Mathematical Statistics, Winter semester 2021/22

Problem sheet 1

1) Suppose that

$$
Y=X \theta+\varepsilon
$$

holds for some $\theta \in \mathbb{R}^{k}$, where $E \varepsilon=0_{n}, \operatorname{Cov}(\varepsilon)=\Sigma, \Sigma$ being a regular matrix. Suppose further that the matrix X has full column rank k.
(i) Show that $X^{T} \Sigma^{-1} X$ is a regular matrix and that

$$
\widehat{\theta}=\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1} Y
$$

is an unbiased estimator of θ. Compute $E_{\theta}\left[(\widehat{\theta}-\theta)(\widehat{\theta}-\theta)^{T}\right]$.
(ii) Let $\widetilde{\theta}=L Y$ be an arbitrary unbiased estimator of θ.

Show that

$$
E_{\theta}\left[(\widetilde{\theta}-\theta)(\widetilde{\theta}-\theta)^{T}\right]-E_{\theta}\left[(\widehat{\theta}-\theta)(\widehat{\theta}-\theta)^{T}\right]
$$

is non-negative definite.
Hint: A symmetric and positive definite $(n \times n)$-matrix M can be represented as $M=\sum_{i=1}^{n} \lambda_{i} e_{i} e_{i}^{T}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the (positive) eigenvalues and e_{1}, \ldots, e_{n} are corresponding eigenvectors with $e_{i}^{T} e_{j}=0$ for $i \neq j$. Then $M^{1 / 2}:=$ $\sum_{i=1}^{n} \sqrt{\lambda_{i}} e_{i} e_{i}^{T}$ and $M^{-1 / 2}:=\sum_{i=1}^{n}\left(1 / \sqrt{\lambda_{i}}\right) e_{i} e_{i}^{T}$.
To prove (ii), use the fact that

$$
\left(L \Sigma^{1 / 2}-\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1 / 2}\right)\left(L \Sigma^{1 / 2}-\left(X^{T} \Sigma^{-1} X\right)^{-1} X^{T} \Sigma^{-1 / 2}\right)^{T}
$$

is a non-negative definite matrix.
2) (i) Let

$$
X=\left(\begin{array}{ccccc}
1 & v_{1} & v_{1}^{2} & \cdots & v_{1}^{k} \\
1 & v_{2} & v_{2}^{2} & \cdots & v_{2}^{k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & v_{n} & v_{n}^{2} & \cdots & v_{n}^{k}
\end{array}\right) .
$$

Prove that $X^{T} X$ is regular if the set $\left\{v_{1}, \ldots, v_{n}\right\}$ contains at least $k+1$ different values.
Hint: Choose $c=\left(c_{1}, \ldots, c_{k+1}\right)^{T} \neq 0_{k+1}:=(0, \ldots, 0)^{T}$ and use the fact that $c^{T} X^{T} X c=\sum_{i=1}^{n}\left(\sum_{j=1}^{k} c_{j+1} v_{i}^{j}\right)^{2}$.
(ii) Let

$$
X=\left(\begin{array}{cccc}
v_{1} & v_{1}^{2} & \cdots & v_{1}^{k} \\
v_{2} & v_{2}^{2} & \cdots & v_{2}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
v_{n} & v_{n}^{2} & \cdots & v_{n}^{k}
\end{array}\right) .
$$

Prove that $X^{T} X$ is regular if the set $\left\{v_{1}, \ldots, v_{n}\right\}$ contains at least k different non-zero values.
Hint: Consider the matrix

$$
\widetilde{X}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & v_{1} & v_{1}^{2} & \cdots & v_{1}^{k} \\
1 & v_{2} & v_{2}^{2} & \cdots & v_{2}^{k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & v_{n} & v_{n}^{2} & \cdots & v_{n}^{k}
\end{array}\right) .
$$

3) Consider the linear regression model $Y_{i}=\theta_{1}+x_{i} \theta_{2}+\varepsilon_{i}, i=1, \ldots, n$, where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d. with $\varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Let $\widehat{\theta}=\left(\widehat{\theta}_{1}, \widehat{\theta}_{2}\right)^{T}$ be the least squares estimator of $\theta=\left(\theta_{1}, \theta_{2}\right)^{T}$.
(i) Suppose that $x_{i} \neq x_{j}$, for some (i, j).

Compute $E_{\theta}\left[\left(\widehat{\theta_{i}}-\theta_{i}\right)^{2}\right]$, for $i=1,2$.
Hint: The inverse of a regular matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is given by $\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.
(ii) Suppose that x_{1}, \ldots, x_{n} can be chosen by an experimenter, where $x_{i} \in[-1,1]$ and $n \geq 2$ is even.
Which choice of x_{1}, \ldots, x_{n} minimizes $E_{\theta}\left[\left(\widehat{\theta}_{i}-\theta_{i}\right)^{2}\right]$? (Take into account that x_{1}, \ldots, x_{n} have to be chosen such that $x_{i} \neq x_{j}$, for some (i, j); otherwise the least squares estimator is not uniquely defined.)

