Measure Theory, Winter semester 2021/22 Problem sheet 5

- 9) Let (Ω, \mathcal{A}) be a measurable space, and let $f, g: \Omega \to \mathbb{R}$ be $(\mathcal{A}-\mathcal{B})$ -measurable functions. Show that the sets $\{\omega \in \Omega: f(\omega) < g(\omega)\}$ and $\{\omega \in \Omega: f(\omega) = g(\omega)\}$ belong to \mathcal{A} .
- 10) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable everywhere on \mathbb{R} . Show that f' is $(\mathcal{B} - \mathcal{B})$ -measurable.
- 11) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, and let $f: \Omega \to \{0, 1, 2, \ldots\}$ be a non-negative integervalued $(\mathcal{A} - \mathcal{B})$ -measurable function.

Show that $\int_{\Omega} f d\mu = \sum_{n=1}^{\infty} \mu(\{\omega: f(\omega) \ge n\}).$