
Mathematical Statistics, Winter semester 2021/22
Solutions to Problem sheet 3

7) Show that the Hellinger affinity, and therefore the Hellinger distance as well, do not
depend on the choice of a dominating σ-finite measure µ.

Hint: See the proof of Lemma 2.1. (Uniqueness of a maximum likelihood estimator)

Solution
Suppose that µ1 and µ2 are σ-finite measures such that P1, P2 � µ1, µ2. Hence, we
have that

P1, P2 � µ1, µ2 � µ1 + µ2,

which means that P1 and P2 have densities w.r.t. µ1, µ2, and µ1 + µ2 such that
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Therefore,
ρ(1)(P1, P2) = ρ(2)(P1, P2)

and

H(1)(P1, P2) =
√

1 − ρ(1)(P1, P2) =
√

1 − ρ(2)(P1, P2) = H(2)(P1, P2).



8) Let X1, . . . , Xn ∼ Bin(1, θ) be independent random variables, θ ∈ Θ := [0, 1].

Compute the maximum likelihood estimator of θ.

Solution
Let X = (X1, . . . , Xn)T and let x = (x1, . . . , xn)T be a possible realization of X.
Since X is a discrete random variable the likelihood function L is given by

L(θ;x) = Pθ(X = x) =
n∏
i=1

Pθ(Xi = xi) = θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi .

For all x, L( · ;x) is a continuous function on the compact set [0, 1]. Therefore the
maximum likelihood estimate exists and is obtained as the maximizer of L( · ;x).

Let k =
∑n

i=1 xi. We consider first the case of 1 < k < n. To find the maximum point
we compute the first derivative of L( · ;x) on the interior (0, 1) of the parameter space:

d

dθ
L(θ;x) =

d

dθ
{θk(1− θ)n−k} = θk−1(1− θ)n−k−1︸ ︷︷ ︸

> 0

{
k(1− θ) − (n− k)θ

}
.

We see that d
dθ
L(θ;x) = 0 if and only if θ = k/n. Since L(θ;x) = 0 if θ ∈ {0, 1} we

conclude that θ = k/n is the global maximizer of L(θ;x).

Now we consider the remaining cases. If k = 0, then

L(θ;x) = θk(1− θ)n−k = (1− θ)n

is (obviously) maximized by θ = 0.
If k = n, then

L(θ;x) = θk(1− θ)n−k = θn

is maximized by θ = 1.

To summarize, if X = x, then the maximum likelihood estimate is

θ̂ML(x) =
1

n

n∑
i=1

xi,

and the corresponding estimator

θ̂ML(X) =
1

n

n∑
i=1

Xi.

If we knew in advance that θ is strictly positive, then we could choose the parame-
ter space by Θ = (0, 1]. If θ < 1, then it happens with positive probability that∑n

i=1Xi = 0. In this case, the maximum likelihood estimator is not defined.



9) Let X1, . . . , Xn be i.i.d. with Xi ∼ Uniform([θ1, θ2]), where −∞ < θ1 < θ2 <∞.

(i) Compute the moment estimator of θ = (θ1, θ2)
T .

(ii) Compute the maximum likelihood estimator of θ.

Solution
We have to estimate the two-dimensional parameter θ =

(
θ1
θ2

)
which means that we

have to solve a system of two equations. The first two theoretical moments of X1 are
given by

EθX1 =
θ1 + θ2

2
,

Eθ[X
2
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2

=
(θ1 − θ2)2

12
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2

4
.

Denote by µ̂k = 1
n

∑n
i=1X

k
i (k = 1, 2) the corresponding sample moments. Then the

method of moments estimator θ̂MM = (θ̂1,MM , θ̂2,MM)T is given by the solution to

θ̂1,MM + θ̂2,MM

2
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=
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(ii) Compute the maximum likelihood estimator of θ.

Solution
The likelihood function is given by

L(θ;X1, . . . , Xn) =
n∏
i=1

1

θ2 − θ1
1[θ1,θ2](Xi).

We can easily find the maximum likelihood estimators by inspection:

θ̂1,ML = min {X1, . . . , Xn},
θ̂2,ML = max {X1, . . . , Xn}.


