Solutions to Problem sheet 7

- 14) The assumption of σ -finiteness in Theorem 2.6.2 is essential: Consider the measure spaces $(\mathbb{R}, \mathcal{B}, \lambda)$ and $(\mathbb{R}, \mathcal{B}, \nu)$, where λ is Lebesgue measure and ν is counting measure.
 - (i) Show that the set $E := \{(\omega_1, \omega_2) \in \mathbb{R}^2 : \omega_1 = \omega_2\}$ belongs to $\mathcal{B} \otimes \mathcal{B}$.
 - (ii) Compute $\int_{\mathbb{R}} \nu(E_{\omega_1}) d\lambda(\omega_1)$ and $\int_{\mathbb{R}} \lambda(E^{\omega_2}) d\nu(\omega_2)$.

Solution

(i) Let

$$E_n = \bigcup_{k=-\infty}^{\infty} \left(\frac{k-1}{n}, \frac{k}{n}\right] \times \left(\frac{k-1}{n}, \frac{k}{n}\right]$$

Since $\left(\frac{k-1}{n}\right] \times \left(\frac{k-1}{n}\right] \in \mathcal{B} \otimes \mathcal{B}$ it follows that $E_n \in \mathcal{B} \otimes \mathcal{B}$. From

$$E = \bigcap_{n=1}^{\infty} E_n$$

we obtain that $E \in \mathcal{B} \otimes \mathcal{B}$.

(ii) For each $\omega_1 \in \mathbb{R}$, $E_{\omega_1} = \{\omega_1\}$, and so

$$\nu(E_{\omega_1}) = 1.$$

This implies that

$$\int_{\mathbb{R}} \nu(E_{\omega_1}) \, d\lambda(\omega_1) \, = \, \infty.$$

On the other hand, we have for each $\omega_2 \in \mathbb{R}$ that $E^{\omega_2} = \{\omega_2\}$, which implies that

$$\lambda(E^{\omega_2}) = 0.$$

Hence,

$$\int_{\mathbb{R}} \lambda(E^{\omega_2}) \, d\nu(\omega_2) = 0.$$

- 15) Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space, and let $f: \Omega \to [0, \infty]$ be a non-negative $(\mathcal{A} \bar{\mathcal{B}})$ -measurable function.
 - (i) Show that the set $E_f := \{(\omega, y) \in \Omega \times \mathbb{R}: 0 \le y < f(\omega)\}$ belongs to $\mathcal{A} \otimes \overline{\mathcal{B}}$.
 - (ii) Prove that

$$\int_{\Omega} f \, d\mu \, = \, (\mu \otimes \lambda)(E_f).$$

(The set E_f is the "area under the curve" and $(\mu \otimes \lambda)(E_f)$ is an alternative definition of the integral.)

Solution

(i) Let $s = \sum_{i=1}^{k} \alpha_i \mathbb{1}_{A_i}$ be an \mathcal{A} -simple function, i.e. $\alpha_1, \ldots, \alpha_k \ge 0$ and A_1, \ldots, A_k are disjoint sets that belong to \mathcal{A} . Then

$$E_s := \{(\omega, y) \in \Omega \times \mathbb{R} : 0 \le y < s(\omega)\} \\ = \bigcup_{i=1}^k A_i \times [0, \alpha_i) \in \mathcal{A} \otimes \overline{\mathcal{B}}.$$

For an arbitrary non-negative and $(\mathcal{A} - \bar{\mathcal{B}})$ -measurable function $f: \Omega \to [0, \infty]$, there exists a sequence $(s_n)_{n \in \mathbb{N}}$ of \mathcal{A} -simple functions such that

$$s_n(\omega) \nearrow f(\omega) \qquad \forall \omega \in \Omega.$$

Then

$$E_{s_n} \nearrow E_f,$$

i.e. $E_f = \bigcup_{n=1}^{\infty} E_{s_n} \in \mathcal{A} \otimes \overline{\mathcal{B}}.$

(ii) We have, for the above \mathcal{A} -simple function s,

$$\int_{\Omega} s \, d\mu = \sum_{i=1}^{k} \alpha_i \, \mu(A_i) = \sum_{i=1}^{k} \lambda([0, \alpha_i)) \cdot \mu(A_i)$$
$$= \sum_{i=1}^{k} (\mu \otimes \lambda) (A_i \times [0, \alpha_i)) = (\mu \otimes \lambda) (E_s)$$

We obtain by Beppo Levi's theorem and continuity from below

$$\int_{\Omega} f \, d\mu \, = \, \lim_{n \to \infty} \int_{\Omega} s_n \, d\mu \, = \, \lim_{n \to \infty} (\mu \otimes \lambda)(E_{s_n}) \, = \, (\mu \otimes \lambda)(E_f).$$

16) Let λ be Lebesgue measure on $(\mathbb{R}, \mathcal{B})$.

Compute $\int_{[0,1]} \left[\int_{[x,1]} e^{-y^2/2} d\lambda(y) \right] d\lambda(x).$ Hint: Use the fact that $(e^{-y^2/2})' = -ye^{-y^2/2}.$

Solution

The function $\binom{x}{y} \mapsto e^{-y^2/2} \mathbb{1}_{[x,1]}(y)$ is non-negative and $(\mathcal{B}^2 - \mathcal{B})$ -measurable. Therefore, we can apply Tonelli's theorem and we obtain that

$$\begin{split} \int_{[0,1]} \left[\int_{[x,1]} e^{-y^2/2} d\lambda(y) \right] d\lambda(x) &= \int_{[0,1] \times [0,1]} e^{-y^2/2} \mathbb{1}_{[x,1]}(y) \,\lambda^2(dx, dy) \\ &= \int_{[0,1]} \left[\int_{[0,1]} e^{-y^2/2} \underbrace{\mathbb{1}_{[x,1]}(y)}_{= \mathbb{1}_{[0,y]}(x)} d\lambda(x) \right] d\lambda(y) \\ &= \int_{[0,1]} \left[\underbrace{\int_{[0,1]} e^{-y^2/2} \mathbb{1}_{[0,y]}(x) \, d\lambda(x)}_{= e^{-y^2/2}y} \right] d\lambda(y) \\ &= \int_{0}^{1} \underbrace{e^{-y^2/2} y}_{= -(e^{-y^2/2})'} dy = 1 - 1/e. \end{split}$$