Measure Theory, Winter semester 2021/22

Problem sheet 5
9) Let (Ω, \mathcal{A}) be a measurable space, and let $f, g: \Omega \rightarrow \mathbb{R}$ be $(\mathcal{A}-\mathcal{B})$-measurable functions. Show that the sets $\{\omega \in \Omega: f(\omega)<g(\omega)\}$ and $\{\omega \in \Omega: f(\omega)=g(\omega)\}$ belong to \mathcal{A}.
10) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable everywhere on \mathbb{R}.

Show that f^{\prime} is $(\mathcal{B}-\mathcal{B})$-measurable.
11) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, and let $f: \Omega \rightarrow\{0,1,2, \ldots\}$ be a non-negative integervalued $(\mathcal{A}-\mathcal{B})$-measurable function.
Show that $\int_{\Omega} f d \mu=\sum_{n=1}^{\infty} \mu(\{\omega: f(\omega) \geq n\})$.

