Mathematical Statistics, Winter semester 2021/22

Solutions to Problem sheet 2
4) Suppose that

$$
Y_{i}=\theta+\varepsilon_{i}, \quad i=1, \ldots, n,
$$

holds for some $\theta \in \Theta:=\mathbb{R}$, where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent random variables such that $E \varepsilon_{i}=0$ and $\operatorname{var}\left(\varepsilon_{i}\right)=\sigma_{i}^{2}>0$ for $i=1, \ldots, n$.
Compute the best linear estimator of θ.

Solution

We rewrite this regression model in vector/matrix form:

$$
\underbrace{\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right)}_{=: Y}=\underbrace{\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)}_{=: X} \theta+\underbrace{\left(\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{n}
\end{array}\right)}_{=: \varepsilon},
$$

where $E \varepsilon=0_{n}$ and $\operatorname{Cov}(\varepsilon)=\Sigma:=\left(\begin{array}{ccccc}\sigma_{1}^{2} & 0 & \cdots & \cdots & 0 \\ 0 & \sigma_{2}^{2} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \sigma_{n-1}^{2} & 0 \\ 0 & \cdots & \cdots & 0 & \sigma_{n}^{2}\end{array}\right)$.
The inverse matrix of Σ is equal to $\Sigma^{-1}=\left(\begin{array}{ccccc}1 / \sigma_{1}^{2} & 0 & \cdots & \cdots & 0 \\ 0 & 1 / \sigma_{2}^{2} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 / \sigma_{n-1}^{2} & 0 \\ 0 & \cdots & \cdots & 0 & 1 / \sigma_{n}^{2}\end{array}\right)$.

According to Problem 1 (1st Problem sheet), the best linear unbiased estimator of θ has the form

$$
\widehat{\theta}=\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1} Y=\frac{\sum_{i=1}^{n} \sigma_{i}^{-2} Y_{i}}{\sum_{i=1}^{n} \sigma_{i}^{-2}} .
$$

5) Consider the linear regression model

$$
\underbrace{\left(\begin{array}{c}
Y_{11} \\
\vdots \\
Y_{1 n_{1}} \\
\vdots \\
Y_{k 1} \\
\vdots \\
Y_{k n_{k}}
\end{array}\right)}_{=: Y}=\underbrace{\left(\begin{array}{lll}
\mathbb{1}_{n_{1}} & & \\
& \ddots & \\
& & \mathbb{1}_{n_{k}}
\end{array}\right)}_{=: X} \underbrace{\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right)}_{=: \beta}+\underbrace{\left(\begin{array}{c}
\varepsilon_{11} \\
\vdots \\
\varepsilon_{1 n_{1}} \\
\vdots \\
\varepsilon_{k 1} \\
\vdots \\
\varepsilon_{k n_{k}}
\end{array}\right)}_{=: \varepsilon}
$$

where $\beta_{1}, \ldots, \beta_{k}$ are unknown parameters.
Compute the least squares estimator $\widehat{\beta}$ of β and compute $X \widehat{\beta}$.

Solution

We have that

$$
X^{T} X=\left(\begin{array}{ccc}
n_{1} & & \\
& \ddots & \\
& & n_{k}
\end{array}\right)
$$

and so

$$
\left(X^{T} X\right)^{-1}=\left(\begin{array}{ccc}
1 / n_{1} & & \\
& \ddots & \\
& & 1 / n_{k}
\end{array}\right)
$$

Since

$$
X^{T} Y=\left(\begin{array}{c}
\sum_{j=1}^{n_{1}} Y_{1 j} \\
\vdots \\
\sum_{j=1}^{n_{k}} Y_{k j}
\end{array}\right)
$$

we obtain that

$$
\widehat{\beta}=\left(\begin{array}{c}
\left(1 / n_{1}\right) \sum_{j=1}^{n_{1}} Y_{1 j} \\
\vdots \\
\left(1 / n_{k}\right) \sum_{j=1}^{n_{k}} Y_{k j}
\end{array}\right)=:\left(\begin{array}{c}
\bar{Y}_{1} \\
\vdots \\
\bar{Y}_{k}
\end{array}\right)
$$

and

$$
X \widehat{\beta}=\left(\begin{array}{c}
\bar{Y}_{1} \cdot \mathbb{1}_{n_{1}} \\
\vdots \\
\bar{Y}_{k} \cdot \mathbb{1}_{n_{k}}
\end{array}\right)
$$

6) Consider the model

$$
Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j} \quad(1 \leq i \leq k, 1 \leq j \leq m) .
$$

Rewrite this model in vector/matrix form $Y=\bar{X} \theta+\varepsilon$, where $\theta=\left(\mu, \alpha_{1}, \ldots, \alpha_{k}\right)^{T}$ is the unknown parameter.
What is the rank of the matrix \bar{X} ?
Compute the least squares estimator of θ under the side condition $\sum_{i=1}^{k} \alpha_{i}=0$.
Hint: Consider the linear model from exercise 5). Since

$$
\left\{\bar{X} \theta: \theta \in \mathbb{R}^{k+1}\right\}=\left\{X \beta: \beta \in \mathbb{R}^{k}\right\}
$$

$\widehat{\theta}$ can be chosen such that $\bar{X} \widehat{\theta}=X \widehat{\beta}$.

Solution

The model can be rewritten as

$$
\underbrace{\left(\begin{array}{c}
Y_{11} \\
\vdots \\
Y_{1 m} \\
\vdots \\
Y_{k 1} \\
\vdots \\
Y_{k m}
\end{array}\right)}_{=: Y}=\underbrace{\left(\begin{array}{llll}
\mathbb{1}_{m} & & \\
\mathbb{1}_{k m} & & \ddots & \\
& & & \mathbb{1}_{m}
\end{array}\right)}_{=: \bar{X}} \underbrace{\left(\begin{array}{c}
\mu \\
\alpha_{1} \\
\vdots \\
\alpha_{k}
\end{array}\right)}_{=: \theta}+\underbrace{\left(\begin{array}{c}
\varepsilon_{11} \\
\vdots \\
\varepsilon_{1 m} \\
\vdots \\
\varepsilon_{k 1} \\
\vdots \\
\varepsilon_{k m}
\end{array}\right)}_{=: \varepsilon} .
$$

The matrix \bar{X} has rank k since the last k columns of \bar{X} are linearly independent and the first column can be written as the sum of the last k columns.
It follows from Exercise 5 that the least squares estimator $\widehat{\theta}=\left(\widehat{\mu}, \widehat{\alpha}_{1}, \ldots, \widehat{\alpha}_{k}\right)^{T}$ of θ has to satisfy

$$
\begin{aligned}
\widehat{\mu}+\widehat{\alpha}_{1} & =\bar{Y}_{1} . \\
\widehat{\mu}+\widehat{\alpha}_{k} & =\bar{Y}_{k} .
\end{aligned}
$$

The side conditions yield that

$$
\begin{aligned}
& \widehat{\alpha}_{1}=\bar{Y}_{1}-\bar{Y}_{. .} \\
& \widehat{\alpha}_{k}=\bar{Y}_{k} .-\bar{Y}_{. .}
\end{aligned}
$$

and

$$
\mu=\bar{Y}_{. .},
$$

where $\bar{Y}_{. .}=(1 / k) \sum_{i=1}^{k} \bar{Y}_{i} .=\frac{1}{k m} \sum_{i=1}^{k} \sum_{j=1}^{m} Y_{i j}$.

