Measure Theory, Winter semester 2021/22

Problem sheet 1

1) Let Ω be a non-empty set and let \mathcal{A} be a σ-algebra on Ω. Suppose that P_{1} and P_{2} are probability measures on (Ω, \mathcal{A}), i.e. $P_{i}: \mathcal{A} \rightarrow[0,1]$ satisfies
(i) $\quad P_{i}(\emptyset)=0, P_{i}(\Omega)=1$,
(ii) if A_{1}, A_{2}, \ldots are disjoint sets that belong to \mathcal{A}, then

$$
P_{i}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P_{i}\left(A_{i}\right) .
$$

Show that the collection of sets $\mathcal{D}:=\left\{A \in \mathcal{A}: P_{1}(A)=P_{2}(A)\right\}$ is a Dynkin system on Ω.
Hint: Note that $P_{i}\left(A^{c}\right)=P_{i}(\Omega \backslash A)=P_{i}(\Omega)-P_{i}(A)$.
2) Let Ω be a non-empty set and let $\left(\mathcal{A}_{i}\right)_{i \in I}$ be a non-empty collection of σ-algebras on Ω, where I is an arbitrary (finite, countably infinite or even uncountable) index set.
Show that the intersection of these σ-algebras,

$$
\bigcap_{i \in I} \mathcal{A}_{i}=\left\{A \subseteq \Omega: \quad A \in \mathcal{A}_{i} \quad \text { for all } i \in I\right\},
$$

is a σ-algebra on Ω.

