Mathematical Statistics, Winter semester 2021/22

Solutions to Problem sheet 3
7) Show that the Hellinger affinity, and therefore the Hellinger distance as well, do not depend on the choice of a dominating σ-finite measure μ.

Hint: See the proof of Lemma 2.1. (Uniqueness of a maximum likelihood estimator)

Solution

Suppose that μ_{1} and μ_{2} are σ-finite measures such that $P_{1}, P_{2} \ll \mu_{1}, \mu_{2}$. Hence, we have that

$$
P_{1}, P_{2} \ll \mu_{1}, \mu_{2} \ll \mu_{1}+\mu_{2},
$$

which means that P_{1} and P_{2} have densities w.r.t. μ_{1}, μ_{2}, and $\mu_{1}+\mu_{2}$ such that

$$
\frac{d P_{i}}{d\left(\mu_{1}+\mu_{2}\right)}(x)=\frac{d P_{i}}{d \mu_{j}}(x) \frac{d \mu_{j}}{d\left(\mu_{1}+\mu_{2}\right)}(x) \quad\left(\mu_{1}+\mu_{2}\right) \text { a.e., } \quad \text { for } i, j=1,2 .
$$

Now we obtain, for $i=1,2$, that

$$
\begin{aligned}
\rho^{(i)}\left(P_{1}, P_{2}\right) & :=\int \sqrt{\frac{d P_{1}}{d \mu_{i}}(x)} \sqrt{\frac{d P_{2}}{d \mu_{i}}(x)} d \mu_{i}(x) \\
& =\int \sqrt{\frac{d P_{1}}{d \mu_{i}}(x)} \sqrt{\frac{d P_{2}}{d \mu_{i}}(x)} \frac{d \mu_{i}}{d\left(\mu_{1}+\mu_{2}\right)}(x) d\left(\mu_{1}+\mu_{2}\right)(x) \\
& =\int \sqrt{\frac{d P_{1}}{d \mu_{i}}(x) \frac{d \mu_{i}}{d\left(\mu_{1}+\mu_{2}\right)}(x) \sqrt{\frac{d P_{2}}{d \mu_{i}}(x) \frac{d \mu_{i}}{d\left(\mu_{1}+\mu_{2}\right)}(x)} d\left(\mu_{1}+\mu_{2}\right)(x)} \\
& =\int \sqrt{\frac{d P_{1}}{d\left(\mu_{1}+\mu_{2}\right)}(x)} \sqrt{\frac{d P_{2}}{d\left(\mu_{1}+\mu_{2}\right)}(x)} d\left(\mu_{1}+\mu_{2}\right)(x) .
\end{aligned}
$$

Therefore,

$$
\rho^{(1)}\left(P_{1}, P_{2}\right)=\rho^{(2)}\left(P_{1}, P_{2}\right)
$$

and

$$
H^{(1)}\left(P_{1}, P_{2}\right)=\sqrt{1-\rho^{(1)}\left(P_{1}, P_{2}\right)}=\sqrt{1-\rho^{(2)}\left(P_{1}, P_{2}\right)}=H^{(2)}\left(P_{1}, P_{2}\right)
$$

8) Let $X_{1}, \ldots, X_{n} \sim \operatorname{Bin}(1, \theta)$ be independent random variables, $\theta \in \Theta:=[0,1]$.

Compute the maximum likelihood estimator of θ.

Solution

Let $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ and let $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ be a possible realization of X. Since X is a discrete random variable the likelihood function L is given by

$$
L(\theta ; x)=P_{\theta}(X=x)=\prod_{i=1}^{n} P_{\theta}\left(X_{i}=x_{i}\right)=\theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n-\sum_{i=1}^{n} x_{i}} .
$$

For all $x, L(\cdot ; x)$ is a continuous function on the compact set $[0,1]$. Therefore the maximum likelihood estimate exists and is obtained as the maximizer of $L(\cdot ; x)$.
Let $k=\sum_{i=1}^{n} x_{i}$. We consider first the case of $1<k<n$. To find the maximum point we compute the first derivative of $L(\cdot ; x)$ on the interior $(0,1)$ of the parameter space:

$$
\frac{d}{d \theta} L(\theta ; x)=\frac{d}{d \theta}\left\{\theta^{k}(1-\theta)^{n-k}\right\}=\underbrace{\theta^{k-1}(1-\theta)^{n-k-1}}_{>0}\{k(1-\theta)-(n-k) \theta\}
$$

We see that $\frac{d}{d \theta} L(\theta ; x)=0$ if and only if $\theta=k / n$. Since $L(\theta ; x)=0$ if $\theta \in\{0,1\}$ we conclude that $\theta=k / n$ is the global maximizer of $L(\theta ; x)$.
Now we consider the remaining cases. If $k=0$, then

$$
L(\theta ; x)=\theta^{k}(1-\theta)^{n-k}=(1-\theta)^{n}
$$

is (obviously) maximized by $\theta=0$.
If $k=n$, then

$$
L(\theta ; x)=\theta^{k}(1-\theta)^{n-k}=\theta^{n}
$$

is maximized by $\theta=1$.
To summarize, if $X=x$, then the maximum likelihood estimate is

$$
\widehat{\theta}_{M L}(x)=\frac{1}{n} \sum_{i=1}^{n} x_{i},
$$

and the corresponding estimator

$$
\widehat{\theta}_{M L}(X)=\frac{1}{n} \sum_{i=1}^{n} X_{i} .
$$

If we knew in advance that θ is strictly positive, then we could choose the parameter space by $\Theta=(0,1]$. If $\theta<1$, then it happens with positive probability that $\sum_{i=1}^{n} X_{i}=0$. In this case, the maximum likelihood estimator is not defined.
9) Let X_{1}, \ldots, X_{n} be i.i.d. with $X_{i} \sim \operatorname{Uniform}\left(\left[\theta_{1}, \theta_{2}\right]\right)$, where $-\infty<\theta_{1}<\theta_{2}<\infty$.
(i) Compute the moment estimator of $\theta=\left(\theta_{1}, \theta_{2}\right)^{T}$.
(ii) Compute the maximum likelihood estimator of θ.

Solution

We have to estimate the two-dimensional parameter $\theta=\binom{\theta_{1}}{\theta_{2}}$ which means that we have to solve a system of two equations. The first two theoretical moments of X_{1} are given by

$$
\begin{aligned}
E_{\theta} X_{1} & =\frac{\theta_{1}+\theta_{2}}{2} \\
E_{\theta}\left[X_{1}^{2}\right] & =\operatorname{var}_{\theta}\left(X_{1}\right)+\left(E_{\theta} X_{1}\right)^{2} \\
& =\frac{\left(\theta_{1}-\theta_{2}\right)^{2}}{12}+\frac{\left(\theta_{1}+\theta_{2}\right)^{2}}{4}
\end{aligned}
$$

Denote by $\widehat{\mu}_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}(k=1,2)$ the corresponding sample moments. Then the method of moments estimator $\widehat{\theta}_{M M}=\left(\widehat{\theta}_{1, M M}, \widehat{\theta}_{2, M M}\right)^{T}$ is given by the solution to

$$
\begin{aligned}
\frac{\widehat{\theta}_{1, M M}+\widehat{\theta}_{2, M M}}{2} & =\frac{1}{n} \sum_{i=1}^{n} X_{i}, \\
\frac{\left(\widehat{\theta}_{1, M M}-\widehat{\theta}_{2, M M}\right)^{2}}{12} & =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} .
\end{aligned}
$$

(ii) Compute the maximum likelihood estimator of θ.

Solution

The likelihood function is given by

$$
L\left(\theta ; X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \frac{1}{\theta_{2}-\theta_{1}} \mathbb{1}_{\left[\theta_{1}, \theta_{2}\right]}\left(X_{i}\right)
$$

We can easily find the maximum likelihood estimators by inspection:

$$
\begin{aligned}
\widehat{\theta}_{1, M L} & =\min \left\{X_{1}, \ldots, X_{n}\right\} \\
\widehat{\theta}_{2, M L} & =\max \left\{X_{1}, \ldots, X_{n}\right\}
\end{aligned}
$$

