Measure Theory, Winter semester 2021/22 Problem sheet 1

- 1) Let Ω be a non-empty set and let \mathcal{A} be a σ -algebra on Ω . Suppose that P_1 and P_2 are probability measures on (Ω, \mathcal{A}) , i.e. $P_i: \mathcal{A} \to [0, 1]$ satisfies
 - (i) $P_i(\emptyset) = 0, P_i(\Omega) = 1,$
 - (ii) if A_1, A_2, \ldots are disjoint sets that belong to \mathcal{A} , then

$$P_i\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P_i(A_i).$$

Show that the collection of sets $\mathcal{D} := \{A \in \mathcal{A}: P_1(A) = P_2(A)\}$ is a Dynkin system on Ω .

Hint: Note that
$$P_i(A^c) = P_i(\Omega \setminus A) = P_i(\Omega) - P_i(A)$$
.

2) Let Ω be a non-empty set and let $(\mathcal{A}_i)_{i \in I}$ be a non-empty collection of σ -algebras on Ω , where I is an arbitrary (finite, countably infinite or even uncountable) index set.

Show that the intersection of these σ -algebras,

$$\bigcap_{i \in I} \mathcal{A}_i = \{ A \subseteq \Omega : A \in \mathcal{A}_i \text{ for all } i \in I \},\$$

is a σ -algebra on Ω .