Mathematical Statistics, Winter semester 2021/22

Problem sheet 6
15) Let X_{1}, \ldots, X_{n} be i.i.d. with $X_{i} \sim \operatorname{Bin}(1, \theta)$, where $\theta \in \Theta:=\left\{\theta_{0}, \theta_{1}\right\} \subseteq(0,1), \theta_{0} \neq \theta_{1}$. For $\beta \in[0,1]$, find a (possibly randomized) test φ which minimizes

$$
\beta E_{\theta_{0}}[\varphi(X)]+(1-\beta) E_{\theta_{1}}[1-\varphi(X)] .
$$

$\left(X=\left(X_{1}, \ldots, X_{n}\right)^{T}\right)$
16) Let X_{1}, \ldots, X_{n} be independent random variables with $X_{i} \sim \mathcal{N}(\theta, 1), i=1, \ldots, n$. Consider the problem of testing the following hypotheses.

$$
H_{0}: \quad \theta=\theta_{0} \quad \text { vs. } \quad H_{1}: \quad \theta=\theta_{1},
$$

where $\theta_{0}<\theta_{1}$.
How large must the sample size n be in order that the probabilities of type I and type II errors are both not greater than 0.05 ?
Hint: It holds that $\Phi^{-1}(0.95) \approx 1.64$.
17) (i) Show that the family of distributions $\{\operatorname{Bin}(n, \theta): \theta \in(0,1)\}$ has a monotone likelihood ratio.
(ii) For $X \sim \operatorname{Bin}(n, \theta)$, construct a UMP test of size $\alpha \in(0,1)$ for the problem

$$
H_{0}: \quad \theta \leq 1 / 2 \quad \text { vs. } \quad H_{1}: \quad \theta>1 / 2 .
$$

