
Measure Theory, Winter semester 2021/22
Solutions to Problem sheet 6

12) Let µ and µn (n ∈ N) be measures on a measurable space (Ω,A) such that µn(A)↗ µ(A)
for all A ∈ A, and let f : Ω → [0,∞] be an (A − B̄)-measurable functions satisfying∫

Ω
f dµ <∞.

Show that ∫
Ω

f dµn ↗
∫

Ω

f dµ.

Hint: Show first that (
∫

Ω
f dµn)n∈N is a non-decreasing sequence, and then that

limn→∞
∫

Ω
f dµn ≤

∫
Ω
f dµ and

∫
Ω
f dµ ≤ limn→∞

∫
Ω
f dµn + ε ∀ε > 0.

Solution
Let

Sf := {s: Ω→ [0,∞) is an A-simple function, s(ω) ≤ f(ω) ∀ω ∈ Ω}.

Then, for any s =
∑k

i=1 αi1Ai
∈ Sf ,∫

Ω

s dµn =
k∑

i=1

αi µn(Ai) ↗
k∑

i=1

αi µ(Ai) =

∫
Ω

s dµ,

which implies that∫
Ω

f dµn = sup
{∫

Ω

s dµn: s ∈ Sf
}
≤ sup

{∫
Ω

s dµn+1: s ∈ Sf
}

=

∫
Ω

f dµn+1 ∀n ∈ N

as well as∫
Ω

f dµn = sup
{∫

Ω

s dµn: s ∈ Sf
}
≤ sup

{∫
Ω

s dµ: s ∈ Sf
}

=

∫
Ω

f dµ.

Hence, the limit of the integrals
∫

Ω
f dµn exists and

lim
n→∞

∫
Ω

f dµn ≤
∫

Ω

f dµ. (1)

To prove the reverse inequality, choose any ε > 0. Then there exists an A-simple
function s =

∑k
i=1 αi1Ai

∈ Sf such that∫
Ω

f dµ ≤
∫

Ω

s dµ + ε.

On the other hand, we have that
∫

Ω
s dµn ↗

∫
Ω
s dµ, which implies that∫

Ω

f dµ ≤ lim
n→∞

∫
Ω

s dµn + ε ≤ lim
n→∞

∫
Ω

f dµn + ε. (2)

(1) and (2) together imply that limn→∞
∫

Ω
f dµn =

∫
Ω
f dµ.



13) Let (Ω,A) be a measurable space, let µ be an arbitrary measure on (Ω,A), and let ν
be a finite measure on (Ω,A).

Show that ν � µ if and only if for each ε > 0 there is some δ = δ(ε) > 0 such that
each A-measurable set A that satisfies µ(A) < δ also satisfies ν(A) < ε.

Hint: For the proof that ν � µ implies that for each ε there is a suitable δ, assume
that there exists some ε > 0 and that there exist sets Ak ∈ A satisfying µ(Ak) < 1/2k

and ν(Ak) ≥ ε. Show then that µ(
⋂∞

n=1

⋃∞
k=nAk) = 0 and ν(

⋂∞
n=1

⋃∞
k=nAk) ≥ ε.

Solution

(=⇒) Suppose that ν � µ.

We prove the conclusion by contradiction. Assume that there exists some ε > 0
such that there exist A-measurable sets Ak satisfying µ(Ak) < 1/2k and
ν(Ak) ≥ ε. Then µ(

⋃∞
k=nAk) ≤

∑∞
k=n µ(Ak) < 2−n+1. Since µ(

⋃∞
k=nAk) is fi-

nite for all n it follows by continuity from above that

µ
( ∞⋂

n=1

∞⋃
k=n

Ak

)
= lim

n→∞
µ
( ∞⋃

k=n

Ak

)
= 0. (3)

On the other hand, we have that ν(
⋃∞

k=nAk) ≥ ν(An) ≥ ε for all n. Since ν is a
finite measure we have that ν(

⋃∞
k=nAk) < ∞ and it follows again by continuity

from above that

ν
( ∞⋂

n=1

∞⋃
k=n

Ak

)
= lim

n→∞
ν
( ∞⋃

k=n

Ak

)
≥ ε. (4)

(3) and (4) together contradict ν � µ and our assumption that there exists some
ε > 0 for which there is no suitable δ must be wrong.

(⇐=) Suppose that for each ε > 0 there exists some δ = δ(ε) > 0 such that each
A-measurable set A that satisfies µ(A) < δ also satisfies ν(A) < ε.

Suppose now that A ∈ A and µ(A) = 0. Since µ(A) < δ(1/2k) for all k ∈ N it
follows that ν(A) < 1/2k, and so ν(A) = 0. Hence, ν � µ.


