Mathematical Statistics, Winter semester 2021/22

Solutions to Problem sheet 5
13) Let X_{1}, \ldots, X_{n} be i.i.d. with $P_{\theta}\left(X_{i}=1\right)=\theta=1-P_{\theta}\left(X_{i}=0\right)$, where $\theta \in \Theta=(0,1)$. Show with the aid of Proposition 2.9 (Lecture notes, page 46) that $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ is admissible (w.r.t. the mean squared error) in the class of all estimators.

Solution

The family $\left\{P_{\theta}^{\left(X_{1}, \ldots, X_{n}\right)}: \theta \in(0,1)\right\}$ has the Fisher information

$$
I(\theta)=\frac{n}{\theta(1-\theta)} \quad \forall \theta \in(0,1) ;
$$

see page 41 in the Lecture notes. The estimator \bar{X}_{n} is unbiased for θ and it holds that

$$
E_{\theta}\left[\left(\bar{X}_{n}-\theta\right)^{2}\right]=\frac{\theta(1-\theta)}{n}=\frac{1}{I(\theta)} \quad \forall \theta \in(0,1)
$$

(Therefore, \bar{X}_{n} is a best unbiased estimator of θ.)
Since

$$
\int_{0}^{\theta} I(u) d u=\int_{\theta}^{1} I(u) d u=\infty \quad \forall \theta \in(0,1)
$$

we obtain from Proposition 2.9 that \bar{X}_{n} is admissible in the class of all estimators.
14) Suppose that a realization of $X \sim P_{\theta}:=\operatorname{Bin}(\theta, p)$ is observed, where $\theta \in \Theta:=\mathbb{N}$ and $p \in(0,1)$ is known. Let $\pi=\operatorname{Poisson}(\lambda), \lambda>0$, be the prior distribution for θ.
(i) Find the posterior distribution of θ given $X=k$.
(ii) Suppose that the mean squared error is chosen as measure of the performance of an estimator. Compute the Bayes estimator.

Solution

(i) P_{t} and π have respective densities $p_{X \mid \theta=t}$ and p_{θ} w.r.t. the counting measures on \mathbb{N}_{0} and \mathbb{N}, respectively, where

$$
\begin{aligned}
p_{X \mid \theta=t}(k) & =\binom{t}{k} p^{k}(1-p)^{t-k} \quad(k=0,1, \ldots, \theta), \\
p_{\theta}(t) & =e^{-\lambda} \frac{\lambda^{t}}{t!} \quad(t \in \mathbb{N}) .
\end{aligned}
$$

Hence, the joint distribution of X and θ has a density $p_{X, \theta}$ w.r.t. the counting measure on $\mathbb{N}_{0} \times \mathbb{N}$, where

$$
p_{X, \theta}(k, t)=p_{X \mid \theta=t}(k) p_{\theta}(\theta)=\binom{t}{k} p^{k}(1-p)^{t-k} e^{-\lambda} \frac{\lambda^{t}}{t!} .
$$

(Note that $\binom{t}{k}=0$ if $k>t$.) To determine the posterior distribution of θ given $X=k$, we use the fact that the joint density of X and θ can also be written as

$$
p_{X, \theta}(k, t)=p_{X}(k) p_{\theta \mid X=k}(t),
$$

where p_{X} denotes the (unconditional) density of X. To this end, we separate the terms in $p_{X, \theta}(k, t)$ which contain the parameter t from those without t :

$$
\begin{aligned}
p_{X, \theta}(k, t) & =e^{-\lambda} \frac{p^{k}}{k!} \frac{(1-p)^{t-k} \lambda^{t}}{(t-k)!} \mathbb{1}(t \geq k) \\
& =\underbrace{e^{-\lambda p} \frac{(\lambda p)^{k}}{k!}}_{=: p_{X}(k)} \underbrace{e^{-\lambda(1-p)} \frac{(\lambda(1-p))^{t-k}}{(t-k)!} \mathbb{1}(t \geq k)}_{=: p_{\theta \mid X=k}(t)} .
\end{aligned}
$$

We see from this formula that the prior distribution of θ given $X=k$ is equal to that of $Y+k$, where $Y \sim \operatorname{Poisson}(\lambda(1-p))$.
(ii) It follows from (i) that the Bayes estimator $T^{*}=T^{*}(X)$ is given by

$$
T^{*}(k)=E(\theta \mid X=k)=E[Y+k]=\lambda(1-p)+k
$$

Note that $T^{*}(X)$ of θ is not integer-valued if $\lambda(1-p)$ is not an integer.
In this case, it makes sense to seek an estimator $T^{* *}(X)$ which minimizes the Bayes risk in the class of all integer-valued estimators.
The Bayes risk of T^{*} can be written as

$$
r\left(T^{*}, \pi\right)=\sum_{k=0}^{\infty} E\left(\left(T^{*}(k)-\theta\right)^{2} \mid X=k\right) p_{X}(k)
$$

For an arbitrary (integer-valued) estimator $T^{* *}(X)$ we obtain that

$$
\begin{aligned}
r\left(T^{* *}, \pi\right)= & \sum_{k=0}^{\infty} E\left(\left(T^{* *}(k)-\theta\right)^{2} \mid X=k\right) p_{X}(k) \\
= & \sum_{k=0}^{\infty}\left\{E\left(\left(T^{*}(k)-\theta\right)^{2} \mid X=k\right)+\left(T^{* *}(k)-T^{*}(k)\right)^{2}\right. \\
& +\underbrace{2 E\left(\left(T^{* *}(k)-T^{*}(k)\right)\left(T^{*}(k)-\theta\right) \mid X=k\right)}_{=2\left(T^{* *}(k)-T^{*}(k)\right) E\left(T^{*}(k)-\theta \mid X=x\right)=0}\} p_{X}(k) .
\end{aligned}
$$

Hence, the sought integer-valued estimator is given by $T^{* *}(X)=c+X$, where c is the integer closest to $\lambda(1-p)$.

