## Mathematical Statistics, Winter semester 2021/22

Solutions to Problem sheet 1

1) Suppose that

$$
Y=X \theta+\varepsilon
$$

holds for some $\theta \in \mathbb{R}^{k}$, where $E \varepsilon=0_{n}, \operatorname{Cov}(\varepsilon)=\Sigma, \Sigma$ being a regular matrix. Suppose further that the matrix $X$ has full column rank $k$.
(i) Show that $X^{T} \Sigma^{-1} X$ is a regular matrix and that

$$
\widehat{\theta}=\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1} Y
$$

is an unbiased estimator of $\theta$. Compute $E_{\theta}\left[(\hat{\theta}-\theta)(\widehat{\theta}-\theta)^{T}\right]$.

## Solution

We show that $a^{T} X^{T} \Sigma^{-1} X a \neq 0$ holds for all $a \in \mathbb{R}^{k}$ such that $a \neq 0_{k}$.

Let $a \in \mathbb{R}^{k}$ be arbitrary, $a \neq 0_{k}$. Recall that $X$ is a matrix with $k$ columns and $n$ rows. Since $\operatorname{rank}(X)=k$ it follows that $X$ has full column rank, i.e. the columns of $X$ are linearly independent. Therefore $X a \neq 0_{n}$. Since $\Sigma^{-1}$ is positive definite we obtain that

$$
a^{T} X^{T} \Sigma^{-1} X a=(X a)^{T} \Sigma^{-1}(X a)>0 .
$$

Hence, $X^{T} \Sigma^{-1} X$ is a regular $(k \times k)$-matrix.

Unbiasedness of $\widehat{\theta}$ :

$$
\begin{aligned}
E_{\theta} \widehat{\theta} & =E_{\theta}\left[\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1}(X \theta+\varepsilon)\right] \\
& =\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1} E_{\theta}(X \theta+\varepsilon)=\theta \quad \forall \beta \in \mathbb{R}^{k}
\end{aligned}
$$

Matrix risk of $\widehat{\theta}$ :

$$
\begin{aligned}
E_{\theta}\left[(\widehat{\theta}-\theta)(\hat{\theta}-\theta)^{T}\right] & =\operatorname{Cov}(\widehat{\theta}-\theta) \\
& =\operatorname{Cov}\left(\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1} Y\right) \\
& =\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1} \underbrace{\operatorname{Cov}(Y)}_{=\Sigma} \Sigma^{-1} X\left(X^{T} \Sigma^{-1} X\right)^{-1} \\
& =\left(X^{T} \Sigma^{-1} X\right)^{-1}
\end{aligned}
$$

(ii) Let $\widetilde{\theta}=L Y$ be any arbitrary unbiased estimator of $\theta$.

Show that

$$
E_{\theta}\left[(\widetilde{\theta}-\theta)(\widetilde{\theta}-\theta)^{T}\right]-E_{\theta}\left[(\widehat{\theta}-\theta)(\widehat{\theta}-\theta)^{T}\right]
$$

is non-negative definite.
Hint: A symmetric and positive definite $(n \times n)$-matrix $M$ can be represented as $M=\sum_{i=1}^{n} \lambda_{i} e_{i} e_{i}^{T}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the (positive) eigenvalues and $e_{1}, \ldots, e_{n}$ are corresponding eigenvectors with $e_{i}^{T} e_{j}=0$ for $i \neq j$. Then $M^{1 / 2}:=\sum_{i=1}^{n} \sqrt{\lambda_{i}} e_{i} e_{i}^{T}$ and $M^{-1 / 2}:=\sum_{i=1}^{n}\left(1 / \sqrt{\lambda_{i}}\right) e_{i} e_{i}^{T}$.
To prove (ii), use the fact that

$$
\left(L \Sigma^{1 / 2}-\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1 / 2}\right)\left(L \Sigma^{1 / 2}-\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1 / 2}\right)^{T}
$$

is non-negative definite.

## Solution:

Matrix risk of $\widetilde{\theta}$ :

$$
E_{\theta}\left[(\widetilde{\theta}-\theta)(\widetilde{\theta}-\theta)^{T}\right]=\operatorname{Cov}(L Y)=L \operatorname{Cov}(Y) L^{T}=L \Sigma L^{T}
$$

$\widetilde{\theta}=L Y$ unbiased $\Longrightarrow$

$$
E_{\theta}[L(X \theta+\varepsilon)]=L X \theta=\theta
$$

has to be fulfilled for all $\theta \in \mathbb{R}^{k} \quad \Longrightarrow L X=I_{k}$
Comparison of $\operatorname{Cov}(\widehat{\theta})=\sigma^{2}\left(X^{T} \Sigma^{-1} X\right)^{-1}$ and $\operatorname{Cov}(\widetilde{\theta})=L \Sigma L^{T}$ :
(We use the fact that, for an arbitrary matrix $M, M M^{T}$ is positive semidefinite.)

$$
\begin{aligned}
0_{k \times k} \preceq & \left(L \Sigma^{1 / 2}-\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1 / 2}\right)\left(L \Sigma^{1 / 2}-\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1 / 2}\right)^{T} \\
= & L \Sigma L^{T}-\left(X^{T} \Sigma^{-1} X\right)^{-1} \underbrace{X^{T} \Sigma^{-1 / 2} \Sigma^{1 / 2} L^{T}}_{=I_{k}} \\
& -\underbrace{L \Sigma^{1 / 2} \Sigma^{-1 / 2} X}_{=I_{k}}\left(X^{T} \Sigma^{-1} X\right)^{-1}+\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1 / 2} \Sigma^{-1 / 2}\left(X^{T} \Sigma^{-1} X\right)^{-1} \\
= & L \Sigma L^{T} \quad-\left(X^{T} \Sigma^{-1} X\right)^{-1}
\end{aligned}
$$

2) (i) Let

$$
X=\left(\begin{array}{ccccc}
1 & v_{1} & v_{1}^{2} & \cdots & v_{1}^{k} \\
1 & v_{2} & v_{2}^{2} & \cdots & v_{2}^{k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & v_{n} & v_{n}^{2} & \cdots & v_{n}^{k}
\end{array}\right)
$$

Prove that $X^{T} X$ is regular if the set $\left\{v_{1}, \ldots, v_{n}\right\}$ contains at least $k+1$ different values.
Hint: Choose $c=\left(c_{1}, \ldots, c_{k+1}\right)^{T} \neq 0_{k+1}:=(0, \ldots, 0)^{T}$ and compute $c^{T} X^{T} X c$.

## Solution:

We show that $c^{T} X^{T} X c \neq 0$ for all $c \in \mathbb{R}^{k+1}$ such that $c \neq 0_{k+1}$

Let $c \in \mathbb{R}^{k+1}$ be arbitrary, $c \neq 0_{k+1}$. Then

$$
X c=\left(\begin{array}{ccccc}
1 & v_{1} & v_{1}^{2} & \cdots & v_{1}^{k} \\
1 & v_{2} & v_{2}^{2} & \cdots & v_{2}^{k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & v_{n} & v_{n}^{2} & \cdots & v_{n}^{k}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{k+1}
\end{array}\right)=\left(\begin{array}{c}
\sum_{j=0}^{k} c_{j+1} v_{1}^{j} \\
\vdots \\
\sum_{j=0}^{k} c_{j+1} v_{n}^{j}
\end{array}\right)
$$

which yields that

$$
c^{T} X^{T} X c=\sum_{i=1}^{n}(\underbrace{\sum_{j=0}^{k} c_{j+1} v_{i}^{j}}_{=f_{c}\left(v_{i}\right)})^{2}
$$

$f_{c}$ is a nonzero polynomial of degree $\leq k$
$\Longrightarrow f_{c}$ has at most $k$ zeroes
$\Longrightarrow$ If $\#\left\{v_{1}, \ldots, v_{n}\right\} \geq k+1$, then $f_{c}\left(v_{1}\right)=\ldots=f_{c}\left(v_{n}\right)=0$ is impossible
$\Longrightarrow c^{T} X^{T} X c \neq 0$
(ii) Let

$$
X=\left(\begin{array}{cccc}
v_{1} & v_{1}^{2} & \cdots & v_{1}^{k} \\
v_{2} & v_{2}^{2} & \cdots & v_{2}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
v_{n} & v_{n}^{2} & \cdots & v_{n}^{k}
\end{array}\right)
$$

Prove that $X^{T} X$ is regular if the set $\left\{v_{1}, \ldots, v_{n}\right\}$ contains at least $k$ different non-zero values.

Hint: Consider the matrix

$$
\widetilde{X}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & v_{1} & v_{1}^{2} & \cdots & v_{1}^{k} \\
1 & v_{2} & v_{2}^{2} & \cdots & v_{2}^{k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & v_{n} & v_{n}^{2} & \cdots & v_{n}^{k}
\end{array}\right) .
$$

## Solution:

Suppose that $\left\{v_{1}, \ldots, v_{n}\right\}$ contains at least $k$ different non-zero values.
$\Longrightarrow \#\left\{0, v_{1}, \ldots, v_{n}\right\} \geq k+1$
$\Longrightarrow \widetilde{X}$ has full column rank $k+1$
Delete the first column of $\widetilde{X}: \Longrightarrow\left(\begin{array}{ccc}0 & \cdots & 0 \\ & X & \end{array}\right)$ has rank $k$
$\Longrightarrow X$ has rank $k$
3) Consider the linear regression model $Y_{i}=\theta_{1}+x_{i} \theta_{2}+\varepsilon_{i}, i=1, \ldots, n$, where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d. with $\varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Let $\widehat{\theta}$ be the least squares estimator of $\theta$.
(i) Suppose that $x_{i} \neq x_{j}$, for some $(i, j)$.

Compute $E\left[\left(\widehat{\theta}_{i}-\theta_{i}\right)^{2}\right]$, for $i=1,2$.
Hint: The inverse of a regular matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is given by $\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.
(ii) Suppose that $x_{1}, \ldots, x_{n}$ can be chosen by an experimenter, where $x_{i} \in[-1,1]$ and $n \geq 2$ is even.
Which choice of $x_{1}, \ldots, x_{n}$ minimizes $E\left[\left(\widehat{\theta}_{i}-\theta_{i}\right)^{2}\right]$ ? (Take into account that $x_{1}, \ldots, x_{n}$ have to be chosen such that $x_{i} \neq x_{j}$, for some $(i, j)$; otherwise the least squares estimator is not uniquely defined.)

Solution: We write the regression model in matrix/vector form:

$$
Y=X\binom{\theta_{1}}{\theta_{2}}+\varepsilon
$$

where $X=\left(\begin{array}{cc}1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{n}\end{array}\right)$
$\Longrightarrow X^{T} X=\left(\begin{array}{cc}n & \sum x_{i} \\ \sum x_{i} & \sum x_{i}^{2}\end{array}\right)$
$\left(X^{T} X\right)^{-1}=\frac{1}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}\left(\begin{array}{cc}\sum x_{i}^{2} & -\sum x_{i} \\ -\sum x_{i} & n\end{array}\right)$
We obtain

$$
\begin{aligned}
E\left[\left(\widehat{\theta}_{1}-\theta_{1}\right)^{2}\right] & =\sigma^{2} \frac{\sum x_{i}^{2}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}=\sigma^{2} \frac{1}{n-\left(\sum x_{i}\right)^{2} /\left(\sum x_{i}^{2}\right)} \\
E\left[\left(\widehat{\theta}_{2}-\theta_{2}\right)^{2}\right] & =\sigma^{2} \frac{n}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}
\end{aligned}
$$

These risks are obviously minimized if and only if $\sum x_{i}=0$ and $\sum x_{i}^{2}=n$ $\Longrightarrow \#\left\{i: x_{i}=1\right\}=\#\left\{i: x_{i}=-1\right\}=n / 2$

