## Mathematical Statistics, Winter semester 2021/22

Solutions to Problem sheet 6
15) Let $X_{1}, \ldots, X_{n}$ be i.i.d. with $X_{i} \sim \operatorname{Bin}(1, \theta)$, where $\theta \in \Theta:=\left\{\theta_{0}, \theta_{1}\right\} \subseteq(0,1), \theta_{0} \neq \theta_{1}$. For $\beta \in[0,1]$, find a (possibly randomized) test $\varphi$ which minimizes

$$
\beta E_{\theta_{0}}[\varphi(X)]+(1-\beta) E_{\theta_{1}}[1-\varphi(X)] .
$$

$$
\left(X=\left(X_{1}, \ldots, X_{n}\right)^{T}\right)
$$

## Solution

Let $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$. Then, for a test $\varphi:\{0,1\}^{n} \rightarrow[0,1]$,

$$
\begin{aligned}
& \beta E_{\theta_{0}}[\varphi(X)]+(1-\beta) E_{\theta_{1}}[1-\varphi(X)] \\
& \quad=(1-\beta)+\beta E_{\theta_{0}}[\varphi(X)]-(1-\beta) E_{\theta_{1}}[\varphi(X)] \\
& \quad=(1-\beta)+\sum_{x \in\{0,1\}} \varphi(x)\left\{\beta \theta_{0}^{\sum_{i} x_{i}}\left(1-\theta_{0}\right)^{n-\sum_{i} x_{i}}-(1-\beta) \theta_{1}^{\sum_{i} x_{i}}\left(1-\theta_{1}\right)^{n-\sum_{i} x_{i}}\right\} .
\end{aligned}
$$

Therefore, an optimal test $\varphi$ is given by

$$
\varphi(x)= \begin{cases}1, & \text { if }(1-\beta) \theta_{1}^{\sum_{i} x_{i}}\left(1-\theta_{1}\right)^{n-\sum_{i} x_{i}}>\beta \theta_{0}^{\sum_{i} x_{i}}\left(1-\theta_{0}\right)^{n-\sum_{i} x_{i}}, \\ 0, & \text { if }(1-\beta) \theta_{1}^{\sum_{i} x_{i}}\left(1-\theta_{1}\right)^{n-\sum_{i} x_{i}}<\beta \theta_{0}^{\sum_{i} x_{i}}\left(1-\theta_{0}\right)^{n-\sum_{i} x_{i}}, \\ \text { arbitrary, } & \text { if }(1-\beta) \theta_{1}^{\sum_{i} x_{i}}\left(1-\theta_{1}\right)^{n-\sum_{i} x_{i}}=\beta \theta_{0}^{\sum_{i} x_{i}}\left(1-\theta_{0}\right)^{n-\sum_{i} x_{i}} .\end{cases}
$$

16) Let $X_{1}, \ldots, X_{n}$ be independent random variables with $X_{i} \sim \mathcal{N}(\theta, 1), i=1, \ldots, n$. Consider the problem of testing the following hypotheses.

$$
H_{0}: \quad \theta=\theta_{0} \quad \text { vs. } \quad H_{1}: \quad \theta=\theta_{1},
$$

where $\theta_{0}<\theta_{1}$.
How large must the sample size $n$ be in order that the probabilities of type I and type II errors are both not greater than 0.05 ?
Hint: It holds that $\Phi^{-1}(0.95) \approx 1.64$.

## Solution

For any $n$, the most powerful test $\varphi_{0.05}$ has the form

$$
\varphi_{0.05}(x)= \begin{cases}1, & \text { if } \sqrt{n}\left(\bar{x}_{n}-\theta_{0}\right) \geq \Phi^{-1}(0.95) \approx 1.64, \\ 0, & \text { if } \sqrt{n}\left(\bar{x}_{n}-\theta_{0}\right)<\Phi^{-1}(0.95) .\end{cases}
$$

Now we consider the probability of a type II error:

$$
\begin{aligned}
E_{\theta_{1}}\left[1-\varphi_{0.05}(X)\right] & =P_{\theta_{1}}\left(\sqrt{n}\left(\bar{X}_{n}-\theta_{0}\right)<1.64\right) \\
& =P_{\theta_{1}}(\underbrace{\sqrt{n}\left(\bar{X}_{n}-\theta_{1}\right)}_{\sim N(0,1)}<1.64+\sqrt{n}\left(\theta_{0}-\theta_{1}\right)) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& E_{\theta_{1}}\left[1-\varphi_{0.05}(X)\right] \geq 0.05 \\
& \quad \Longleftrightarrow 1.64+\sqrt{n}\left(\theta_{0}-\theta_{1}\right) \leq-1.64 \\
& \quad \Longleftrightarrow 3.28 \leq \sqrt{n}\left(\theta_{1}-\theta_{0}\right) \\
& \quad \Longleftrightarrow n \geq\left(\frac{3.28}{\theta_{1}-\theta_{0}}\right)^{2} .
\end{aligned}
$$

17) (i) Show that the family of distributions $\{\operatorname{Bin}(n, \theta): \theta \in(0,1)\}$ has a monotone likelihood ratio.
(ii) For $X \sim \operatorname{Bin}(n, \theta)$, construct a UMP test of size $\alpha \in(0,1)$ for the problem

$$
H_{0}: \quad \theta \leq 1 / 2 \quad \text { vs. } \quad H_{1}: \quad \theta>1 / 2 .
$$

## Solution

(i) Let $\theta_{1}, \theta_{2} \in(0,1)$ be arbitrary such that $\theta_{1}<\theta_{2}$. Then, for $k=0,1, \ldots, n$,

$$
\frac{p_{\theta_{2}}(k)}{p_{\theta_{1}}(k)}=\frac{\binom{n}{k} \theta_{2}^{k}\left(1-\theta_{2}\right)^{n-k}}{\binom{n}{k} \theta_{1}^{k}\left(1-\theta_{1}\right)^{n-k}}=\left(\frac{1-\theta_{2}}{1-\theta_{1}}\right)^{n}(\underbrace{\frac{\theta_{2}\left(1-\theta_{1}\right)}{\theta_{1}\left(1-\theta_{2}\right)}}_{>1})^{k} .
$$

Therefore, the mapping $k \mapsto p_{\theta_{2}}(k) / p_{\theta_{1}}(k)$ is strictly monotonically increasing.
(ii) According to Theorem 3.3, a most powerful level $\alpha$ test $\varphi_{\alpha}$ is given by

$$
\varphi_{\alpha}(k)= \begin{cases}1, & \text { if } k>c_{\alpha} \\ \gamma_{\alpha}, & \text { if } k=c_{\alpha} \\ 0, & \text { if } k<c_{\alpha}\end{cases}
$$

where $c_{\alpha} \in \mathbb{N}_{0}$ and $\gamma_{\alpha} \in[0,1]$ are chosen such that

$$
E_{\theta_{0}} \varphi_{\alpha}(X)=P_{\theta_{0}}\left(X>c_{\alpha}\right)+\gamma_{\alpha} P_{\theta_{0}}\left(X=c_{\alpha}\right)=\alpha .
$$

