Mathematical Statistics, Winter semester 2021/22

Problem sheet 2
4) Suppose that

$$
Y_{i}=\theta+\varepsilon_{i}, \quad i=1, \ldots, n,
$$

holds for some $\theta \in \Theta:=\mathbb{R}$, where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent random variables such that $E \varepsilon_{i}=0$ and $\operatorname{var}\left(\varepsilon_{i}\right)=\sigma_{i}^{2}>0$ for $i=1, \ldots, n$.
Compute the best linear estimator of θ.
5) Consider the linear regression model

$$
\underbrace{\left(\begin{array}{c}
Y_{11} \\
\vdots \\
Y_{1 n_{1}} \\
\vdots \\
Y_{k 1} \\
\vdots \\
Y_{k n_{k}}
\end{array}\right)}_{=: Y}=\underbrace{\left(\begin{array}{lll}
\mathbb{1}_{n_{1}} & & \\
& \ddots & \\
& & \mathbb{1}_{n_{k}}
\end{array}\right)}_{=: X} \underbrace{\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right)}_{=: \beta}+\underbrace{\left(\begin{array}{c}
\varepsilon_{11} \\
\vdots \\
\varepsilon_{1 n_{1}} \\
\vdots \\
\varepsilon_{k 1} \\
\vdots \\
\varepsilon_{k n_{k}}
\end{array}\right)}_{=: \varepsilon},
$$

where $\beta_{1}, \ldots, \beta_{k}$ are unknown parameters.
Compute the least squares estimator $\widehat{\beta}$ of β and compute $X \widehat{\beta}$.
6) Consider the model

$$
Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j} \quad(1 \leq i \leq k, 1 \leq j \leq m)
$$

Rewrite this model in vector/matrix form $Y=\bar{X} \theta+\varepsilon$, where $\theta=\left(\mu, \alpha_{1}, \ldots, \alpha_{k}\right)^{T}$ is the unknown parameter.
What is the rank of the matrix \bar{X} ?
Compute the least squares estimator of θ under the side condition $\sum_{i=1}^{k} \alpha_{i}=0$.
Hint: Consider the linear model from exercise 5). Since

$$
\left\{\bar{X} \theta: \theta \in \mathbb{R}^{k+1}\right\}=\left\{X \beta: \beta \in \mathbb{R}^{k}\right\}
$$

$\widehat{\theta}$ can be chosen such that $\bar{X} \widehat{\theta}=X \widehat{\beta}$.

