## Measure Theory, Winter semester 2021/22

Solutions to Problem sheet 7
14) The assumption of $\sigma$-finiteness in Theorem 2.6 .2 is essential:

Consider the measure spaces $(\mathbb{R}, \mathcal{B}, \lambda)$ and $(\mathbb{R}, \mathcal{B}, \nu)$, where $\lambda$ is Lebesgue measure and $\nu$ is counting measure.
(i) Show that the set $E:=\left\{\left(\omega_{1}, \omega_{2}\right) \in \mathbb{R}^{2}: \omega_{1}=\omega_{2}\right\}$ belongs to $\mathcal{B} \otimes \mathcal{B}$.
(ii) Compute $\int_{\mathbb{R}} \nu\left(E_{\omega_{1}}\right) d \lambda\left(\omega_{1}\right)$ and $\int_{\mathbb{R}} \lambda\left(E^{\omega_{2}}\right) d \nu\left(\omega_{2}\right)$.

## Solution

(i) Let

$$
E_{n}=\bigcup_{k=-\infty}^{\infty}\left(\frac{k-1}{n}, \frac{k}{n}\right] \times\left(\frac{k-1}{n}, \frac{k}{n}\right] .
$$

Since $\left(\frac{k-1}{n}\right] \times\left(\frac{k-1}{n}\right] \in \mathcal{B} \otimes \mathcal{B}$ it follows that $E_{n} \in \mathcal{B} \otimes \mathcal{B}$. From

$$
E=\bigcap_{n=1}^{\infty} E_{n}
$$

we obtain that $E \in \mathcal{B} \otimes \mathcal{B}$.
(ii) For each $\omega_{1} \in \mathbb{R}, E_{\omega_{1}}=\left\{\omega_{1}\right\}$, and so

$$
\nu\left(E_{\omega_{1}}\right)=1
$$

This implies that

$$
\int_{\mathbb{R}} \nu\left(E_{\omega_{1}}\right) d \lambda\left(\omega_{1}\right)=\infty
$$

On the other hand, we have for each $\omega_{2} \in \mathbb{R}$ that $E^{\omega_{2}}=\left\{\omega_{2}\right\}$, which implies that

$$
\lambda\left(E^{\omega_{2}}\right)=0
$$

Hence,

$$
\int_{\mathbb{R}} \lambda\left(E^{\omega_{2}}\right) d \nu\left(\omega_{2}\right)=0
$$

15) Let $(\Omega, \mathcal{A}, \mu)$ be a $\sigma$-finite measure space, and let $f: \Omega \rightarrow[0, \infty]$ be a non-negative $(\mathcal{A}-\overline{\mathcal{B}})$-measurable function.
(i) Show that the set $E_{f}:=\{(\omega, y) \in \Omega \times \mathbb{R}: 0 \leq y<f(\omega)\}$ belongs to $\mathcal{A} \otimes \overline{\mathcal{B}}$.
(ii) Prove that

$$
\int_{\Omega} f d \mu=(\mu \otimes \lambda)\left(E_{f}\right)
$$

(The set $E_{f}$ is the "area under the curve" and $(\mu \otimes \lambda)\left(E_{f}\right)$ is an alternative definition of the integral.)

## Solution

(i) Let $s=\sum_{i=1}^{k} \alpha_{i} \mathbb{1}_{A_{i}}$ be an $\mathcal{A}$-simple function, i.e. $\alpha_{1}, \ldots \alpha_{k} \geq 0$ and $A_{1}, \ldots, A_{k}$ are disjoint sets that belong to $\mathcal{A}$. Then

$$
\begin{aligned}
E_{s} & :=\{(\omega, y) \in \Omega \times \mathbb{R}: 0 \leq y<s(\omega)\} \\
& =\bigcup_{i=1}^{k} A_{i} \times\left[0, \alpha_{i}\right) \in \mathcal{A} \otimes \overline{\mathcal{B}} .
\end{aligned}
$$

For an arbitrary non-negative and $(\mathcal{A}-\overline{\mathcal{B}})$-measurable function $f: \Omega \rightarrow[0, \infty]$, there exists a sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ of $\mathcal{A}$-simple functions such that

$$
s_{n}(\omega) \nearrow f(\omega) \quad \forall \omega \in \Omega .
$$

Then

$$
E_{s_{n}} \nearrow E_{f},
$$

i.e. $E_{f}=\bigcup_{n=1}^{\infty} E_{s_{n}} \in \mathcal{A} \otimes \overline{\mathcal{B}}$.
(ii) We have, for the above $\mathcal{A}$-simple function $s$,

$$
\begin{aligned}
\int_{\Omega} s d \mu & =\sum_{i=1}^{k} \alpha_{i} \mu\left(A_{i}\right)=\sum_{i=1}^{k} \lambda\left(\left[0, \alpha_{i}\right)\right) \cdot \mu\left(A_{i}\right) \\
& =\sum_{i=1}^{k}(\mu \otimes \lambda)\left(A_{i} \times\left[0, \alpha_{i}\right)\right)=(\mu \otimes \lambda)\left(E_{s}\right) .
\end{aligned}
$$

We obtain by Beppo Levi's theorem and continuity from below

$$
\int_{\Omega} f d \mu=\lim _{n \rightarrow} \int_{\Omega} s_{n} d \mu=\lim _{n \rightarrow \infty}(\mu \otimes \lambda)\left(E_{s_{n}}\right)=(\mu \otimes \lambda)\left(E_{f}\right) .
$$

16) Let $\lambda$ be Lebesgue measure on $(\mathbb{R}, \mathcal{B})$.

Compute $\int_{[0,1]}\left[\int_{[x, 1]} e^{-y^{2} / 2} d \lambda(y)\right] d \lambda(x)$.
Hint: Use the fact that $\left(e^{-y^{2} / 2}\right)^{\prime}=-y e^{-y^{2} / 2}$.

## Solution

The function $\binom{x}{y} \mapsto e^{-y^{2} / 2} \mathbb{1}_{[x, 1]}(y)$ is non-negative and $\left(\mathcal{B}^{2}-\mathcal{B}\right)$-measurable. Therefore, we can apply Tonelli's theorem and we obtain that

$$
\begin{aligned}
\int_{[0,1]}\left[\int_{[x, 1]} e^{-y^{2} / 2} d \lambda(y)\right] d \lambda(x) & =\int_{[0,1] \times[0,1]} e^{-y^{2} / 2} \mathbb{1}_{[x, 1]}(y) \lambda^{2}(d x, d y) \\
& =\int_{[0,1]}[\int_{[0,1]} e^{-y^{2} / 2} \underbrace{\mathbb{1}_{[x, 1]}(y)}_{=\mathbb{1}_{[0, y]}(x)} d \lambda(x)] d \lambda(y) \\
& =\int_{[0,1]}[\underbrace{\int_{[0,1]} e^{-y^{2} / 2} \mathbb{1}_{[0, y]}(x) d \lambda(x)}_{=e^{-y^{2} / 2} y}] d \lambda(y) \\
& =\int_{0}^{1} \underbrace{e^{-y^{2} / 2} y}_{=-\left(e^{-y^{2} / 2}\right)^{\prime}} d y=1-1 / e
\end{aligned}
$$

