}},
\end{aligned}
$$

which implies that

$$
\{\omega \in \Omega: f(\omega)<g(\omega)\} \in \mathcal{A} .
$$

We can show in literally the same way that

$$
\{\omega \in \Omega: f(\omega)>g(\omega)\} \in \mathcal{A},
$$

which also implies

$$
\begin{aligned}
\{\omega \in \Omega: f(\omega)=g(\omega)\} & =\{\omega \in \Omega: f(\omega) \neq g(\omega)\}^{c} \\
& =(\{\omega \in \Omega: f(\omega)<g(\omega)\} \cup\{\omega \in \Omega: f(\omega)>g(\omega)\})^{c} \in \mathcal{A} .
\end{aligned}
$$

10) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable everywhere on \mathbb{R}.

Show that f^{\prime} is $(\mathcal{B}-\mathcal{B})$-measurable.

Solution

Let, for $n \in \mathbb{N}$,

$$
f_{n}(x):=\frac{f(x+1 / n)-f(x)}{1 / n} .
$$

Since $x \mapsto x+1 / n$ is $(\mathcal{B}-\mathcal{B})$-measurable, the composition $x \mapsto f(x+1 / n)$ is also $(\mathcal{B}-\mathcal{B})$-measurable. Hence, f_{n} is the difference of two $(\mathcal{B}-\mathcal{B})$-measurable functions, multiplied by n, and therefore also $(\mathcal{B}-\mathcal{B})$-measurable.
Since $f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ it follows that f^{\prime} is $(\mathcal{B}-\mathcal{B})$-measurable.
11) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, and let $f: \Omega \rightarrow\{0,1,2, \ldots\}$ be a non-negative integervalued $(\mathcal{A}-\mathcal{B})$-measurable function.
Show that $\int_{\Omega} f d \mu=\sum_{n=1}^{\infty} \mu(\{\omega: f(\omega) \geq n\})$.

Solution

First we define appropriate \mathcal{A}-simple functions:

$$
s_{n}:=\sum_{k=1}^{n} k \mathbb{1}_{\{\omega: f(\omega)=k\}} .
$$

Then $s_{n} \nearrow f$, which implies that

$$
\int_{\Omega} f d \mu=\lim _{n \rightarrow \infty} \int_{\Omega} s_{n} d \mu=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} k \mu(\{\omega: f(\omega)=k\})=\sum_{k=1}^{\infty} k \mu(\{\omega: f(\omega)=k\}) .
$$

On the other hand, we have that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \mu(\{\omega: f(\omega) \geq n\}) & =\sum_{n=1}^{\infty} \sum_{k \geq n} \mu(\{\omega: f(\omega)=k\}) \\
& =\sum_{k=1}^{\infty} \sum_{n=1}^{k} \mu(\{\omega: f(\omega)=k\})=\sum_{k=1}^{\infty} k \mu(\{\omega: f(\omega)=k\})
\end{aligned}
$$

