Measure Theory, Winter semester 2021/22

Solutions to Problem sheet 6

12) Let μ and μ_n $(n \in \mathbb{N})$ be measures on a measurable space (Ω, \mathcal{A}) such that $\mu_n(\mathcal{A}) \nearrow \mu(\mathcal{A})$ for all $A \in \mathcal{A}$, and let $f: \Omega \to [0, \infty]$ be an $(\mathcal{A} - \overline{\mathcal{B}})$ -measurable functions satisfying $\int_{\Omega} f \, d\mu < \infty.$

Show that

$$\int_{\Omega} f \, d\mu_n \nearrow \int_{\Omega} f \, d\mu.$$

Hint: Show first that $(\int_{\Omega} f d\mu_n)_{n \in \mathbb{N}}$ is a non-decreasing sequence, and then that $\lim_{n \to \infty} \int_{\Omega} f d\mu_n \leq \int_{\Omega} f d\mu$ and $\int_{\Omega} f d\mu \leq \lim_{n \to \infty} \int_{\Omega} f d\mu_n + \epsilon \ \forall \epsilon > 0.$

Solution

Let

 $\mathcal{S}_f := \{s: \Omega \to [0, \infty) \text{ is an } \mathcal{A}\text{-simple function}, \ s(\omega) \le f(\omega) \ \forall \omega \in \Omega \}.$ Then, for any $s = \sum_{i=1}^{k} \alpha_i \mathbb{1}_{A_i} \in \mathcal{S}_f$,

$$\int_{\Omega} s \, d\mu_n = \sum_{i=1}^k \alpha_i \, \mu_n(A_i) \nearrow \sum_{i=1}^k \alpha_i \, \mu(A_i) = \int_{\Omega} s \, d\mu,$$

which implies that

$$\int_{\Omega} f \, d\mu_n = \sup \left\{ \int_{\Omega} s \, d\mu_n : s \in \mathcal{S}_f \right\} \le \sup \left\{ \int_{\Omega} s \, d\mu_{n+1} : s \in \mathcal{S}_f \right\} = \int_{\Omega} f \, d\mu_{n+1} \quad \forall n \in \mathbb{N}$$
as well as

as well as

$$\int_{\Omega} f \, d\mu_n = \sup \left\{ \int_{\Omega} s \, d\mu_n : s \in \mathcal{S}_f \right\} \le \sup \left\{ \int_{\Omega} s \, d\mu : s \in \mathcal{S}_f \right\} = \int_{\Omega} f \, d\mu.$$

Hence, the limit of the integrals $\int_{\Omega} f d\mu_n$ exists and

$$\lim_{n \to \infty} \int_{\Omega} f \, d\mu_n \, \le \, \int_{\Omega} f \, d\mu. \tag{1}$$

To prove the reverse inequality, choose any $\epsilon > 0$. Then there exists an \mathcal{A} -simple function $s = \sum_{i=1}^{k} \alpha_i \mathbb{1}_{A_i} \in \mathcal{S}_f$ such that

$$\int_{\Omega} f \, d\mu \, \leq \, \int_{\Omega} s \, d\mu \, + \, \epsilon.$$

On the other hand, we have that $\int_{\Omega} s \, d\mu_n \nearrow \int_{\Omega} s \, d\mu$, which implies that

$$\int_{\Omega} f \, d\mu \, \leq \, \lim_{n \to \infty} \int_{\Omega} s \, d\mu_n \, + \, \epsilon \, \leq \, \lim_{n \to \infty} \int_{\Omega} f \, d\mu_n \, + \, \epsilon. \tag{2}$$

(1) and (2) together imply that $\lim_{n\to\infty} \int_{\Omega} f \, d\mu_n = \int_{\Omega} f \, d\mu$.

13) Let (Ω, \mathcal{A}) be a measurable space, let μ be an arbitrary measure on (Ω, \mathcal{A}) , and let ν be a finite measure on (Ω, \mathcal{A}) .

Show that $\nu \ll \mu$ if and only if for each $\epsilon > 0$ there is some $\delta = \delta(\epsilon) > 0$ such that each \mathcal{A} -measurable set A that satisfies $\mu(A) < \delta$ also satisfies $\nu(A) < \epsilon$.

Hint: For the proof that $\nu \ll \mu$ implies that for each ϵ there is a suitable δ , assume that there exists some $\epsilon > 0$ and that there exist sets $A_k \in \mathcal{A}$ satisfying $\mu(A_k) < 1/2^k$ and $\nu(A_k) \geq \epsilon$. Show then that $\mu(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k) = 0$ and $\nu(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k) \geq \epsilon$.

Solution

 (\Longrightarrow) Suppose that $\nu \ll \mu$.

We prove the conclusion by contradiction. Assume that there exists some $\epsilon > 0$ such that there exist \mathcal{A} -measurable sets A_k satisfying $\mu(A_k) < 1/2^k$ and $\nu(A_k) \geq \epsilon$. Then $\mu(\bigcup_{k=n}^{\infty} A_k) \leq \sum_{k=n}^{\infty} \mu(A_k) < 2^{-n+1}$. Since $\mu(\bigcup_{k=n}^{\infty} A_k)$ is finite for all n it follows by continuity from above that

$$\mu\Big(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k\Big) = \lim_{n\to\infty}\mu\Big(\bigcup_{k=n}^{\infty}A_k\Big) = 0.$$
 (3)

On the other hand, we have that $\nu(\bigcup_{k=n}^{\infty} A_k) \ge \nu(A_n) \ge \epsilon$ for all n. Since ν is a finite measure we have that $\nu(\bigcup_{k=n}^{\infty} A_k) < \infty$ and it follows again by continuity from above that

$$\nu\Big(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k\Big) = \lim_{n\to\infty}\nu\Big(\bigcup_{k=n}^{\infty}A_k\Big) \ge \epsilon.$$
(4)

(3) and (4) together contradict $\nu \ll \mu$ and our assumption that there exists some $\epsilon > 0$ for which there is no suitable δ must be wrong.

(\Leftarrow) Suppose that for each $\epsilon > 0$ there exists some $\delta = \delta(\epsilon) > 0$ such that each \mathcal{A} -measurable set A that satisfies $\mu(A) < \delta$ also satisfies $\nu(A) < \epsilon$. Suppose now that $A \in \mathcal{A}$ and $\mu(A) = 0$. Since $\mu(A) < \delta(1/2^k)$ for all $k \in \mathbb{N}$ it follows that $\nu(A) < 1/2^k$, and so $\nu(A) = 0$. Hence, $\nu \ll \mu$.