Mathematical Statistics, Winter semester 2021/22

Solutions to Problem sheet 1

1) Suppose that

$$Y = X\theta + \varepsilon$$

holds for some $\theta \in \mathbb{R}^k$, where $E\varepsilon = 0_n$, $Cov(\varepsilon) = \Sigma$, Σ being a regular matrix. Suppose further that the matrix X has full column rank k.

(i) Show that $X^T \Sigma^{-1} X$ is a regular matrix and that

$$\widehat{\theta} = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} Y$$

is an unbiased estimator of θ . Compute $E_{\theta} \left[(\widehat{\theta} - \theta) (\widehat{\theta} - \theta)^T \right]$.

Solution

We show that $a^T X^T \Sigma^{-1} X a \neq 0$ holds for all $a \in \mathbb{R}^k$ such that $a \neq 0_k$.

Let $a \in \mathbb{R}^k$ be arbitrary, $a \neq 0_k$. Recall that X is a matrix with k columns and n rows. Since rank(X) = k it follows that X has full column rank, i.e. the columns of X are linearly independent. Therefore $Xa \neq 0_n$. Since Σ^{-1} is positive definite we obtain that

$$a^T X^T \Sigma^{-1} X a = (Xa)^T \Sigma^{-1} (Xa) > 0.$$

Hence, $X^T \Sigma^{-1} X$ is a regular $(k \times k)$ -matrix.

Unbiasedness of $\hat{\theta}$:

$$E_{\theta}\widehat{\theta} = E_{\theta}\Big[(X^{T}\Sigma^{-1}X)^{-1}X^{T}\Sigma^{-1}(X\theta + \varepsilon)\Big]$$

= $(X^{T}\Sigma^{-1}X)^{-1}X^{T}\Sigma^{-1}E_{\theta}(X\theta + \varepsilon) = \theta \quad \forall \beta \in \mathbb{R}^{k}$

Matrix risk of $\hat{\theta}$:

$$E_{\theta} \Big[(\widehat{\theta} - \theta) (\widehat{\theta} - \theta)^T \Big] = \operatorname{Cov} (\widehat{\theta} - \theta)$$

= $\operatorname{Cov} \Big((X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} Y \Big)$
= $(X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} \underbrace{\operatorname{Cov}(Y)}_{=\Sigma} \Sigma^{-1} X (X^T \Sigma^{-1} X)^{-1}$
= $(X^T \Sigma^{-1} X)^{-1}$

(ii) Let $\tilde{\theta} = LY$ be any arbitrary unbiased estimator of θ .

Show that

$$E_{\theta}\left[(\widetilde{\theta}-\theta)(\widetilde{\theta}-\theta)^{T}\right] - E_{\theta}\left[(\widehat{\theta}-\theta)(\widehat{\theta}-\theta)^{T}\right]$$

is non-negative definite.

Hint: A symmetric and positive definite $(n \times n)$ -matrix M can be represented as $M = \sum_{i=1}^{n} \lambda_i e_i e_i^T$, where $\lambda_1, \ldots, \lambda_n$ are the (positive) eigenvalues and e_1, \ldots, e_n are corresponding eigenvectors with $e_i^T e_j = 0$ for $i \neq j$. Then $M^{1/2} := \sum_{i=1}^{n} \sqrt{\lambda_i} e_i e_i^T$ and $M^{-1/2} := \sum_{i=1}^{n} (1/\sqrt{\lambda_i}) e_i e_i^T$.

To prove (ii), use the fact that

$$\left(L\Sigma^{1/2} - (X^T\Sigma^{-1}X)^{-1}X^T\Sigma^{-1/2}\right)\left(L\Sigma^{1/2} - (X^T\Sigma^{-1}X)^{-1}X^T\Sigma^{-1/2}\right)^T$$

is non-negative definite.

Solution:

Matrix risk of $\tilde{\theta}$:

$$E_{\theta} \left[(\widetilde{\theta} - \theta) (\widetilde{\theta} - \theta)^{T} \right] = \operatorname{Cov} (LY) = L \operatorname{Cov}(Y) L^{T} = L \Sigma L^{T}$$

 $\widetilde{\theta} = LY$ unbiased \Longrightarrow

$$E_{\theta}[L(X\theta + \varepsilon)] = LX\theta = \theta$$

has to be fulfilled for all $\theta \in \mathbb{R}^k \implies LX = I_k$

Comparison of $\operatorname{Cov}(\widehat{\theta}) = \sigma^2 (X^T \Sigma^{-1} X)^{-1}$ and $\operatorname{Cov}(\widetilde{\theta}) = L \Sigma L^T$: (We use the fact that, for an arbitrary matrix M, MM^T is positive semidefinite.)

$$\begin{aligned}
0_{k \times k} &\preceq \left(L\Sigma^{1/2} - (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1/2} \right) \left(L\Sigma^{1/2} - (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1/2} \right)^T \\
&= L\Sigma L^T - (X^T \Sigma^{-1} X)^{-1} \underbrace{X^T \Sigma^{-1/2} \Sigma^{1/2} L^T}_{=I_k} \\
&- \underbrace{L\Sigma^{1/2} \Sigma^{-1/2} X}_{=I_k} (X^T \Sigma^{-1} X)^{-1} + (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1/2} \Sigma^{-1/2} (X^T \Sigma^{-1} X)^{-1} \\
&= L\Sigma L^T - (X^T \Sigma^{-1} X)^{-1}
\end{aligned}$$

(i) Let

$$X = \begin{pmatrix} 1 & v_1 & v_1^2 & \cdots & v_1^k \\ 1 & v_2 & v_2^2 & \cdots & v_2^k \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & v_n & v_n^2 & \cdots & v_n^k \end{pmatrix}.$$

Prove that $X^T X$ is regular if the set $\{v_1, \ldots, v_n\}$ contains at least k + 1 different values.

Hint: Choose $c = (c_1, ..., c_{k+1})^T \neq 0_{k+1} := (0, ..., 0)^T$ and compute $c^T X^T X c$.

Solution:

We show that $c^T X^T X c \neq 0$ for all $c \in \mathbb{R}^{k+1}$ such that $c \neq 0_{k+1}$

Let $c \in \mathbb{R}^{k+1}$ be arbitrary, $c \neq 0_{k+1}$. Then

$$Xc = \begin{pmatrix} 1 & v_1 & v_1^2 & \cdots & v_1^k \\ 1 & v_2 & v_2^2 & \cdots & v_2^k \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & v_n & v_n^2 & \cdots & v_n^k \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_{k+1} \end{pmatrix} = \begin{pmatrix} \sum_{j=0}^k c_{j+1} v_1^j \\ \vdots \\ \sum_{j=0}^k c_{j+1} v_n^j \end{pmatrix},$$

which yields that

$$c^{T}X^{T}Xc = \sum_{i=1}^{n} \left(\sum_{\substack{j=0\\j=f_{c}(v_{i})}}^{k} c_{j+1}v_{i}^{j}\right)^{2}$$

 f_c is a nonzero polynomial of degree $\leq k$ $\implies f_c$ has at most k zeroes $\implies \text{If } \#\{v_1, \dots, v_n\} \geq k+1$, then $f_c(v_1) = \dots = f_c(v_n) = 0$ is impossible $\implies c^T X^T X c \neq 0$ (ii) Let

$$X = \begin{pmatrix} v_1 & v_1^2 & \cdots & v_1^k \\ v_2 & v_2^2 & \cdots & v_2^k \\ \vdots & \vdots & \ddots & \vdots \\ v_n & v_n^2 & \cdots & v_n^k \end{pmatrix}.$$

Prove that $X^T X$ is regular if the set $\{v_1, \ldots, v_n\}$ contains at least k different non-zero values.

Hint: Consider the matrix

$$\widetilde{X} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & v_1 & v_1^2 & \cdots & v_1^k \\ 1 & v_2 & v_2^2 & \cdots & v_2^k \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & v_n & v_n^2 & \cdots & v_n^k \end{pmatrix}$$

Solution:

Suppose that $\{v_1, \ldots, v_n\}$ contains at least k different non-zero values. $\implies \#\{0, v_1, \ldots, v_n\} \ge k+1$ $\implies \widetilde{X}$ has full column rank k+1Delete the first column of \widetilde{X} : $\implies \begin{pmatrix} 0 & \cdots & 0 \\ & X \end{pmatrix}$ has rank k $\implies X$ has rank k

- 3) Consider the linear regression model $Y_i = \theta_1 + x_i \theta_2 + \varepsilon_i$, i = 1, ..., n, where $\varepsilon_1, ..., \varepsilon_n$ are i.i.d. with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$. Let $\hat{\theta}$ be the least squares estimator of θ .
 - (i) Suppose that $x_i \neq x_j$, for some (i, j). Compute $E[(\hat{\theta}_i - \theta_i)^2]$, for i = 1, 2. Hint: The inverse of a regular matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.
 - (ii) Suppose that x_1, \ldots, x_n can be chosen by an experimenter, where $x_i \in [-1, 1]$ and $n \ge 2$ is even. Which choice of x_1, \ldots, x_n minimizes $E[(\hat{\theta}_i - \theta_i)^2]$? (Take into account that x_1, \ldots, x_n have to be chosen such that $x_i \ne x_j$, for some (i, j); otherwise the least squares estimator is not uniquely defined.)

Solution: We write the regression model in matrix/vector form:

$$Y = X \left(\begin{array}{c} \theta_1 \\ \theta_2 \end{array} \right) + \varepsilon,$$

where
$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

 $\Longrightarrow X^T X = \begin{pmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{pmatrix}$
 $\Longrightarrow \qquad (X^T X)^{-1} = \frac{1}{n \sum x_i^2 - (\sum x_i)^2} \begin{pmatrix} \sum x_i^2 & -\sum x_i \\ -\sum x_i & n \end{pmatrix}$

We obtain

$$E\left[\left(\widehat{\theta}_{1} - \theta_{1}\right)^{2}\right] = \sigma^{2} \frac{\sum x_{i}^{2}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}} = \sigma^{2} \frac{1}{n - (\sum x_{i})^{2}/(\sum x_{i}^{2})}$$
$$E\left[\left(\widehat{\theta}_{2} - \theta_{2}\right)^{2}\right] = \sigma^{2} \frac{n}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

These risks are obviously minimized if and only if $\sum x_i = 0$ and $\sum x_i^2 = n$ $\implies \#\{i: x_i = 1\} = \#\{i: x_i = -1\} = n/2$