Measure Theory, Winter semester 2021/22 Problem sheet 6

12) Let μ and μ_n $(n \in \mathbb{N})$ be measures on a measurable space (Ω, \mathcal{A}) such that $\mu_n(\mathcal{A}) \nearrow \mu(\mathcal{A})$ for all $A \in \mathcal{A}$, and let $f: \Omega \to [0, \infty]$ be an $(\mathcal{A} - \overline{\mathcal{B}})$ -measurable functions satisfying $\int_{\Omega} f \, d\mu < \infty$.

Show that

$$\int_{\Omega} f \, d\mu_n \nearrow \int_{\Omega} f \, d\mu.$$

Hint: Show first that $(\int_{\Omega} f d\mu_n)_{n \in \mathbb{N}}$ is a non-decreasing sequence, and then that $\lim_{n \to \infty} \int_{\Omega} f d\mu_n \leq \int_{\Omega} f d\mu$ and $\int_{\Omega} f d\mu \leq \lim_{n \to \infty} \int_{\Omega} f d\mu_n + \epsilon \ \forall \epsilon > 0.$

13) Let (Ω, \mathcal{A}) be a measurable space, let μ be an arbitrary measure on (Ω, \mathcal{A}) , and let ν be a finite measure on (Ω, \mathcal{A}) .

Show that $\nu \ll \mu$ if and only if for each $\epsilon > 0$ there is some $\delta = \delta(\epsilon) > 0$ such that each \mathcal{A} -measurable set A that satisfies $\mu(A) < \delta$ also satisfies $\nu(A) < \epsilon$.

Hint: For the proof that $\nu \ll \mu$ implies that for each ϵ there is a suitable δ , assume that there exists some $\epsilon > 0$ and that there exist sets $A_k \in \mathcal{A}$ satisfying $\mu(A_k) < 1/2^k$ and $\nu(A_k) \geq \epsilon$. Show then that $\mu(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k) = 0$ and $\nu(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k) \geq \epsilon$.