
Mathematical Statistics, Winter semester 2021/22
Solutions to Problem sheet 5

13) Let X1, . . . , Xn be i.i.d. with Pθ(Xi = 1) = θ = 1− Pθ(Xi = 0), where θ ∈ Θ = (0, 1).

Show with the aid of Proposition 2.9 (Lecture notes, page 46) that X̄n = n−1
∑n

i=1Xi

is admissible (w.r.t. the mean squared error) in the class of all estimators.

Solution
The family {P (X1,...,Xn)

θ : θ ∈ (0, 1)} has the Fisher information

I(θ) =
n

θ(1− θ)
∀θ ∈ (0, 1);

see page 41 in the Lecture notes. The estimator X̄n is unbiased for θ and it holds that

Eθ[(X̄n − θ)2] =
θ(1− θ)

n
=

1

I(θ)
∀θ ∈ (0, 1).

(Therefore, X̄n is a best unbiased estimator of θ.)

Since ∫ θ

0

I(u) du =

∫ 1

θ

I(u) du = ∞ ∀θ ∈ (0, 1)

we obtain from Proposition 2.9 that X̄n is admissible in the class of all estimators.



14) Suppose that a realization of X ∼ Pθ := Bin(θ, p) is observed, where θ ∈ Θ := N and
p ∈ (0, 1) is known. Let π = Poisson(λ), λ > 0, be the prior distribution for θ.

(i) Find the posterior distribution of θ given X = k.

(ii) Suppose that the mean squared error is chosen as measure of the performance of
an estimator. Compute the Bayes estimator.

Solution

(i) Pt and π have respective densities pX|θ=t and pθ w.r.t. the counting measures
on N0 and N, respectively, where

pX|θ=t(k) =

(
t

k

)
pk(1− p)t−k (k = 0, 1, . . . , θ),

pθ(t) = e−λ
λt

t!
(t ∈ N).

Hence, the joint distribution of X and θ has a density pX,θ w.r.t. the counting
measure on N0 × N, where

pX,θ(k, t) = pX|θ=t(k) pθ(θ) =

(
t

k

)
pk(1− p)t−k e−λλ

t

t!
.

(Note that
(
t
k

)
= 0 if k > t.) To determine the posterior distribution of θ given

X = k, we use the fact that the joint density of X and θ can also be written as

pX,θ(k, t) = pX(k) pθ|X=k(t),

where pX denotes the (unconditional) density of X. To this end, we separate the
terms in pX,θ(k, t) which contain the parameter t from those without t:

pX,θ(k, t) = e−λ
pk

k!

(1− p)t−k λt

(t− k)!
1(t ≥ k)

= e−λp
(λp)k

k!︸ ︷︷ ︸
=: pX(k)

e−λ(1−p)
(λ(1− p))t−k

(t− k)!
1(t ≥ k)︸ ︷︷ ︸

=: pθ|X=k(t)

.

We see from this formula that the prior distribution of θ given X = k is equal to
that of Y + k, where Y ∼ Poisson(λ(1− p)).



(ii) It follows from (i) that the Bayes estimator T ∗ = T ∗(X) is given by

T ∗(k) = E(θ | X = k) = E[Y + k] = λ(1− p) + k.

Note that T ∗(X) of θ is not integer-valued if λ(1− p) is not an integer.

In this case, it makes sense to seek an estimator T ∗∗(X) which minimizes the
Bayes risk in the class of all integer-valued estimators.

The Bayes risk of T ∗ can be written as

r(T ∗, π) =
∞∑
k=0

E((T ∗(k)− θ)2|X = k) pX(k).

For an arbitrary (integer-valued) estimator T ∗∗(X) we obtain that

r(T ∗∗, π) =
∞∑
k=0

E((T ∗∗(k)− θ)2|X = k) pX(k)

=
∞∑
k=0

{
E((T ∗(k)− θ)2|X = k) + (T ∗∗(k)− T ∗(k))2

+ 2E((T ∗∗(k)− T ∗(k))(T ∗(k)− θ)|X = k)︸ ︷︷ ︸
=2(T ∗∗(k)−T ∗(k))E(T ∗(k)−θ|X=x)= 0

}
pX(k).

Hence, the sought integer-valued estimator is given by T ∗∗(X) = c + X, where c
is the integer closest to λ(1− p).


