Measure Theory, Winter semester 2021/22 Problem sheet 7

- 14) The assumption of σ -finiteness in Theorem 2.6.2 is essential: Consider the measure spaces $(\mathbb{R}, \mathcal{B}, \lambda)$ and $(\mathbb{R}, \mathcal{B}, \nu)$, where λ is Lebesgue measure and ν is counting measure.
 - (i) Show that the set $E := \{(\omega_1, \omega_2) \in \mathbb{R}^2 : \omega_1 = \omega_2\}$ belongs to $\mathcal{B} \otimes \mathcal{B}$.
 - (ii) Compute $\int_{\mathbb{R}} \nu(E_{\omega_1}) d\lambda(\omega_1)$ and $\int_{\mathbb{R}} \lambda(E^{\omega_2}) d\nu(\omega_2)$.
- 15) Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space, and let $f: \Omega \to [0, \infty]$ be a non-negative $(\mathcal{A} \bar{\mathcal{B}})$ -measurable function.
 - (i) Show that the set $E_f := \{(\omega, y) \in \Omega \times \mathbb{R} : 0 \le y < f(\omega)\}$ belongs to $\mathcal{A} \otimes \overline{\mathcal{B}}$.
 - (ii) Prove that

$$\int_{\Omega} f \, d\mu \, = \, (\mu \otimes \lambda)(E_f).$$

(The set E_f is the "area under the curve" and $(\mu \otimes \lambda)(E_f)$ is an alternative definition of the integral.)

16) Let λ be Lebesgue measure on $(\mathbb{R}, \mathcal{B})$. Compute $\int_{[0,1]} \left[\int_{[x,1]} e^{-y^2/2} d\lambda(y) \right] d\lambda(x)$. Hint: Use the fact that $(e^{-y^2/2})' = -ye^{-y^2/2}$.