Measure Theory, Winter semester 2021/22 Problem sheet 3

5) Let $\lambda^*: 2^{\mathbb{R}} \to [0, \infty]$ be the outer measure on \mathbb{R} defined by

$$\lambda^*(Q) = \begin{cases} \{\sum_{i=1}^\infty \lambda_0^1(A_i): & A_1, A_2, \dots \in \mathcal{B}_0^1, \ Q \subseteq \bigcup_{i=1}^\infty A_i\} \\ +\infty & \text{if } \{\dots\} \neq \emptyset, \end{cases}$$

Using only the definition of λ^* , show that $\lambda^*(C) = 0$ if C is a countable subset of \mathbb{R} .

6) (A model for countably many fair coin tosses) Let

$$\Omega = \left\{ \omega = (\omega_1, \omega_2, \ldots) : \quad \omega_i \in \{0, 1\} \text{ for all } i \in \mathbb{N} \right\},$$

$$\mathcal{C}_n = \left\{ A \times \Omega : \quad A \subseteq \{0, 1\}^n \right\} = \left\{ \left\{ \omega \in \Omega : \quad (\omega_1, \ldots, \omega_n) \in A \right\} \middle| A \subseteq \{0, 1\}^n \right\}$$

and

$$\mathcal{C} = \bigcup_{n=1}^{\infty} \mathcal{C}_n.$$

Define $P_0: \mathcal{C} \to [0, 1]$ such that, for $A \in \{0, 1\}^n$ and $n \in \mathbb{N}$,

$$P_0(A \times \Omega) = P_0(\{\omega \in \Omega : (\omega_1, \dots, \omega_n) \in A\}) = \frac{\#A}{2^n}.$$

- (i) Show that \mathcal{C} is an algebra (and therefore a ring) on Ω .
- (ii) For each $c \in [0, 1]$, let $B_c = \{\omega \in \Omega: \frac{1}{n} \sum_{i=1}^n \omega_i \xrightarrow[n \to \infty]{n \to \infty} c\}$. Show that $B_c \in \sigma(\mathcal{C})$. (*Hint: Use that* $\{\omega \in \Omega: |\frac{1}{n} \sum_{i=1}^n \omega_i - c| \leq \frac{1}{m}\} \in \mathcal{C}.$)
- (iii) Let $A \times \Omega = B \times \Omega$, where $A \subseteq \{0, 1\}^m$ and $B \subseteq \{0, 1\}^n$. Show that

$$P_0(A \times \Omega) = P_0(B \times \Omega).$$

(iv) Show that P_0 is a content on C. (Actually, it can also be shown that P_0 is a pre-measure on C.)