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1 Linear regression

1.1 Introduction and data examples

A common problem in statistics is that of detecting and representing the relationship
that exists (if any) between two random variables X and Y ; for instance, height and
weight, income and intelligence quotient (IQ), ages of husband and wife at marriage,
length and breadth of leaves, temperature and pressure of a certain volume of gas, or the
length of a metal rod and its temperature. Regression analysis is a statistical technique
for investigating, modeling and representing the relationship between variables. But
why do we use the word “regression”? It appears that the British anthropologist and
meteorologist Sir Francis Galton (1822-1911) was responsible for the introduction of the
word “regression”. Originally he used the term “reversion” in an unpublished address
“Typical laws of heredity in man” to the Royal Institution on February 9, 1877. The
later term “regression” appears in his Presidential address made before Section H of the
British Association in Aberdeen, 1885, printed in Nature, September 1885, 507-510, and
also in a paper “Regression Towards Mediocrity in Hereditary Stature,” The Journal of
the Anthropological Institute of Great Britain and Ireland, 15, 1886, 246-263. In the
latter, Galton reports on his initial discovery that the offspring of seeds are taller than
the mean if the parents are taller than the mean and vice versa; however, the size of
the offsprings are usually less extreme than the size of the parents. In other words,
extreme characteristics are not completely passed on to the next generation. Galton
also reports that the same effect was observed in the records of adult children and their
parents. Today the term “regression” is used for statistical methods which are designed
to detect and quantify dependence between (usually random) aspects. Here is a reprint
from Galton’s paper (Figure 1) which shows the original data (heights of females are
adjusted by a factor of 1.08 and heights of “mid-parents” are computed accordingly).

Figure 1: Original data from Galton’s paper
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The following “scatter plot” (Figure 2) shows pairs of measurements (height of adult child
vs. height of mid-parent).

Figure 2: Scatter plot of the data from Galton’s paper

Only a very careful inspection of this plot would reveal two features:

• There is a tendency that parents which are taller than the mean produce children
that are also taller than the mean and, vice versa, children from shorter parents
are shorter than the mean.

• Extreme characteristics are not completely passed on to children, that is, the heights
of children are less extreme than the heights of their parents.

In order to obtain a more clear picture of this relationship, we can try to fit a smooth
curve through the points in such a way that the points are as “close” to the curve as
possible. Of course, we would not expect an exact fit because both variables in the above
example are subject to chance fluctuations owing to factors outside our control. Although
the heights of children depend on the parent’s heights, factors such as diseases, nutrition
etc. influence the growth of children. The relationship between the heights of the parents
and their children can be conveniently described by the following statistical model.

Yi = θ1 + θ2xi + εi, i = 1, . . . , n, (1.1)

where

• xi height of ith “mid-parent” (...),

• Yi height of ith (adult) child,

• εi a random variable (“error”), accounting for uncontrolled influences,

• n sample size.
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Here and in the following, the explanatory variables (“regressors”) are assumed to be
nonrandom while the dependent variables (“regressands”) are modeled as random vari-
ables. The “errors” are introduced in order to transform the causal relationship into an
equality. Such error terms cannot be avoided whenever there are certain factors that
influence the cause-effect relationship in an uncontrollable way. Even if there is an ex-
act relationship between variables like temperature and pressure, fluctuations would still
show up in a scatter plot because of errors of measurement. For theoretical considerations,
it is usually assumed that the errors have zero mean.

Model (1.1) contains unknown parameters, θ1 and θ2. The most popular method of
approximating (or “estimating”) these parameters is the method of least squares.1 Sup-
pose we have realizations (x1, y1), . . . , (xn, yn) of the random pairs (x1, Y1), . . . , (xn, Yn)

at our disposal. Then we obtain an estimate θ̂ =
(
θ̂1, θ̂2

)T of the vector θ = (θ1, θ2)T

(The superscript T stands for transposition.) as a solution to

n∑
i=1

(
yi − θ̂1 − θ̂2xi

)2
= inf

(θ1,θ2)T∈R2

n∑
i=1

(
yi − θ1 − θ2xi

)2
. (1.2)

It will be shown below that the infimum on the right-hand side of (1.2) is actually
attained and that the minimizer θ̂ is uniquely defined unless all x1, . . . , xn are equal; see
Theorem 1.1 below for such results in a general context. It turns out that the estimate
has the form θ̂ =

∑n
i=1 wiyi, where w1, . . . , wn are certain weights depending on the

regressors x1, . . . , xn alone. The corresponding random variable is
∑n

i=1 wiYi, the so-
called least squares estimator of θ, which we also denote by θ̂. We will also show
below that this estimator has certain optimality properties. The least squares estimates
of θ1 and θ2 can be represented as

θ̂1 = ȳn − θ̂2x̄n

and

θ̂2 =
1
n

∑n
i=1(yi − ȳn)(xi − x̄n)
1
n

∑n
i=1(xi − x̄n)2

,

where x̄n = 1
n

∑n
i=1 xi, ȳn = 1

n

∑n
i=1 yi. The function

ĝ(x) = θ̂1 + θ̂2x

is drawn in Figure 3 as a bold solid line. The “1-1 curve”, h(x) = x, is displayed as a
dashed line.

A comparison of these two curves reveals the claimed principles: Adult children of
tall parents tend to be taller than the average and, vice versa, children of short parents
tend to be shorter than the average. This is also corroborated by θ̂2 ≈ 2/3 > 0. On
the other hand, their deviation in height from the average is less extreme than for their
parents; this is in line with θ̂2 < 1.

1 In Draper and Smith [2, p. 11] you will find some historical details: There has been a dispute
about who first discovered the methods of least squares. It appears that it was proposed independently
by Carl Friedrich Gauß (1777-1855) and the French mathematician Adrien-Marie Legendre (1752-1833),
that Gauß started using it before 1803 (he claimed in about 1795, but there is no corroboration of this
earlier date), and that the first account was published by Legendre in 1805. When Gauß wrote in 1809
that he had used the method earlier than the date of Legendre’s publication, controversy concerning the
priority began. Today, the term “least squares method” is used as a direct translation from the French
“méthode des moindres carrés”.
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Figure 3: Function fitted by least squares (bold solid line)

Before we systematically investigate the method of least squares we consider one more
example. In order to find out what would be safe speed limits to permit on different
streets one has to know in what distance an automobile could be stopped when traveling
at different speeds. By comparing this distance with the length of view at intersections
we could judge how fast cars might be able to travel without risk of collisions at street
intersections. One way to determine what is the relation between speed and stopping
distance would be to make a number of tests taking different types of machines and
different drivers. The following (hypothetical) data can be found in Chapter 3 of the book
“Methods of Correlation and Regression Analysis. Linear and curvilinear” by M. Ezekiel
and K A. Fox (1959).
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A slightly more clear picture is provided by the following scatter plot (Figure 4).

Figure 4: Scatter plot of the automobile data

It is visible with the naked eye that there is a tendency that higher speeds require
longer stopping distances. Of course, there are variations in the distances which different
cars or different drivers required to stop, even when traveling at the same speed. It
should not be surprising that this relation is not more definite since there are many
factors outside control that influence the stopping distance, e.g. cars with strong or worn
brakes, experienced or inexperienced drivers, drivers with almost instantaneous reaction
to signal to stop and others with lagging response and so on. So, we can at best hope
to uncover the relation between speed and average stopping distance. Figure 5 shows
the relation between speed and the respective arithmetic mean of the measured stopping
distances.

Figure 5: Averaged stopping distances

This curve is again not that what we expect since the searched-for function should be at
least monotonically increasing. At this point it makes sense to use logical arguments to
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find an appropriate model. We denote by (v1, y1), . . . , (vn, yn) the pairs of measurements,
where vi is the speed of the ith vehicle and yi the measured stopping distance. We regard
y1, . . . , yn as realizations of random variables Y1, . . . , Yn, which leads to the following
regression model.

Yi = f(vi) + εi, i = 1, . . . , n.

The random variables ε1, . . . , εn are used to model variations that are outside control. We
aim at approximating the unknown function f : [0,∞)→ [0,∞). Since the interpolation
of the data point as in the above picture does not lead to the desired result, we include
some additional considerations that lead to a reasonable model. The mean stopping
distance for a given speed v can be split up into a distance caused by the reaction time of
the driver (thinking distance) and the distance covered by the car after applying the
brake (braking distance), that is

f(v) = fR(v) + fB(v) ∀v ≥ 0. (1.3)

It is clear that the thinking distance is proportional to the velocity of the car,

fR(v) = v · θ1, (1.4)

where θ1 = tR is the average reaction time.
To simplify matters we impose the assumption that the drivers apply a constant

braking force. Newton’s second law of motion tells us that

F︸︷︷︸
force

= m︸︷︷︸
mass

· a︸︷︷︸
acceleration

.

Therefore, we have a constant deceleration (“negative acceleration”). Let, w.l.o.g., t0 = 0
be the time when the brake is applied and t1 be the time when the car comes to a halt.
Then the velocity v(t) at time t ∈ [0, t1] is given by

v(t) = v(t0)︸︷︷︸
= v

+

∫ t1

t0

a du = v + a t.

Since v(t1) = 0 we obtain that
t1 = −v/a.

Therefore, the braking distance for an initial velocity v is equal to

fB(v) =

∫ t1

t0

v(u) du =

∫ −v/a
0

(
v + au

)
du

=

[
(v + au)2

2a

]−v/a
0

= − v
2

2a
. (1.5)

(Note that a < 0 which means that fB(v) is actually positive.)
We conclude from (1.3) to (1.5) that

f(v) = v · θ1 + v2 · θ2,

where θ1 = tR and θ2 = −1/(2a) are unknown constants. This leads us to the following
model:

Yi = viθ1 + v2
i θ2 + εi, i = 1, . . . , n.

(This model is said to be a linear regression model since the unknown parameters θ1

and θ2 enter linearly.)
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The solid line in Figure 6 shows the graph of the function f̂(v) = vθ̂1 + v2θ̂2, where θ̂1

and θ̂2 are determined by the least squares method.

Figure 6: Curve obtained by a least squares fit (bold solid line)

1.2 Least squares estimation in a linear model

In this subsection we consider a general linear regression model,

Yi = xTi θ + εi, i = 1, . . . , n,

xi =
(
xi1, . . . , xik

)T is the ith vector of explanatory variables (independent variables or
regressors), Yi the ith dependent variable, εi the ith error variable, and θ =

(
θ1, . . . , θk

)T
the vector of unknown coefficients. It will be convenient for a further analysis to rewrite
the n model equations in matrix/vector form: Y1

...
Yn


︸ ︷︷ ︸

=:Y

=

 xT1
...
xTn


︸ ︷︷ ︸

=:X

θ +

 ε1
...
εn


︸ ︷︷ ︸

=: ε

.

Let

S(θ) =
n∑
i=1

(
Yi − xTi θ

)2
=
∥∥Y − Xθ

∥∥2

be the sum of squared deviations, where ‖ · · · ‖ denotes the Euclidean norm on Rn. In
what follows we examine the least squares estimator of θ which is defined as a minimizer
of the functional S(θ). For now it is neither clear that a minimizer exists (i.e. that
inf
{
‖Y −Xθ‖2 : θ ∈ Rk

}
is attained) nor that such a minimizer is unique. The following

theorem gives an answer to these questions.
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Theorem 1.1. (i) There exists some θ̂ ∈ Rk such that∥∥Y − Xθ̂
∥∥2

= inf
{
‖Y − Xθ‖2 : θ ∈ Rk

}
.

(ii) Each least squares estimator θ̂ is a solution to the normal equation, i.e.

XTXθ̂ = XTY.

(iii) If the matrix X has full column rank k, then XTX is regular, θ̂ is uniquely defined,
and

θ̂ =
(
XTX

)−1
XTY.

Proof. (i) Let d := inf
{
‖Y − Xθ‖2 : θ ∈ Rk

}
= inf

{
‖Y − v‖2 : v ∈ M

}
, where

M :=
{
Xb : b ∈ Rk

}
is a linear subspace of Rn. There exists a sequence (vn)n∈N,

vn ∈M ∀n ∈ N, such that ∥∥Y − vn
∥∥2 −→

n→∞
d.

Next we show that (vn)n∈N is a Cauchy sequence. Indeed, using ‖a+b‖2+‖a−b‖2 =
2‖a‖2 + 2‖b‖2 ∀a, b ∈ Rn we obtain that∥∥vn − vm

∥∥2
=

∥∥(Y − vm) − (Y − vn)∥∥2

= 2
∥∥Y − vm∥∥2︸ ︷︷ ︸
−→
m→∞

2d

+ 2
∥∥Y − vn∥∥2︸ ︷︷ ︸
−→
n→∞

2d

−
∥∥(Y − vm) +

(
Y − vn

)∥∥2︸ ︷︷ ︸
= 4‖Y− vm+vn

2
‖2≥ 4d

.

This yields ∥∥vn − vm
∥∥2 −→

m,n→∞
0.

(This statement means that for all ε > 0 there exists some Nε ∈ N such that
‖vn − vm‖2 ≤ ε if m,n ≥ Nε.) Hence, (vn)n∈N is a Cauchy sequence. Since the
finite-dimensional linear space M is complete there exists some v ∈ M such that
vn −→

n→∞
v. Since ‖Y − v‖ ≤ ‖Y − vn‖︸ ︷︷ ︸

−→
n→∞

√
d

+ ‖vn − v‖︸ ︷︷ ︸
−→
n→∞

0

we obtain that ‖Y − v‖2 = d. We

can find some θ̂ ∈ Rk such that v = Xθ̂ and we conclude that∥∥Y − Xθ̂
∥∥2

= inf
{
‖Y − Xθ‖2 : θ ∈ Rk

}
.

(ii) Suppose that θ̂ is a least squares estimator which does not satisfy the normal
equation, that is XT (Y −Xθ̂) 6= 0k. (0k denotes the vector consisting of k zeroes.)
Then there exists some α ∈ Rk such that (Y − Xθ̂)TXα > 0. Let ᾱ = εα, where
ε > 0. Then∥∥Y − X(θ̂ + ᾱ)

∥∥2
=

∥∥Y − Xθ̂
∥∥2

+ ε2αTXTXα − 2ε (Y −Xθ̂)TXα︸ ︷︷ ︸
>0

<
∥∥Y − Xθ̂

∥∥2
,

for sufficiently small ε > 0. This is a contradiction to our assumption that θ̂ is a
least squares estimator. Hence, θ̂ is a solution to the normal equation.
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(iii) Suppose that the matrix X has rank k. This means that the columns of X are
linearly independent and for all α ∈ Rk such that α 6= 0k we obtain Xα 6= 0n.
Therefore we have that αTXTXα 6= 0, which implies XTXα 6= 0k. Hence, XTX is
regular. Since any least squares estimator satisfies the normal equation we obtain
that θ̂ =

(
XTX

)−1
XTY .

The following theorem provides a certain optimality property of the least squares esti-
mator. In the class of all linear and unbiased estimators, θ̂ has the smallest covariance
matrix.

Theorem 1.2. Suppose that
Y = Xθ + ε,

where X is an (n × k)-matrix with rank(X) = k, θ ∈ Rk, Eε = 0n, and Cov(ε) = σ2In,
σ2 > 0. (In denotes the n-dimensional unit matrix.) Then

(i) θ̂ is an unbiased estimator of θ, that is

Eθθ̂ = θ ∀θ ∈ Rk.

(The notation Eθ means that the expectation refers to θ as the true parameter.)

(ii) Eθ

[(
θ̂ − θ

)(
θ̂ − θ

)T]
= σ2

(
XTX

)−1 ∀θ ∈ Rk.

Let θ̃ = LY be any linear and unbiased estimator of θ. Then, for all θ ∈ Rk,

Eθ

[(
θ̃ − θ

)(
θ̃ − θ

)T] − Eθ

[(
θ̂ − θ

)(
θ̂ − θ

)T]
= σ2

(
LLT −

(
XTX

)−1
)

is non-negative definite. Furthermore

Eθ

[(
θ̃i − θi

)2
]
≥ Eθ

[(
θ̂i − θi

)2
]

∀i = 1, . . . , k.

As announced, the least squares estimator θ̂ has the smallest “matrix risk” (which is equal
to its covariance matrix since θ̂ is unbiased) among all linear and unbiased estimators.
In this sense, it is the best linear unbiased estimator, abbreviated as BLUE.

Proof of Theorem 1.2.

(i) According to Theorem 1.1(iii), the least squares estimator has the form

θ̂ =
(
XTX

)−1
XTY.

This implies that

Eθθ̂ = Eθ

[(
XTX

)−1
XT (Xθ + ε)

]
=
(
XTX

)−1
XT Eθ

[
Xθ + ε

]︸ ︷︷ ︸
=Xθ

= θ ∀θ ∈ Rk.
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(ii) For the least squares estimator θ̂, we have that θ̂−θ =
(
XTX

)−1
XT
(
Xθ+ε

)
−θ =(

XTX
)−1

XT ε, which implies

Eθ

[(
θ̂ − θ

)(
θ̂ − θ

)T]
= Eθ

[(
XTX

)−1
XT ε εTX

(
XTX

)−1
]

=
(
XTX

)−1
XT Eθ

[
ε εT

]︸ ︷︷ ︸
=σ2In

X
(
XTX

)−1

= σ2
(
XTX

)−1
.

Let θ̃ = LY be any linear and unbiased estimator of θ. The matrix risk of this
estimator is equal to

Eθ

[(
θ̃ − θ

)(
θ̃ − θ

)T]
= Eθ

[
LεεTLT

]
= LEθ

[
εεT
]︸ ︷︷ ︸

=σ2In

LT = σ2LLT .

Unbiasedness of θ̃ means that

Eθ
[
L
(
Xθ + ε

)]
= LXθ = θ ∀θ ∈ Rk,

which implies LX = Ik.

Using the fact that any matrix of the formMMT is non-negative definite we obtain
that

0k×k �
(
L −

(
XTX

)−1
XT
)(
L −

(
XTX

)−1
XT
)T

= LLT − LX︸︷︷︸
= Ik

(
XTX

)−1 −
(
XTX

)−1
XTLT︸ ︷︷ ︸

= Ik

+
(
XTX

)−1
XTX

(
XTX

)−1

= LLT −
(
XTX

)−1
.

Therefore,

Eθ

[(
θ̃ − θ

)(
θ̃ − θ

)T] − Eθ

[(
θ̂ − θ

)(
θ̂ − θ

)T]
= σ2

(
LLT −

(
XTX

)−1
)

is actually non-negative definite.

Since the diagonal elements of any non-negative definite matrix are non-negative
we obtain, for all i = 1, . . . , k,

Eθ

[(
θ̃i − θi

)2
]

= σ2
(
LLT

)
i,i

≥ σ2
((
XTX

)−1
)
i,i

= Eθ

[(
θ̂i − θi

)2
]
.

which completes the proof.



14

1.3 Choice of a good model: hypothesis testing

As an illustrating example, we consider again the stopping distance problem. Recall that
we had the following experimental design:

• n vehicles were driven with speeds v1, . . . , vn > 0

• the respective stopping distances y1, . . . , yn were recorded, these measurements are
modeled as realizations of random variables Y1, . . . , Yn

Logical considerations led to the following linear regression model:

Yi = viθ1 + v2
i θ2 + εi, i = 1, . . . , n. (1.6)

This model can be rewritten in a more compact vector/matrix form,

Y = Xθ + ε,

where

Y =

 Y1
...
Yn

 , X =

 v1 v2
1

...
...

vn v2
n

 , θ =

(
θ1

θ2

)
, ε =

 ε1
...
εn

 .

If not all the initial velocities vi are equal, then the matrix X has rank 2 (see Exercise 2,
first problem sheet), the least squares estimator is uniquely defined and has the following
form:

θ̂ =
(
XTX

)−1
XTY.

Now it could well happen that a statistician is not sure whether or not a model of
this complexity is needed. For example, in case of cars equipped with advanced driver
assistance systems, the time needed to react to an obstacle should be very small. This
means that the unknown parameter θ1 is close to zero. If so, then the simpler model

Yi = v2
i θ2 + εi, i = 1, . . . , n. (1.7)

could be used as well. This raises the following question: If θ1 is close to zero (or, ideally,
equal to zero), is there any gain by fitting model (1.7) rather than (1.6)? Apart from
the lower complexity of model (1.7), can we estimate the remaining parameter θ2 with
a higher precision? To see what typically happens in such a situation, we compare the
quadratic risk of the respective least squares estimators of θ2 in both models. We assume
that Eε = 0n, Cov(ε) = σ2In (σ2 > 0), and that not all the vi are equal. Furthermore,
we assume that model (1.7) is adequate which means that model (1.6) is adequate as
well, with θ1 = 0. Under these assumptions, it follows from Theorem 1.2 that the matrix
risk of the least squares estimator in model (1.6) is equal to

E
[(
θ̂ − θ

)(
θ̂ − θ

)T]
= σ2

(
XTX

)−1
.

Since
XTX =

( ∑n
i=1 v

2
i

∑n
i=1 v

3
i∑n

i=1 v
3
i

∑n
i=1 v

4
i

)
=

(
V2 V3

V3 V4

)
,
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where Vk =
∑n

i=1 v
k
i (k = 2, 3, 4) we obtain that

(
XTX

)−1
=

1

V2V4 − V 2
3

(
V4 −V3

−V3 V2

)
.

This yields for the squared error risk of the second component θ̂2 of the least squares
estimator that

E
[(
θ̂2 − θ2

)2
]

= σ2
[(
XTX

)−1
]

2,2
= σ2 1

V4 − V 2
3 /V2

. (1.8)

Now we consider the least squares estimator of θ2 in the alternative model (1.7). To
distinguish it from the corresponding estimator in the full model, we denote it by θ̃2. It
follows again from Theorem 1.1 that

θ̃2 =

∑n
i=1 v

2
i Yi∑n

i=1 v
4
i

,

and from Theorem 1.2 that

E
[(
θ̃2 − θ2

)2
]

= σ2 1∑n
i=1 v

4
i

= σ2 1

V4

. (1.9)

Under the above assumption that not all the velocities vi are equal we obtain that Vi > 0
for i = 2, 3, 4, which implies that

E
[(
θ̃2 − θ2

)2
]

= σ2 1

V4

< σ2 1

V4 − V 2
3 /V2

= E
[(
θ̂2 − θ2

)2
]
. (1.10)

This shows that, given we know in advance that model (1.7) is adequate, we should better
estimate the parameter θ2 using this reduced model.

This result can be generalized. Suppose that we have the regression model

Y =
(
X0 Z

)
︸ ︷︷ ︸

=:X

θ + ε, (1.11)

where X0 is an (n× k)-matrix and Z an (n× l)-matrix such that rank(X) = k + l. Ac-
cordingly, the parameter vector θ consists of a subvector θ0 of length k and a subvector γ
of length l (θ = (θT0 , γ

T )T ). If we knew that the last l components of the explanatory
variables do not contribute to an explanation of Y , that is if γ = 0l, then we could also
use the reduced model

Y = X0θ0 + ε (1.12)

and estimate the remaining components of θ by least squares. Since the matrix X has
rank k + l it follows that its columns are linearly independent, which means that the
submatrix X0 has full column rank l. We conclude from Theorem 1.1 that the least
squares estimator of θ0 in model (1.12) is uniquely defined and is given by

θ̃0 =
(
XT

0 X0

)−1
XT

0 Y.

According to Theorem 1.2, the matrix risk of this estimator is equal to

Eθ0

[(
θ̃0 − θ0

)(
θ̃0 − θ0

)T]
= σ2

(
XT

0 X0

)−1
. (1.13)



16

In the full model (1.11), the least squares estimator is given by

θ̂ =
(
XTX

)−1
XTY

and its matrix risk is equal to

Eθ

[(
θ̂ − θ

)(
θ̂ − θ

)T]
= σ2

(
XTX

)−1
. (1.14)

The corresponding estimator θ̂0 of the subvector θ0 is given by the first k components
of θ̂ and, irrespectively of the value of γ, its matrix risk is given by the matrix spanned
by the first k columns and the first k rows of σ2

(
XTX

)−1. Since the matrix

XTX =

(
XT

0

ZT

)(
X0 Z

)
=

(
XT

0 X0 XT
0 Z

ZTX0 ZTZ

)
is positive definite we have that ZTZ is a regular (positive definite) matrix and we obtain

0 < det
(
XTX

)
= det

(
ZTZ

)
det
(
XT

0 X0 − XT
0 Z
(
ZTZ

)−1
ZTX0

)
;

see fact 9.11.2(4b) on page 147 in Lütkepohl, H. “Handbook of Matrices” (1996). There-
fore, the matrix

(
XT

0 X0 − XT
0 Z
(
ZTZ

)−1
ZTX0

)
is also regular and it follows from state-

ment 9.11.3(2b) on page 148 in the same book that(
XT

0 X0 XT
0 Z

ZTX0 ZTZ

)−1

=

( (
XT

0 X0 − XT
0 Z
(
ZTZ

)−1
ZTX0

)−1

E

ET F

)
,

for some matrices E and F . Therefore we obtain from (1.14) that

Eθ

[(
θ̂0 − θ0

)(
θ̂0 − θ0

)T]
= σ2

(
XT

0 X0 − XT
0 Z
(
ZTZ

)−1
ZTX0

)−1

. (1.15)

Now we can distinguish between two relevant cases:

1) If the columns of X0 are orthogonal to those of Z, i.e. XT
0 Z = 0k×l, then

Eθ

[(
θ̂0 − θ0

)(
θ̂0 − θ0

)T]
= Eθ

[(
θ̃0 − θ0

)(
θ̃0 − θ0

)T]
= σ2

(
XT

0 X0

)−1
.

In this case, there will be no gain by using the reduced model since the matrix risks
of θ̂0 and θ̃0 are equal.

2) IfXT
0 Z 6= 0k×l, then

(
XT

0 X0 −
(
XT

0 X0 −XT
0 Z
(
ZTZ

)−1
ZTX0

))
= XT

0 Z
(
ZTZ

)−1
ZTX0

is a non-zero and non-negative definite (positive semidefinite) matrix. This implies
that

Eθ

[(
θ̂0 − θ0

)(
θ̂0 − θ0

)T] − Eθ

[(
θ̃0 − θ0

)(
θ̃0 − θ0

)T]
= σ2

(
XT

0 X0 − XT
0 Z
(
ZTZ

)−1
ZTX0

)−1

− σ2
(
XT

0 X0

)−1

is a non-negative definite2 and nonzero matrix. In other words, the risk matrix of
θ̂0 is “greater” than that of θ̃0. In this case it is clearly advisable to use the reduced
model for estimating θ0.

2For two symmetric and positive definite (k × k)-matrices M1 and M2, M1 � M2 (i.e. M2 −M1 is
non-negative definite) implies that M−11 �M−12 . Indeed, M1 �M2 implies Ik =M1−1/2M1M1−1/2 �
M1−1/2M2M1−1/2, which in turn yields Ik =

(
M1−1/2M1M1−1/2

)−1 � (M1−1/2M2M1−1/2
)−1,

and hence M−11 �M−12 .
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But what happens if the model we use is inappropriate? Let us assume that we
employ a linear regression model,

Y = Xθ + ε,

but that, in contrast to our assumption above, there is no θ ∈ Rk such that EY = Xθ.
We assume again that the (n × k)-matrix X has rank k and that Cov(Y ) = σ2In, for
some σ2 > 0. Let θ̂ =

(
XTX

)−1
XTY be the ordinary least squares estimator. As in the

case of an adequate model, we have that

Cov
(
θ̂
)

= Cov
((
XTX

)−1
XTY

)
=
(
XTX

)−1
XT Cov(Y )︸ ︷︷ ︸

=σ2In

X
(
XTX

)−1
= σ2

(
XTX

)−1
.

But what does the least squares estimator approximate? In fact, since EY 6= Xθ ∀θ ∈ Rk,
there will be no “true parameter” θ. Recall that Xθ̂ = X

(
XTX

)−1
XTY is the orthogonal

projection of Y onto the linear subspace
{
Xb : b ∈ Rk

}
which is spanned by the columns

of X, that is ∥∥Y − Xθ̂
∥∥2

= inf
{
‖Y −Xb‖2 : b ∈ Rk

}
.

Let θ̄ := Eθ̂ =
(
XTX

)−1
XTEY . Then Xθ̄ = X

(
XTX

)−1
XTE[Y ] is just the orthogonal

projection of EY onto
{
Xb : b ∈ Rk

}
, that is∥∥EY − Xθ̄

∥∥2
= inf

{
‖EY −Xb‖2 : b ∈ Rk

}
. (1.16)

In this sense, θ̂ is still a meaningful quantity. However, it is also clear that

E
[
Xθ̂
]
6= EY,

that is, this model does not primarily provide an approximation to the conditional ex-
pectation of the dependent variable given the explanatory variables. Rather, as (1.16)
shows, the least squares method aims at delivering a “best approximation” of the true
regression function. Hence, it is important to guard against using an inadequate model.
To conclude, the above considerations show that it pays off to strive for aminimal model
which describes the relation between explanatory variables and the independent variable
in an adequate way.

Now we come back to the problem of deciding whether we should use model (1.6)
or the alternative model (1.7). We are convinced by our logical considerations that the
former model provides an adequate description of the relation between speed of a car
and the corresponding average stopping distance. However, if the reduced model (1.7) is
adequate, we should use this to estimate the remaining parameter θ2; (1.10) shows that
this improves the accuracy of the estimator. On the other hand, if (1.7) is not adequate,
we face the risk of an insufficient approximation to the true relation between speed and
stopping distance. What we need is an objective rule which leads to a decision between
these two alternatives. Suppose we are inclined to believe in the reduced model (1.7),
which corresponds to θ1 = 0 in model (1.6). In this context, we want to “test” the
hypothesis of θ1 = 0 versus the alternative θ1 6= 0. This pair of hypotheses can be
reformulated as

H0 : θ1 = 0 vs. H1 : θ1 6= 0.

In this context, H0 is called null hypothesis while H1 is the alternative. A decision for
or against H0 has to be based on the information given by the observed realization y =
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(y1, . . . , yn)T of the random vector Y = (Y1, . . . , Yn)T . (Recall that v1, . . . , vn were pre-
determined, non-random speeds.) A decision rule (which is called test) can be described
by a function ϕ : Rn → {0, 1}, where ϕ(y) = 1 means that we reject H0 in case of
Y = y whereas ϕ(y) = 0 describes the fact that we accept H0 if Y = y. (An advanced
concept where ϕ may also attain values between 0 and 1 will be described in Section 3.)
The performance of a test is reasonably measured by the frequency with which we make
correct judgments when we use it. There are two types of error we can commit (not
simultaneously):

• H0 is true, but we reject H0 (“type one error”),

• H0 is false, but we accept H0 (“type two error”).

When we are looking for a “good” test we are seeking a test such that the probabilities of
such wrong decisions are as small as possible. In our case, it would be desirable to keep
both P(0,θ2)

(
ϕ(Y ) = 1

)
and P(θ1,θ2)

(
ϕ(Y ) = 0

)
small, the latter probability for all θ1 6= 0.

(Pθ denotes the probability measure corresponding to a given value for the parameter θ.)
To simplify matters, we make the assumption that

Y ∼ N
(
γ, σ2In

)
,

where γ ∈
{
Xb : b ∈ R2

}
and σ2 > 0. Here, σ2 is also an unknown parameter. The

above test problem can be formulated as follows:

H0 :

(
γ
σ2

)
∈ Θ0 vs. H1 :

(
γ
σ2

)
∈ Θ1 \Θ0,

where
Θ0 =

{
X0b : b ∈ R

}
× (0,∞), Θ1 =

{
Xb : b ∈ R2

}
× (0,∞)

and

X0 =

 v2
1
...
v2
n

 , X =

 v1 v2
1

...
...

vn v2
n

 .

In Section 3 we will show that an “ideal” test such that both error probabilities are zero
does not exist. Typically, one uses the following strategy: One assigns a small bound α
to the probability of a type one error, and then one attempts to minimize the probability
of a type two error, under the side condition that the probability of a type one error
does not exceed the chosen bound α. We will also see in Section 3 that we can only
“approximately” reach this goal in our case. A “reasonably good” test is the so-called
F test (named after the British statistician Sir Ronald A. Fisher) which is described by
a function ϕ : Rn → {0, 1} such that

ϕ(y) =

{
1, if Tn(y) ≥ c,
0, if Tn(y) < c,

where
Tn(y) =

‖P1y − P0y‖2

1
n−2
‖y − P1y}2

.

P1 = X
(
XTX

)−1
XT and P0 = X0

(
XT

0 X0

)−1
XT

0 are the orthogonal projection matri-
ces onto the linear subspace spanned by X and X0, respectively. The numerator of Tn,
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‖P1Y − P0Y ‖2, characterizes a possible inadequacy of the smaller model while its de-
nominator, ‖Y − P1Y ‖/(n− 2) is an unbiased estimator of the variance σ2. It turns out
that under the null hypothesis Tn(Y ) has a so-called F distribution with 1 and n − 2
degrees of freedom, irrespectively of the actual value of σ2. Therefore, if we choose the
“critical value” c equal to the (1−α)-quantile of such an F distribution, then we obtain
a statistical test where the probability of a type one error is equal to α; for details see
Section 3.

If we are even not sure that the larger model (1.6) is correct, then we could also test its
adequacy. To do this, we need again a model which is guaranteed to be adequate. Recall
how the above test statistic Tn(Y ) is built: Its numerator, ‖P1Y − P0Y ‖2, compares the
goodness of fit of the smaller model with that of the larger one while its denominator,
‖Y − P1Y ‖/(n − 2) is an unbiased estimator of the variance σ2. Now we can reliably
estimate σ2 if we have “replications” , that is, if vi = vj, for some pair(s) (i, j), i 6= j.
Suppose that the n cars were driven with only m different initial speeds, 2 < m < n. Let
us assume that the ith velocity vi appears ni times and that the corresponding measured
stopping distances are yi1, . . . , yini , n1 + · · · + nm = n. We avoid any assumption on
the particular form of the function f and assume only that EYi1 = . . . = EYini , for
i = 1, . . . ,m. This leads to the following linear regression model:

Y11
...

Y1n1

...
Ym1
...

Ymnm


︸ ︷︷ ︸

=:Y

=

 1n1

. . .
1nm


︸ ︷︷ ︸

=:X1

 β1
...
βm

 +



ε11
...

ε1n1

...
εm1
...

εmnm


︸ ︷︷ ︸

=:ε

,

where β1, . . . , βm are unknown parameters. Here and in the following 1n denotes the
vector consisting of n ones. The model we want to test has the form

Y11
...

Y1n1

...
Ym1
...

Ymnm


=

 v11n1 v2
11n1

...
...

vm1nm v2
m1nm


︸ ︷︷ ︸

=:X

(
θ1

θ2

)
+



ε11
...

ε1n1

...
εm1
...

εmnm


.

If we assume again that
Y ∼ N(γ, σ2In),

then we obtain in analogy to the previous considerations the following test problem:

H0 :

(
γ
σ2

)
∈ Θ0 vs. H1 :

(
γ
σ2

)
∈ Θ1 \Θ0,

where

Θ0 =
{
Xb : b ∈ R2

}
× (0,∞), Θ1 =

{
X1b : b ∈ Rm

}
× (0,∞).
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In this case, the corresponding F test is given by

ϕ(y) =

{
1, if Tn(y) ≥ c,
0, if Tn(y) < c,

where

Tn(y) =
1

m−2
‖P1y − P0y‖2

1
n−m‖y − P1y‖2

.

P1 = X1

(
XT

1 X1

)−1
XT and P0 = X

(
XTX

)−1
XT are the orthogonal projection matrices

onto the linear subspace spanned by X1 and X, respectively. It will be shown in Section 3
of this course that the statistic Tn(Y ) has an F distribution with m−1 and n−m degrees
of freedom under the null hypothesis. The probability of a type 1 error will be equal to
α ∈ (0, 1) if the critical value c is chosen equal to the (1−α)-quantile of an F distribution
with m− 1 and n−m degrees of freedom.
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2 Statistical estimation of parameters

2.1 A model for a statistical experiment

Statistical studies and experiments produce data whose analysis is the ultimate goal of the
venture. Mathematical statistics deals with situations in which the data can be thought
of as the outcome of a random experiment. In order to arrive at a suitable formulation of
a model for such experiments, we consider two simple, but nevertheless typical, examples:

Example 2.1. Suppose we are faced with a population of N elements, for example,
a shipment of N manufactured items. An unknown number θ of these elements are
defective. It might be desirable to know this number of defective items, for example,
because a too large number of defective items gives the recipient the right to reject the
shipment. Suppose that it is not possible (e.g. too expensive) to examine all of the
items. To get information about θ, a sample of n items is drawn without replacement
and inspected. The data gathered are the number of defective items found in the sample.

Example 2.2. An experimenter makes n independent measurements of the distance
required to stop a car traveling with respective speeds v1, . . . , vn. These measurements
are subject to random fluctuations which might be caused by several factors, e.g. changing
environmental conditions or even by an imprecise reading from a measurement device.
Therefore, the data can be thought of as stopping distance according to the initial velocity
plus some random errors.

We use these two simple examples to develop an abstract framework for such experiments.
Let us begin with Example 2.1. The possible outcomes of this experiments are described
by the numbers in the set Ω =

{
0, 1, . . . , n

}
. On this space we can define the random

variable X by X(ω) = ω, ω = 0, 1, . . . , n. If θ is the (unknown) number of defective
items in the shipment, then the random variable X has a hypergeometric distribution
with parameters θ, N and n, that is

P
(
X = k

)
=

(
θ
k

)(
N−θ
n−k

)(
N
n

) for k = 0, 1, . . . , n,

where (
n

k

)
=

{
n!

k! (n−k)!
if k ∈ {0, 1, . . . , n},

0 if k 6∈ {0, 1, . . . , n}.
For a given value of the parameter θ, we encounter the well known probability model: We
have a probability space

(
Ω, 2Ω, P

)
and, on this probability, space a random variable X.

(We can use without hesitation the power set 2Ω in this context.) The probability mea-
sure P is a equal to H(θ,N ;n), a hypergeometric distribution with parameters θ, N ,
and n.

At this point, however, a striking difference to typical models in probability theory
becomes apparent: Since we do not know in advance which of the possible values for the
parameter θ is the right one, we have to take into account that in principle all possible
values

{
0, 1, . . . , N

}
are candidates for being this one. This aspect will become vitally

important when we compare the performance of competing methods to estimate an un-
known parameter. It will be shown that, apart from trivial and therefore meaningless
cases, a uniformly best method does not exist. Different methods of estimation have
usually their pros and cons in respective parts of the parameter space. Hence it is impor-
tant to specify for which set of parameters a given method has some desirable property.
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In view of this, we have to replace the single distribution H(θ,N ;n) by an appropriate
family of distributions, P =

{
H(θ,N ;n) : θ ∈ {0, 1, . . . , N}

}
, any one of which could

have generated the data actually observed. The above statistical experiment can be
described by the triple

(
Ω, 2Ω,P

)
or, more completely, by the quadruple

(
X,Ω, 2Ω,P

)
.

In most cases it will not be necessary to use this cumbersome notation. To simplify
matters we can choose the basic space Ω equal to the set of the possible values of the
random variable (or random vector) which generates the data as its realization. In this
case it is also not necessary to specify the random variable in such a model. Moreover,
the σ-algebra (here 2Ω) is usually of minor interest in this context. Therefore, to simplify
notation, we would consider the family of distribution

{
H(θ,N ;n) : θ ∈ {0, 1, . . . , N}

}
as an appropriate description of our statistical experiment.

We turn now to Example 2.2 of determining the distance required for stopping a
car traveling with an initial speed v. Here, the choice of an appropriate model is less
clear than in case of the first example. First of all, we would probably choose as a set
containing all possible values of our measurements Ω = Rn or, since we know in this
case that all measurements will be non-negative, Ω = [0,∞)n. As a suitable σ-algebra
we could take the corresponding Borel σ-algebra, Bn, or a suitable trace σ-algebra. But
what about a suitable family of possible distributions? We can describe the setting by a
simple regression model:

Xi = f(vi) + εi, i = 1, 2, . . . , n, (2.1)

where f(v) describes the average stopping distance of a car traveling at speed v. We
still have to specify conditions on the vector of errors ε =

(
ε1, . . . , εn

)T . Of course, an
appropriate specification depends on how the experiment is carried out. The following
minimal assumptions are usually made:

(i) The errors εi have expectation 0.

(ii) The value of the error committed on one measurement does not affect the value of
the error at other times. That is, ε1, . . . , εn are independent.

According to our logical considerations described in Subsection 1.1 we could specify the
function f as

(iii) f(v) = vθ1 + v2θ2, where θ1 and θ2 are unknown parameters.

This leads to the linear regression model that we know already from our considerations
in the previous section:

Xi = viθ1 + v2
i θ2 + εi, i = 1, 2, . . . , n. (2.2)

And finally, we could also make a more specific assumption on the errors, for example:

(iv) ε ∼ Uniform[−σvi, σvi].

(If σ ≤ θ1, then the corresponding random variables Xi are guaranteed to be non-
negative.)

If we assume (i) to (iv), then the distribution of the random vector depends only on
the parameters θ1, θ2 and σ, that is, X = (X1, . . . , Xn)T ∼ P(θ1,θ2,σ) for some appro-
priate choice of P(θ1,θ2,σ), where θ1, θ2, σ ≥ 0. In this case the statistical experiment is
conveniently described by P =

{
P(θ1,θ2,σ) : θ1, θ2, σ ≥ 0

}
. This is a so-called parametric
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model since the family of possible distributions is parametrized by a finite-dimensional
parameter (θ1, θ2, σ)T ∈ Θ := [0,∞)3. One part of the parameter vector, (θ1, θ2)T ,
parametrizes the quantity of interest (the function f), and the other subparameter σ is a
so-called nuisance parameter. At the other end of the scale, when we assume only (i)
and (ii), both the the function f we are primarily interested in and the distribution of the
errors cannot be described by any finite-dimensional parameter. Such a model is called
nonparametric. If we assume (i), (ii), and (iii), then we obtain a somewhat mixed
situation. The function of interest f is completely described by the finite-dimensional
parameter (θ1, θ2)T but the distribution of the errors may vary more or less freely. Such
a model is said to be a semiparametric model.

How do we settle on a set of assumptions? In the first example the assumption
of a hypergeometric distribution seems to be well motivated and the parametric model
P =

{
H(θ,N ;n) : θ ∈ {0, 1, . . . , N}

}
seems to be appropriate. In the second example,

however, the decision about a model is more difficult. The choice of the assumptions
can be based on experience, physical considerations (these probably lead to (iii)), and
wishful thinking. Maybe (i), (ii), and (iii) are a good compromise between too weak and
too rigorous assumptions. The advantage of assuming (i) to (iv) is that, if they are true,
we know how to combine our measurements to estimate f in a highly efficient way. The
danger is that, if they are false, our analysis, though correct for the model written down,
may be quite irrelevant to the experiment that was actually performed.

2.2 Some methods of estimation

Once we have constructed a statistical model, we usually want to estimate the parameter
of the unknown distribution generating the data. In some cases we are not primarily
interested in the parameter itself, but in some subparameter or in some quantity related
to the parameter used for parametrizing the model. Let us assume that the model is given
by the family P =

{
Pθ : θ ∈ Θ

}
of possible distributions of X =

(
X1, . . . , Xn

)T , where Θ
is the parameter space. For instance, in the hypergeometric example (Example 2.1), we
have P =

{
H(θ,N ;n) : θ ∈ {0, 1, . . . , n}

}
and the quantity we want to estimate is

the parameter θ itself. In the stopping distance example (Example 2.2), we might be
only interested in estimating the function f which describes the relation between speed
and the distance required for stopping. If we assume (i) to (iv), then the statistical
model can be written in the form

{
Pθ : θ = (θ1, θ2, σ)T ∈ [0,∞)3

}
. Since, according to

assumption (iii), f(v) = vθ1+v2θ2, we only need to estimate q(θ) := (θ1, θ2)T . To estimate
q(θ) we select a statistic T = T (X1, . . . , Xn) and evaluate it at the outcome (x1, . . . , xn)
of the experiment. Thus, if the true value of θ is θ0, we observe X1 = x1, . . . , Xn = xn
and we approximate the unknown quantity q(θ0) by the known value T (x1, . . . , xn) of the
statistic T (X1, . . . , Xn).

At this point it seems to be appropriate to introduce a few notions that will be used
throughout this course. In classical probability, we fix a probability space

(
Ω,A, P

)
as

a starting point, where A is a σ-algebra on the non-empty set Ω and P : A → [0, 1] is
a probability measure on A. On Ω, we may define random variables X1, X2, . . ., where
Xi : Ω → Ωi is (A − Ai)-measurable, for some σ-algebra on Ωi. As already explained,
in mathematical statistics, we have to replace the single probability measure P by a
family P =

{
Pθ : θ ∈ Θ

}
of probability measures. In this course, we will exclusively

deal with real-valued or Rd-valued random variables, i.e. Ωi = R or Ωi = Rd and Ai = B
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or Ai = Bd are the respective Borel σ-algebras. In most cases we can choose Ω as a set
containing all possible values of a random variable X and it will not be necessary to make
our choice of Ω and A explicit. Our statistical analysis will be based on data x which
will be thought of a realization of this random variable. Formally, the random variable X
is a function X : Ω → Ω such that X(ω) = ω ∀ω ∈ Ω. A function T : Ω → ΩT such
that T (ω) = g(X(ω)) for some function g which is constructed for a certain purpose is
called a statistic. In other words, a statistic is a random variable which is a function of
the originally observed random variable X. As we will see later, we will require that T
is (A − AT )-measurable, where AT is a suitable σ-field in ΩT . (This is fulfilled if the
above function g is (A − AT )-measurable since the identity X : Ω → Ω is obviously
(A − A)-measurable.) A statistic T which is constructed with the aim to approximate
the parameter θ is called estimator of θ and will be denoted by θ̂. If we are merely
interested in some related quantity, q(θ), a statistics T which is constructed with the
purpose of approximating q(θ) will be denoted by q̂ or q̂(θ). A realization T (ω) of an
estimator T of θ (or q(θ)) is called estimate of θ (or q(θ)). If there is no chance of
confusion, we will identify an estimator with its value at a point. Thus θ̂ can stand for
both the statistic θ̂(X1, . . . , Xn) and the realization θ̂(x1, . . . , xn).

In what follows we introduce two popular methods of parameter estimation. We
assume that the observable random quantity X has a distribution Pθ, where θ ∈ Θ, for
some parameter space Θ. Typically the sample will consists of more than one observation,
that is X = (X1, . . . , Xn)T and n is the so-called sample size.

Method of Moments
Suppose that the parameter space Θ is a subset of Rd. Suppose further that X1, . . . , Xn

are identically distributed under Pθ, and that the first d theoretical moments

µk(θ) = Eθ
[
Xk

1 ], k = 1, . . . , d,

are finite. We define the corresponding sample moments µ̂k by

µ̂k =
1

n

n∑
i=1

Xk
i .

Then the method of moments estimator θ̂MM of θ is obtained by equating the first d
theoretical moments with the corresponding sample moments, that is θ̂MM is defined as
any parameter from Θ such that

µk
(
θ̂MM

)
= µ̂k ∀k = 1, . . . , d.

We have to admit that a method of moments estimator need neither exist nor be unique.
These properties have to checked case by case. For typical “textbook examples”, the
method of moments estimators are easy to compute. Moreover, if the sample size n is
large, these estimators are likely to be close to the true value of the parameter. If we
are not interested in θ but in a related quantity q(θ), then the corresponding method of
moments estimator is given by q̂MM = q(θ̂MM).

Examples
1) Suppose that X1, . . . , Xn ∼ Bin(1, θ), θ ∈ Θ := [0, 1]. Then µ1(θ) = Eθ[X1] = θ.

Since µ̂1 = 1
n

∑n
i=1 Xi we obtain that

θ̂MM =
1

n

n∑
i=1

Xi.
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2) Suppose that X1, . . . , Xn ∼ N(µ, σ2), θ =
(
µ
σ2

)
∈ Θ := R × (0,∞). Then the first

two theoretical moments are given by

µ1(θ) = µ,

µ2(θ) = σ2 + µ2

while the corresponding sample moments are

µ̂1 =
1

n

n∑
i=1

Xi,

µ̂2 =
1

n

n∑
i=1

X2
i .

Since the method of moments estimator θ̂MM =
(
µ̂MM

σ̂2
MM

)
has to satisfy µi(θ̂MM) = µ̂i

for i = 1, 2 we obtain that

µ̂MM = X̄n :=
1

n

n∑
i=1

Xi,

σ̂2
MM =

1

n

n∑
i=1

X2
i −

(
X̄n

)2
= . . . =

1

n

n∑
i=1

(
Xi − X̄n

)2
.

Maximum likelihood method
The maximum likelihood method has a long history. It seems that it was first proposed by
Carl Friedrich Gauß in 1821, and rediscovered and popularized by the British statistician
Sir Ronald A. Fisher in about 1921.

Suppose that realizations x1, . . . , xn of random variables X1, . . . , Xn are observed. To
simplify notation, we set X =

(
X1, . . . , Xn

)T and x = (x1, . . . , xn)T and we assume
that X ∼ Pθ, for some θ ∈ Θ. We consider first the special case that the random
variable X takes its values in a finite or countably infinite set ΩX , that is X has a
discrete distribution Pθ. To obtain an estimate of the parameter θ we consider for all
θ ∈ Θ the respective probabilities of the event X = x and choose the most plausible
among these parameters. Hence, the so-called maximum likelihood estimate θ̂ML(x)
is given as a solution to

Pθ̂ML(x)

(
X = x

)
= sup

θ∈Θ
Pθ
(
X = x

)
,

that is, θ̂ML(x) is chosen as such a value of the parameter θ which maximizes the prob-
ability that the event X = x occurs. We denote by θ̂ML = θ̂ML(X) the corresponding
maximum likelihood estimator. (As for a methods of moments estimator, existence
and uniqueness of such an estimator is not guaranteed in general. However, for typical
“textbook examples” a unique solution to the above optimization problem exists.)

The method of maximum likelihood can also be used in the case of continuous dis-
tributions Pθ which have densities pθ w.r.t. some measure µ. For the definition of a
maximum likelihood estimator, the probabilities Pθ(X = x) have to be replaced by the
values pθ(x) of the densities at the point x. From now on we assume that either:

(i) All of the Pθ are continuous with densities pθ w.r.t. one and the same σ-finite
dominating measure µ;
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(ii) All of the Pθ are discrete, and there exists a set
{
x1, . . . , xN

}
or
{
x1, x2, . . .

}
which

is independent of θ such that
∑

i Pθ(X = xi) = 1 for all θ ∈ Θ.

(Note that the discrete case can also be cast in the form (i); then the counting measure
plays the role of the dominating measure µ.) To unify our notation, we define a so-called
likelihood function L by

L
(
θ;x
)

=

{
pθ(x) in case (i),
Pθ(X = x) in case (ii).

The maximum likelihood estimate θ̂ML(x) of θ is defined by

L
(
θ̂ML(x);x

)
= sup

{
L(θ;x) : θ ∈ Θ

}
.

If the parameter space Θ contains finitely many points, then a maximum likelihood
estimate can always be obtained by comparing finitely many values L(θ;x), θ ∈ Θ. If
L(θ;x) is differentiable on the interior Θ◦ of Θ, then possible candidates for maximum
likelihood estimates are the values θ ∈ Θ◦ satisfying

∂

∂θi
L
(
θ;x
)

= 0 i = 1, . . . , d.

Note that θ’s satisfying these so-called likelihood equations may be local or global
minima, local or global maxima, or simply stationary points. Also, extrema may occur
at the boundary of Θ or when ‖θ‖ → ∞. Hence, it is important to analyze the entire
likelihood function to find its maxima.

Examples

1) (Normal distribution with known variance)
Suppose that X1, . . . , Xn are independent, Xi ∼ N(θ, σ2), where σ2 > 0 is assumed
to be known and θ ∈ Θ := R. Then X = (X1, . . . , Xn)T has a multivariate normal
distribution with a density pθ w.r.t. n-dimensional Lebesgue measure λn given by

pθ(x) =
n∏
i=1

1√
2πσ2

e−
(xi−θ)

2

2σ2 .

In this case, the maximum likelihood estimate θ̂ML(x) of θ can be easily obtained
by inspection. Indeed, since

L
(
θ;x
)

= pθ(x) =
1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(
(xi − x̄n)2 + (x̄n − θ)2

)}
,

x̄n = (1/n)
∑n

i=1 xi, we obtain that θ̂ML(x) = x̄n. The corresponding maximum
likelihood estimator is given by θ̂ML = θ̂ML(X) = X̄n.

2) (Normal distribution with unknown mean and variance)
Suppose that X1, . . . , Xn are independent, Xi ∼ N(µ, σ2), where this time both the
location parameter µ ∈ R and the variance σ2 > 0 are unknown. Now θ =

(
µ
σ2

)
is the

parameter of interest, θ ∈ Θ := R× (0,∞). The density pθ of X = (X1, . . . , Xn)T

w.r.t. λn is given by

pθ(x) =
1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(
(xi − µ)2

)}
.
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The likelihood function can be written in the following form:

L
(
θ;x
)

= pθ(x) =
1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(
(xi − x̄n)2 + (x̄n − µ)2

)}
=

1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(
xi − x̄n

)2
}

exp
{
− 1

2σ2

n∑
i=1

(
x̄n − µ

)2
}
. (2.3)

The first component µ of the parameter θ appears on the right-hand side of (2.1)
only in the third factor. Thus, irrespectively of the choice of σ2, the value µ̂ML

which maximizes the likelihood function is given by

µ̂ML = x̄n.

To find the maximum likelihood estimate σ̂2
ML of the second component of θ, we

have to identify the maximizer of the function σ2 7→ L
((
µ̂ML

σ2

)
;x
)
. Let

g
(
σ2
)

:= lnL

((
µ̂ML

σ2

)
;x

)
= −n

2
ln(2π) − n

2
ln
(
σ2
)
− 1

2σ2

n∑
i=1

(
xi − x̄n

)2
.

The function g : (0,∞)→ R is infinitely often differentiable and we obtain that

d

dσ2
g
(
σ2
)

= −n
2

1

σ2
+

1

2σ4

n∑
i=1

(
xi − x̄n

)2
.

To find a candidate for a maximizer of g, we seek zeroes of d
dσ2 g. It is easy to see

that d
dσ2 g

(
σ2
)

= 0 if and only if σ2 = 1
n

∑n
i=1

(
xi − x̄n

)2. Since

d2

d(σ2)2
g
(
σ2
)

=
n

2

1

σ4
− 1

σ6

n∑
i=1

(
xi − x̄n

)2

=
n

2σ6

(
σ2 − 1

n

n∑
i=1

(
xi − x̄n

)2

)
︸ ︷︷ ︸

= 0 if σ2= 1
n

∑
i(xi−x̄n)2

− 1

2σ6

n∑
i=1

(
xi − x̄n

)2

︸ ︷︷ ︸
< 0

< 0

if
∑

i(xi− x̄n)2 > 0, we see that g attains its global maximum at σ2 = 1
n

∑
i(xi−

x̄n)2. Hence the maximum likelihood estimate of σ2 is given by

σ̂2
ML =

1

n

n∑
i=1

(
xi − x̄n

)2
.

The value of the maximum likelihood estimator θ̂ (i.e. the maximum likelihood
estimate) for a realization x = (x1, . . . , xn)T of the random variable X =(
X1, . . . , Xn

)T is therefore

θ̂ML(x) =

(
x̄n

1
n

∑n
i=1

(
xi − x̄n

)2

)
.



28

The maximum likelihood estimator of θ (a random variable!) is then

θ̂ML(X) =

(
X̄n

1
n

∑n
i=1

(
Xi − X̄n

)2

)
.

The maximum likelihood method is based on the maximization of the value pθ(x) of
the densities of the observed random variable X w.r.t. a dominating measure µ. The
following lemma states the choice of this measure µ does not influence the result of this
method.

Lemma 2.1. The maximum likelihood estimator θ̂ML does not depend on the choice of
the dominating measure.

Proof. Let µ1 and µ2 be σ-finite dominating measures for the family
{
Pθ : θ ∈ Θ

}
and

let pθ,1 and pθ,2 be the respective densities of Pθ. Then

Pθ � µi � µ1 + µ2 ∀θ ∈ Θ, i = 1, 2.

(µ� ν for two measures µ and ν means that µ is absolutely continuous w.r.t. ν.)
Then Pθ has a density pθ,12 w.r.t. µ1 + µ2 and we obtain that

pθ,12(x) =
dPθ

d(µ1 + µ2)
(x) =

dPθ
dµi

(x)︸ ︷︷ ︸
=pθ,i(x)

dµi
d(µ1 + µ2)

(x) i = 1, 2,

which implies that

pθ,1(x)
dµ1

d(µ1 + µ2)
(x) = pθ,2(x)

dµ2

d(µ1 + µ2)
(x) (µ1 + µ2)− almost everywhere.

But this means in other words that, with probability 1, the maximization of pθ,1(x) is
equivalent to that of pθ,2(x).

2.3 Consistency of estimators

The method of moments and the maximum likelihood method are general approaches to
obtaining “reasonable” estimators. They seem to be intuitive but they are not constructed
with the ambitious goal to obtain an “optimal” procedure. On the other hand, if there is
a great deal of data, the sample size is “large,” then we should expect that an estimator θ̂
of a parameter is with high probability close to its target θ. This is some sort of minimal
property for a method of estimation and we can formulate this in a rigorous manner
by asymptotic considerations. Thus we consider, for a general method of estimation,
sequences of estimators

(
θ̂n
)
n∈N where θ̂n = θ̂n(X1, . . . , Xn) and we show that this

sequence converges to θ as the sample size n tends to infinity. In line with this, we
can no longer stick to a fixed statistical experiment but rather we have to consider
appropriate sequences of statistical experiments. We think, however, that such a rigorous
formalization is not necessary in this subsection and, in order not to overburden ourselves
with a too cumbersome formalism, we formulate our results in a more loose way. The
following definition of concepts of consistency is based on the commonly used modes of
convergence in probability theory.
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Definition 2.1. Let (Xi)i∈N be a sequence of random variables, where Xi ∼ PXi
θ , for

some θ ∈ Θ, Θ ⊆ Rd.

(i) A sequence of estimators q̂n = q̂n(X1, . . . , Xn) of an Rd-valued parameter q(θ) is
said to be consistent (weakly consistent) for q(θ) if

q̂n
Pθ−→ q(θ) ∀θ ∈ Θ,

that is, for all ε > 0,
Pθ

(∥∥q̂n − q(θ)∥∥ > ε
)
−→
n→∞

0.

(ii) q̂n is called strongly consistent for q(θ) if

q̂n
Pθ−a.s.−→ q(θ) ∀θ ∈ Θ.

Although consistency is a concept relating to a sequence of estimators
(
q̂n
)
n∈N, we often

say “consistency of q̂n” for simplicity.

Example 2.3. Suppose that (Xi)i∈N is a sequence of independent and identically dis-
tributed random variables, where Xi ∼ N(µ, σ2), θ =

(
µ
σ2

)
∈ Θ := R× (0,∞). Then, for

θ̂n being both the method of moments and the maximum likelihood estimator,

θ̂n
Pθ−a.s.−→ θ ∀θ ∈ Θ.

Indeed, it follows from the strong law of large numbers that µ̂n = 1
n

∑n
i=1Xi

Pθ−a.s.−→
EθX1 = µ holds for all θ ∈ Θ. Likewise, we have that 1

n

∑n
i=1X

2
i

Pθ−a.s.−→ EθX
2
1 which

implies that

σ̂2
n =

1

n

n∑
i=1

(
Xi − X̄n

)2
=

1

n

n∑
i=1

X2
i − X̄2

n

Pθ−a.s.−→ Eθ
[
X2

1

]
−
(
EθX1

)2
= σ2.

Moreover, since almost sure convergence implies convergence in probability, we also obtain

θ̂n
Pθ−→ θ ∀θ ∈ Θ.

Hence, θ̂n is both weakly and strongly consistent.

The above result for the special case of normally distributed random variables can
be generalized. In what follows we provide sufficient conditions for the consistency of
method of moments and maximum likelihood estimators.

Theorem 2.2. Let (Xi)i∈N be a sequence of i.i.d. random variables, where Xi ∼ PX1
θ ,

θ ∈ Θ ⊆ Rd. Furthermore, we assume that Eθ
[
|X1|d

]
< ∞ ∀θ ∈ Θ, which en-

sures that µk(θ) := Eθ
[
Xk

1

]
(k = 1, . . . , d) are well-defined and finite. We assume

that the mapping θ 7→
(
µ1(θ), . . . , µd(θ)

)T is one-to-one, that the inverse mapping
g :

(
µ1(θ), . . . , µd(θ)

)T 7→ θ is continuous, and that
{(
µ1(θ), . . . , µd(θ)

)T
: θ ∈ Θ

}
is

an open subset of Rd.
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Then the system of equations

µk(θ) =
1

n

n∑
i=1

Xk
i , k = 1, . . . , d (2.4)

has with probability tending to one a solution θ̂MM,n (otherweise we define θ̂MM,n arbi-
trarily) and

θ̂MM,n

Pθ0−a.s.−→ θ0 ∀θ0 ∈ Θ.

(θ0 plays the role of the true parameter.)

Proof. Let θ0 ∈ Θ be arbitrary. It follows from Eθ0
[
|X1|d

]
< ∞ that Eθ0

[
|X1|k

]
< ∞

holds for all k ≤ d. Therefore, we obtain from the strong law of large numbers that
1
n

∑n
i=1Xi
...

1
n

∑n
i=1X

d
i

 Pθ0−a.s.−→

 µ1(θ0)
...

µd(θ0)

 . (2.5)

Since
(
µ1(θ0), . . . , µd(θ0)

)T is an inner point of the setM =
{(
µ1(θ), . . . , µd(θ)

)T
: θ ∈ Θ

}
we see that

Pθ0
(
(2.4) has a solution

)
= Pθ0




1
n

∑n
i=1Xi
...

1
n

∑n
i=1X

d
i

 ∈ M
 −→

n→∞
1.

Since the mapping g is continuous we conclude from (2.5) that

θ̂MM,n = g




1
n

∑n
i=1 Xi
...

1
n

∑n
i=1X

d
i


 Pθ0−a.s.−→ g


 µ1(θ0)

...
µd(θ0)


 = θ0.

In the previous proof we made use of the explicit representation

θ̂MM,n = g




1
n

∑n
i=1Xi
...

1
n

∑n
i=1X

d
i




of the method of moments estimator which led to a short proof of the property of con-
sistency. Likewise, the maximum likelihood estimators based on normally distributed
random variables considered in the previous Subsection 2.2 also have an explicit repre-
sentation. In other cases, however, no closed-form solutions to the maximization problem
are known or available, and maximum likelihood estimates can only be found via numer-
ical optimization. Having primarily such cases in mind, we establish a consistency result
without making use of a closed-form representation of maximum likelihood estimates. To
describe the basic idea of our approach in a transparent way, we consider first a simple
special case.
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Lemma 2.3. Let (Xi)i∈N be a sequence of i.i.d. random variables, where Xi ∼ PX1
θ , for

some θ ∈ Θ :=
{
θ1, . . . , θK

}
. Furthermore, suppose that PX1

θj
6= PX1

θk
if j 6= k. Then, for

θ̂ML,n = θ̂ML,n(X1, . . . , Xn),

Pθ0
(
θ̂ML,n 6= θ0

)
−→
n→∞

0 ∀θ0 ∈ Θ.

Proof. Let pθ =
dP

X1
θ

dµ
be the density w.r.t. a σ-finite dominating measure µ. (For example,

µ = PX1
θ1

+ · · ·+ PX1
θK

is a possible choice.) Recall that θ̂ML,n maximizes

L
(
θ;X1, . . . , Xn

)
=

n∏
i=1

pθ
(
Xi

)
.

Let θ0 ∈
{
θ1, . . . , θK

}
be arbitrary. We define

Λn(θ;x1, . . . , xn) :=


√∏n

i=1 pθ(xi)
/∏n

i=1 pθ0(xi) if
∏n

i=1 pθ0(xi) > 0,

1 if
∏n

i=1 pθ0(xi) = 0.

We have that Λn

(
θ̂ML,n;X1, . . . , Xn

)
≥ Λn

(
θ0;X1, . . . , Xn

)
= 1 which implies that

Pθ0

(
θ̂ML,n = θ

)
≤ Pθ0

(
Λn(θ;X1, . . . , Xn) ≥ 1

)
≤ Eθ0

[
Λn(θ;X1, . . . , Xn)

]
∀θ ∈ Θ.

We show below that

Eθ0
[
Λn(θ;X1, . . . , Xn)

]
−→
n→∞

0 ∀θ 6= θ0. (2.6)

It follows that

Pθ0

(
θ̂ML,n 6= θ0

)
=

∑
i : θi 6=θ0

Pθ0

(
θ̂ML,n = θi

)
≤

∑
i : θi 6=θ0

Eθ0
[
Λn(θi;X1, . . . , Xn)

]
−→
n→∞

0,

which completes the proof.
It remains to prove (2.6). Let θ 6= θ0. Since X1, . . . , Xn are independent we obtain

that

Eθ0
[
Λn(θ;X1, . . . , Xn)

]
=

∫
Λn(θ;x1, . . . , xn)

n∏
i=1

pθ0(xi) dµ
(n)(x1, . . . , xn)

=
(∫ √

pθ(x)
√
pθ0(x) dµ(x)

)n
.

Since PX1
θ 6= PX1

θ0
we have that∫ (√

pθ(x)−
√
pθ0(x)

)2
dµ(x) > 0,

which implies

ρ
(
θ, θ0

)
:=

∫ √
pθ(x)

√
pθ0(x) dµ(x)

=
1

2

{∫
pθ(x) dµ(x)︸ ︷︷ ︸

= 1

+

∫
pθ0(x) dµ(x)︸ ︷︷ ︸

= 1

−
∫ (√

pθ(x)−
√
pθ0(x)

)2
dµ(x)

}
< 1.
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Therefore, for θ 6= θ0,

Eθ0
[
Λn(θ;X1, . . . , Xn)

]
= ρ(θ, θ0)n −→

n→∞
0,

i.e. (2.6) is fulfilled.

Some of the quantities that appeared in the previous proof characterize the closeness of
two probability distributions. Here is a formal definition of these notions:

Definition 2.2. Let P1 and P2 be probability distributions on a measurable space
(
Ω,A

)
which are absolutely continuous w.r.t. a σ-finite measure µ. Denote by pi := dPi/dµ the
respective densities (i = 1, 2). Then

H
(
P1, P2

)
:=

√
1

2

∫
Ω

(√
p1 −

√
p2

)2
dµ

is the Hellinger distance between P1 and P2.

ρ
(
P1, P2

)
:=

∫
Ω

√
p1
√
p2 dµ

is called Hellinger affinity between P1 and P2.

Remark 2.1. H
(
P1, P2

)
and ρ

(
P1, P2

)
do not depend on the choice of the dominating

measure µ and it holds that

ρ
(
P1, P2

)
= 1 − H2

(
P1, P2

)
.

The following theorem generalizes the result of Lemma 2.3 and states weak consistency
of maximum likelihood estimators.

Theorem 2.4. Let (Xi)i∈N be a sequence of i.i.d. random variables, Xi ∼ PX1
θ , where

θ ∈ Θ and Θ being a compact subset of Rd. Suppose that the distributions PX1
θ have

respective densities pθ w.r.t. a σ-finite measure µ, and that θ 7→ pθ(x) is a continuous
mapping for all x.

Then the maximum likelihood estimator θ̂ML,n = θ̂ML,n(X1, . . . , Xn) exists, that is, the
likelihood function attains its supremum.

If additionally

(i) PX1
θ 6= PX1

θ′ if θ 6= θ′,

(ii) ωθ(δ) :=
∫

supθ̄ : θ̄∈Θ,‖θ̄−θ‖<δ
(√

pθ̄(x) −
√
pθ(x)

)2
dµ(x) < ∞,

for some δ = δ(θ) > 0,

then
(
θ̂ML,n

)
n∈N is weakly consistent, i.e.

θ̂ML,n

Pθ0−→ θ0 ∀θ0 ∈ Θ.
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Proof. The existence of a maximizer θ̂ML,n of the likelihood function follows from conti-
nuity of θ 7→ pθ(x) and compactness of Θ.

Let θ0 ∈ Θ be arbitrary. We have to show that

Pθ0

(∥∥θ̂ML,n − θ0

∥∥ ≥ ε
)
−→
n→∞

0 ∀ε > 0. (2.7)

As in the proof of Lemma 2.3, we define

Λn(θ;x1, . . . , xn) :=


√∏n

i=1 pθ(xi)
/∏n

i=1 pθ0(xi) if
∏n

i=1 pθ0(xi) > 0,

1 if
∏n

i=1 pθ0(xi) = 0.

Let ε > 0 be arbitrary. We show that

sup
θ∈Θ: ‖θ−θ0‖≥ε

Λn(θ;X1, . . . , Xn)
Pθ0−→ 0. (2.8)

Since Λn

(
θ̂ML,n;X1, . . . , Xn

)
≥ Λn

(
θ0;X1, . . . , Xn

)
= 1, (2.8) implies that

Pθ0

(∥∥θ̂ML,n − θ0

∥∥ ≥ ε
)
≤ Pθ0

(
sup

θ∈Θ: ‖θ−θ0‖≥ε
Λn(θ;X1, . . . , Xn) ≥ 1

)
−→
n→∞

0,

i.e. (2.7) and, therefore, the statement of the theorem is proved.
It remains to show (2.8). Let Θε := Θ ∩

{
θ : ‖θ − θ0‖ ≥ ε

}
. In or-

der to show (2.8) we cover Θε by a suitable set of open balls Uδ1(θ1), . . . ,UδN (θN)
(Uδk(θk) =

{
θ ∈ Rd : ‖θ − θk‖ < δk

}
) such that

sup
θ∈Uδk (θk)∩Θ

Λn(θ;X1, . . . , Xn)
Pθ0−→ 0, k = 1, . . . , N. (2.9)

Since

sup
θ∈Θε

Λn(θ;X1, . . . , Xn) ≤
N∑
k=1

sup
θ∈Uδk (θk)∩Θ

Λn(θ;X1, . . . , Xn)

we see that (2.8) follows from (2.9). We still have to prove that there exist open balls
Uδ1(θ1), . . . ,UδN (θN) covering Θε such that (2.9) is satisfied.

Construction of the balls Uδ(θ)
Let θ ∈ Θε be arbitrary. Then

Uδ(θ) :=
{
θ′ ∈ Rd : ‖θ′ − θ‖ < δ

}
is an open subset in Rd. Let Ūδ(θ) = Uδ(θ) ∩Θ. Then, with probability 1,

sup
θ′∈Ūδ(θ)

Λn(θ′;X1, . . . , Xn) = sup
θ′∈Ūδ(θ)

n∏
i=1

√
pθ′(Xi)/

√
pθ0(Xi)

≤
n∏
i=1

p
−1/2
θ0

(Xi)
{
p

1/2
θ (Xi) + sup

θ′∈Ūδ(θ)

∣∣√pθ′(Xi)−
√
pθ(Xi)

∣∣}.
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Since X1, . . . , Xn are independent we obtain that

Eθ0

[
sup

θ′∈Ūδ(θ)
Λn(θ′;X1, . . . , Xn)

]
≤

(∫ √
pθ(x)

√
pθ0(x) dµ(x) +

∫
sup

θ′∈Ūδ(θ)
|
√
pθ′(x)−

√
pθ(x)|

√
pθ0(x) dµ(x)

)n

.

We have that∫ √
pθ(x)

√
pθ0(x) dµ(x) = 1 − 1

2

∫ (√
pθ(x)−

√
pθ0(x)

)2
dµ(x)︸ ︷︷ ︸

> 0 since P
X1
θ 6=PX1

θ0

=: Kθ,θ0 < 1.

Furthermore, we obtain by the Cauchy-Schwarz inequality∫
sup

θ′∈Ūδ(θ)

∣∣√pθ′(x)−
√
pθ(x)

∣∣√pθ0(x) dµ(x)

≤

√√√√√√
∫

sup
θ′∈Ūδ(θ)

(√
pθ′(x)−

√
pθ(x)

)2
dµ(x)︸ ︷︷ ︸

ωδ(θ)→δ→00 by dominated convergence

√√√√√
∫
pθ0(x) dµ(x)︸ ︷︷ ︸

= 1

.

For sufficiently small δ = δ(θ) > 0 we obtain∫ √
pθ(x)

√
pθ0(x) dµ(x)︸ ︷︷ ︸

< 1

+

∫
sup

θ′∈Ūδ(θ)(θ)
|
√
pθ′(x)−

√
pθ(x)|

√
pθ0(x) dµ(x)︸ ︷︷ ︸

→ 0 as δ→0

< 1

and, therefore,

Eθ0
[

sup
θ′∈Ūδ(θ)(θ)

Λn(θ;X1, . . . , Xn)
]

(2.10)

≤

(∫ √
pθ(x)

√
pθ0(x) dµ(x) +

∫
sup

θ′∈Ūδ(θ)(θ)
|
√
pθ′(x)−

√
pθ(x)|

√
pθ0(x) dµ(x)

)n

−→
n→∞

0.

(2.10) implies that the neighborhood Ūδ(θ)(θ) about θ is small enough such that

sup
θ∈Ūδ(θ)(θ)

Λn(θ;X1, . . . , Xn)
Pθ0−→ 0

is satisfied.
The rest of the proof consists of a compactness argument. The open balls(

Uδ(θ)(θ)
)
θ∈Θε

cover Θε. Since Θ is compact and
{
θ ∈ Rd : ‖θ − θ0‖ ≥ ε

}
is a closed

subset of Rd, Θε = Θ ∩
{
θ : ‖θ − θ0‖ ≥ ε

}
is also a compact subset of Rd. Therefore, we

can choose a finite subcover of Θε:

Uδ1(θ1), . . . ,UδN (θN),

where δi = δ(θi). Since Θε ⊆ Θ, Ūδ1(θ1), . . . , ŪδN (θN) cover Θε and are chosen such that
(2.9) is fulfilled. This completes the proof.
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At the end of this subsection we consider an example where we do not obtain a
simple closed-form expression for the maximum likelihood estimator. Suppose that
X1, . . . , Xn are i.i.d. random variables having a Lebesgue density fθ, where fθ(x) =
θg1(x) + (1 − θ)g2(x) and g1 and g2 are two known Lebesgue densities such that
λ
(
{x : g1(x) = g2(x)}

)
= 0. The parameter θ ∈ [0, 1] is unknown and should be es-

timated by the maximum likelihood method. The following calculations show that the
maximum likelihood estimator θ̂ML of θ exists and is unique but a closed-form represen-
tation is not available.

We consider the log-likelihood function,

lnL
(
θ;X1, . . . , Xn

)
=

n∑
i=1

ln
(
θg1(Xi) + (1− θ)g2(Xi)

)
and prove that this function has a unique minimizer. To this end, we also consider the
derivative of the log-likelihood function,

s(θ) :=
d

dθ
lnL

(
θ;X1, . . . , Xn

)
=

n∑
i=1

g1(Xi)− g2(Xi)

θg1(Xi) + (1− θ)g2(Xi)
,

and its second derivative,

s′(θ) :=
d2

dθ2
lnL

(
θ;X1, . . . , Xn

)
= −

n∑
i=1

(
g1(Xi)− g2(Xi)

)2(
θg1(Xi) + (1− θ)g2(Xi)

)2 .

It turns out that s′(θ) < 0 holds for all θ ∈ (0, 1) with probability 1, that is, s is strictly
monotonically decreasing and has at most one zero. If s(θ0) = 0 for some θ0 ∈ (0, 1), then
θ̂ML = θ0. The necessary and sufficient condition that this happens is that limθ→0 s(θ) > 0
and limθ→1 s(θ) < 0. If limθ→0 s(θ) ≤ 0, then the log-likelihood function is decreasing and
θ̂ML = 0. And finally, if limθ→1 s(θ) ≥ 0, then the log-likelihood function is increasing
and θ̂ML = 1.
Although a closed-form representation of θ̂ML seems to be out of reach, Theorem 2.4
yields that θ̂ML is consistent.
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2.4 Comparison of estimators – optimality theory

In the previous section we considered two widely applicable approaches to estimating
an unknown parameter, the method of moments and the maximum likelihood method.
Both methods seem to be motivated on a heuristic level but they are not devised with
the primary aim of producing estimators that are in some well-defined sense optimal. In
this subsection, we introduce criteria for evaluating and comparing the performance of
estimators and discuss how we can find estimators that are optimal w.r.t. these measures.

Let us suppose that we observe realizations x1, . . . , xn of random variables X1, . . . , Xn,
where the distribution of X =

(
X1, . . . , Xn

)T depends on some unknown parameter
θ0 ∈ Θ, i.e. X ∼ Pθ0 . Suppose further that we are interested in a real-valued quan-
tity q(θ0) and that T = T (X) is an estimator of q(θ0). A possible measure of error is
given by the absolute value of the deviation of T (X) from its target,

∣∣T (X) − q(θ0)
∣∣.

However, such a measure is unsatisfactory for two reasons:

(i) It depends on the unknown true value θ0 of the parameter.

(ii) It is random and therefore cannot be computed even as a function of θ0 before the
experiment is carried out.

A way out of the second difficulty is to consider average measures of error, for example
themean absolute error Eθ

∣∣T (X)−q(θ)
∣∣ or themean squared error (MSE) R(T, θ),

given by
R
(
T, θ
)

= Eθ
[
(T (X)− q(θ))2

]
.

The mean squared error is usually easier to compute than the mean average error and
is therefore the preferred criterion for theoretical investigations. The MSE is determined
by the mean and variance of T ,

R
(
T, θ
)

= var
(
T (X)

)
+ b2(T, θ),

where b(T, θ) = Eθ[T (X)]− q(θ) is the bias of T as an estimator of q(θ).
In order to highlight typical difficulties with the choice among different estimators

we consider one of our toy examples. Suppose that we observe realizations of indepen-
dent random variables X1, . . . , Xn, where Xi ∼ Bin(1, θ), and that we are interested in
estimating the parameter θ. Without additional information about the true value of θ,
the natural choice for the parameter space is Θ = [0, 1]. As shown in Subsection 2.2,
T1(X) = X̄n is the method of moments estimator of θ. It is at the same time the
maximum likelihood estimator; see Exercise 8, Problem sheet 3. We have

EθT1 = θ ∀θ ∈ Θ,

that is, T1 is an unbiased estimator of θ. Moreover, its mean squared error is given by

R
(
T1, θ

)
= varθ

(
T1

)
=

θ(1− θ)
n

∀θ ∈ Θ.

On the other hand, if one conjectures that the true parameter does not exceed some
θ̄ ∈ (0, 1), then a natural candidate for an estimator of θ is given by

T2(X) :=

{
X̄n, if X̄n ≤ θ̄,
θ̄, if X̄n > θ̄.
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It is easy to see that

Pθ

(∣∣T2 − θ
∣∣ ≤ ∣∣T1 − θ

∣∣) = 1 ∀θ ≤ θ̄

and
Pθ

(∣∣T2 − θ
∣∣ < ∣∣T1 − θ

∣∣) > 0 ∀θ ∈ (0, θ̄].

This implies
R
(
T2, θ

)
≤ R

(
T1, θ

)
∀θ ∈ [0, θ̄] (2.11a)

and
R
(
T2, θ

)
< R

(
T1, θ

)
∀θ ∈ (0, θ̄]. (2.11b)

On the other hand, if θ = 1, then P1

(
T1 = 1

)
= P1

(
T2 = θ̄

)
= 1, which implies

R
(
T2, 1

)
> R

(
T1, 1

)
. (2.12)

(2.11b) and (2.12) show the typical picture that one estimator is better than the other in
one part of the parameter space whereas the other one is the winner in another part of
the space. Comparing the MSE’s of T1 and T2 means comparing two functions of θ and
there is no obvious way to decide which of the two estimators should be used.

On the other hand, if we know for some reason that θ ≤ θ̄, then the space of potentially
true parameters is Θ̄ = [0, θ̄] but no longer Θ. On this reduced parameter space, it
follows from (2.11a) and (2.11b) that the estimator T2 is clearly preferable to T1. These
considerations lead to the following definition.

Definition 2.3. Suppose that realizations of X1, . . . , Xn are observed, X =(
X1, . . . , Xn

)T ∼ Pθ, where θ ∈ Θ.

(i) An estimator T1 for q(θ) is better than T2 if

R
(
T1, θ

)
≤ R(T2, θ

)
∀θ ∈ Θ

and
R
(
T1, θ

)
< R(T2, θ

)
for some θ ∈ Θ.

(ii) An estimator T for q(θ) is admissible if there does not exist a better estimator.
Otherwise, T is inadmissible.

According to this definition, estimator T1 = X̄n in the binomial example above is
inadmissible for q(θ) = θ if the corresponding parameter space is equal to Θ̄ = [0, θ̄]. If
the parameter space is chosen to be [0, 1], then neither one of these estimators is better
than the other. This does not necessarily mean that these estimators are admissible. It
can still be the case that one of them or both can be improved by a third estimator. A
possible approach to proving admissibility for a given estimator will be presented below.

A logical consequence of these considerations is the question whether there exists an
estimator which improves all others. The answer will be no, except in trivial cases. To
see why there does not exist a uniformly best estimator, consider once more the binomial
example. Fix any parameter θ ∈ Θ and consider the estimator T such that T (x) = θ for
all possible realizations x of X. Then

R
(
T, θ
)

= 0.
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Suppose now that T ∗ = T ∗(X1, . . . , Xn) is a uniformly best estimator. We choose θ1, θ2 ∈
(0, 1), θ1 6= θ2. Then

0 = R
(
T ∗, θ1

)
+ R

(
T ∗, θ2

)
=

∑
x∈{0,1}n

(
T ∗(x)− θ1

)2
θ
∑n
i=1 xi

1 (1− θ1)n−
∑n
i=1 xi

+
∑

x∈{0,1}n

(
T ∗(x)− θ2

)2
θ
∑n
i=1 xi

2 (1− θ2)n−
∑n
i=1 xi

≥
∑

x∈{0,1}n

{(
T ∗(x)− θ1

)2
+
(
T ∗(x)− θ2

)2
}

︸ ︷︷ ︸
>0

×min
{
θ
∑n
i=1 xi

1 (1− θ1)n−
∑n
i=1 xi , θ

∑n
i=1 xi

2 (1− θ2)n−
∑n
i=1 xi

}︸ ︷︷ ︸
>0

.

Since all terms of the sum on the right-hand side of this equation are strictly positive
we obtain a contradiction. This shows that a uniformly best estimator does not exist.
Taking a look at this short proof reveals that such an ideal estimator will also not exist
in other estimation problems, except trivial ones. Whenever two competing distributions
Pθ1 and Pθ2 do not have a disjoint support (This is expressed in our example above by∑

x∈{0,1}n min
{
θ
∑n
i=1 xi

1 (1−θ1)n−
∑n
i=1 xi , θ

∑n
i=1 xi

2 (1−θ2)n−
∑n
i=1 xi

}
> 0.), then we could use

the above pattern of proof to show the non-existence of a uniformly best estimator.
A way out is to consider a class of procedures which does not contain foolish estima-

tors, such as T (X) ≡ θ above, and to look for an estimator that improves all others in
this class. A typical choice for such a class is given by that of unbiased estimators. In our
binomial example above, this requires that such an estimator T = T (X) has to satisfy

Eθ
[
T (X)

]
=

∑
x∈{0,1}n

T (x)θ
∑n
i=1 xi(1− θ)n−

∑n
i=1 xi = θ ∀θ ∈ [0, 1].

Using advanced tools we show in Subsection 2.5 that the estimator X̄n is the (uniformly)
best unbiased estimator of θ. For the related case that we observe a realization of
only one random variable X ∼ Bin(n, θ), there is a quick proof that the natural estimator
T (X) = X/n is the best unbiased estimator for θ. Indeed, let S = S(X) be any arbitrary
unbiased estimator. Then

n∑
k=0

[k
n
− S(k)

](n
k

)
θk(1− θ)n−k = 0 ∀θ ∈ [0, 1],

which implies

(1− θ)n
n∑
k=0

[k
n
− S(k)

](n
k

)(
θ

1− θ

)k
= 0 ∀θ ∈ [0, 1).

This is equivalent to
n∑
k=0

[k
n
− S(k)

](n
k

)
ρk = 0 ∀ρ ∈ [0,∞),

which implies that S(k) = k/n for all k = 0, . . . , n. Therefore, X̄n is the unique unbiased
estimator for θ.



39

Sometimes an additional restriction is imposed on the class of estimators. In the case
of linear regression models, we directed our focus on estimators for the parameter θ which
are both unbiased and linear in the observations. Under these restrictions, we were able
to identify an estimator which deserved the qualification “uniformly best” (best linear
unbiased estimator).

While the restriction to unbiased estimators sometimes paves the way finding an
optimal procedure, this approach has also its drawbacks:

(a) Unbiased estimators may not exist; see e.g. Problem sheet 4.

(b) Even when best unbiased estimators exist, they may be inadmissible.

(c) The property of unbiasedness is not invariant under functional transformations;
that is, θ̂ can be unbiased for θ, but q(θ̂) biased for q(θ).

There are ways other than unbiasedness out of the “no best procedure” dilemma. One pop-
ular possibility is to reduce the difficult comparison between the functions θ 7→ R

(
S, θ
)

and θ 7→ R
(
T, θ
)
to one between numbers based on these functions.

(i) We can use a probability measure π and average over θ. That is, if θ is real, we
measure the performance of and estimator T for θ by∫

Θ

R
(
T, θ
)
dπ(θ).

This approach enables us to compute a best procedure. It corresponds to putting a
prior probability measure π on θ. The practical calculation and properties of such
Bayes procedures are discussed below in more detail.

(ii) We measure the performance of T by the worst that can happen, namely,

sup
θ∈Θ

R
(
T, θ
)
.

Best procedures in this sense are called minimax and are also discussed below.

2.5 The information inequality

In this section we derive a universal lower bound for the variances of all unbiased estima-
tors of a real-valued parameter θ. This lower bound can be used to prove optimality of an
unbiased estimator whose variance is always the same as the lower bound. An extended
version which also includes biased estimators will be used later to show admissibility of
certain estimators.

We begin with a simple special case. Suppose that we observe a discrete random
variable X, where X ∼ Pθ, θ ∈ Θ. We assume that

• ΩX :=
{
X(ω) : ω ∈ Ω

}
is finite,

• Θ is an open subset of R,

• pθ(x) := Pθ
(
{x}
)
is differentiable in θ for all x. (pθ is the density of Pθ w.r.t. the

counting measure.)
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Now we assume that T = T (X) is an arbitrary unbiased estimator of θ, i.e.,

Eθ
[
T (X)

]
=
∑
x∈ΩX

T (x)pθ(x) = θ ∀θ ∈ Θ.

Then

1 =
d

dθ
Eθ
[
T (X)

]
=

d

dθ

∑
x∈ΩX

T (x)pθ(x)

=
∑
x∈ΩX

T (x)p′θ(x) (since ΩX is finite)

=
∑
x∈ΩX

(
T (x)− θ

)
p′θ(x) (since

∑
x∈ΩX

p′θ(x) =
d

dθ

∑
x∈ΩX

pθ(x)︸ ︷︷ ︸
=1 ∀θ

= 0)

=
∑

x∈ΩX: pθ(x)6=0

(
T (x)− θ

)
p′θ(x) (since pθ(x) = 0 implies p′θ = 0)

=
∑
x∈ΩX

(
T (x)− θ

)
lθ(x)pθ(x),

where
lθ(x) :=

{
p′θ(x)/pθ(x), if pθ(x) 6= 0,
0, if pθ(x) = 0.

Therefore it follows from the Cauchy-Schwarz inequality that

1 = Eθ
[(
T (X)− θ

)
lθ(X)

]
≤
√
Eθ
[
(T − θ)2

]√
Eθ
[
(lθ(X))2

]
. (2.13)

Since
∑

x T (x)p′θ(x) = 1 we see that p′θ(x0) 6= 0 for some x0, which also implies pθ(x0) > 0.
Therefore,

I(θ) := Eθ
[
(lθ(X))2

]
=

∑
x∈ΩX : pθ(x)6=0

(p′θ(x)

pθ(x)

)2

pθ(x) > 0.

Hence, it follows from (2.13)

Eθ
[
(T − θ)2

]
≥ 1

I(θ)
∀θ ∈ Θ. (2.14)

I(θ) measures the amount of information that the random variable X carries about the
unknown parameter θ and is called Fisher information. The right-hand side of (2.14)
is a universal lower bound for the mean squared error of unbiased estimators of θ. The
number 1/I(θ) is often referred to as the Cramér-Rao lower bound. Since priority
of discovery is now given to the French mathematician M. Frêchet it is sometimes also
called information inequality.

Now we come back to our binomial example already considered in the previous
Subsection 2.4. Suppose that X1, . . . , Xn are independent, where Xi ∼ Bin(1, θ),
θ ∈ Θ := [0, 1]. Armed with inequality (2.14), we show that X̄n = n−1

∑n
i=1Xi is the

best unbiased estimator of θ.
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We compute first the Fisher information for X = (X1, . . . , Xn)T . Let θ ∈ (0, 1). For
x = (x1, . . . , xn)T ∈ {0, 1}n, we have

pθ(x) = Pθ(X = x) = θk(1− θ)n−k, where k =
n∑
i=1

xi.

Since
d

dθ
pθ(x) = kθk−1(1− θ)n−k − (n− k)θk(1− θ)n−k−1

=
(k
θ
− n− k

1− θ

)
θk(1− θ)n−k

and pθ(x) 6= 0 ∀x ∈ {0, 1}n we obtain that

lθ(x) =
k

θ
− n− k

1− θ
=

k − nθ
θ(1− θ)

and, therefore,

I(θ) = Eθ
[
(lθ(X))2

]
= Eθ

[(∑n
i=1Xi − nθ

θ(1− θ)

)2
]

=
n

θ(1− θ)
.

On the other hand, X̄n is an unbiased estimator of θ and it holds that

Eθ
[
(X̄n − θ)2

]
=

θ(1− θ)
n

=
1

I(θ)
∀θ ∈ (0, 1).

Therefore, X̄n is the best unbiased estimator of θ for θ ∈ (0, 1). Since E0

[
(X̄n − 0)2

]
=

E1

[
(X̄n−1)2

]
= 0 we conclude that X̄n has this optimality property also on the complete

parameter space Θ = [0, 1].

In what follows we want to generalize the above results to general families of dis-
tributions. Here is a first set of regularity conditions which guarantee that the Fisher
information of a family of distributions can be defined:

(C1) Suppose that {Pθ : θ ∈ Θ} is a family of distributions on a measurable space (Ω,A),
where Θ is an open subset of R. Assume that there exists a σ-finite measure µ on
(Ω,A) such that Pθ � µ holds for all θ ∈ Θ. Denote by pθ = dPθ/dµ the density
(Radon-Nikodym derivative) of Pθ w.r.t. µ. Assume that the function x 7→ d

dθ
pθ(x)

is (A− B)-measurable.

Then the score function lθ is defined by

lθ(x) =

{
d
dθ
pθ(x)

pθ(x)
, if pθ(x) > 0,

0, if pθ(x) = 0.

The number

I(θ) = Eθ
[
(lθ(X))2

]
=

∫
Ω

(lθ(x))2 dµ(x)

=

∫
{x : pθ(x)>0}

( d
dθ
pθ(x))2

pθ(x)
dµ(x)

is the Fisher information of the family {Pθ : θ ∈ Θ} at θ.
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The next lemma shows that the Fisher information number does not depend on the choice
of a dominating measure.

Lemma 2.5. Suppose that (C1) is satisfied for two σ-finite measures µ1 and µ2, and
let I1(θ) and I2(θ) be the corresponding Fisher information numbers. Then

I1(θ) = I2(θ) ∀θ ∈ Θ.

Proof. We consider the Fisher information number I12(θ) based on the dominating mea-
sure µ1 + µ2 and show that Ii(θ) = I12(θ), i = 1, 2, which proves the statement.

Let pθ,1(x) := dPθ/dµ1 and pθ,2(x) := dPθ/dµ2. Since Pθ � µi � µ1 + µ2 we obtain
that

pθ,12(x) :=
dPθ

d(µ1 + µ2)
(x) =

dPθ
dµi

(x)
dµi

d(µ1 + µ2)
(x) = pθ,i(x)

dµi
d(µ1 + µ2)

(x) (µ1+µ2)−a.e.

Therefore,

lθ,12(x) =

{
d
dθ
pθ,12(x)

pθ,12(x)
, if pθ,12(x) > 0,

0, if pθ,12(x) = 0

=

{ d
dθ
pθ,i(x)

pθ,i(x)
, if pθ,i(x) dµi

d(µ1+µ2)
(x) > 0,

0, if pθ,i(x) dµi
d(µ1+µ2)

(x) = 0

=︸︷︷︸
∗

{
d
dθ
pθ,i(x)

pθ,i(x)
, if pθ,i(x) > 0,

0, if pθ,i(x) = 0

= lθ,i(x) µi − a.e.

Equality (*) is actually true since

µi

({
x ∈ Ω:

dµi
d(µ1 + µ2)

(x) = 0
}

︸ ︷︷ ︸
=: Ωi,0

)
=

∫
Ωi,0

dµi
d(µ1 + µ2)

(x) d(µ1 + µ2)(x) = 0.

Therefore, we obtain

I12(θ) =

∫ (
lθ,12(x)

)2
pθ,12(x) d(µ1 + µ2)(x)

=

∫ (
lθ,12(x)

)2
pθ,i(x)

dµi
d(µ1 + µ2)

(x) d(µ1 + µ2)(x)

=

∫ (
lθ,12(x)

)2
pθ,i(x) dµi(x)

=

∫ (
lθ,i(x)

)2
pθ,i(x) dµi(x)

= Ii(θ)

holds for i = 1, 2.
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Before we prove the information inequality in a general context, we collect a few additional
conditions which allow in particular that the operations of differentiation w.r.t. θ and
taking expectation can be interchanged.

(C2) – The set Ω0 :=
{
x ∈ Ω: pθ(x) = 0

}
does not depend on θ.

– I(θ) <∞ for all θ ∈ Θ.

– The derivatives d
dθ
pθ(x) are continuous in θ for all x.

– The function qθ,ε defined by

qθ,ε(x) :=

{
supθ̄ : |θ̄−θ|≤ε

∣∣ d
dθ
pθ̄(x)− d

dθ
pθ(x)

∣∣/pθ(x), if x ∈ Ω \ Ω0,
0 if x ∈ Ω0

is (A− B)-measurable and

Eθ
[
(qθ,ε(X))2

]
=

∫
(qθ,ε(x))2pθ(x) dµ(x) < ∞, for some ε = ε(θ) > 0.

Lemma 2.6. Suppose that (C1) and (C2) are fulfilled. Let T = T (X) be a statistic
such that Eθ

[
T 2
]
<∞ ∀θ ∈ Θ.

Then θ 7→ EθT is differentiable and

d

dθ
EθT =

∫
Ω\Ω0

T (x)
d

dθ
pθ(x) dµ(x) = Eθ

[
T (X)lθ(X)

]
.

Proof. First of all, we convince ourselves that the expectation on the right-hand side
exists. We have

Eθ
∣∣T (X)lθ(X)

∣∣ =

∫ ∣∣T (x)
√
pθ(x) lθ(x)

√
pθ(x)

∣∣ dµ(x)

≤

√∫
T 2(x)pθ(x) dµ(x)

√∫
(lθ(x))2pθ(x) dµ(x)

=
√
Eθ
[
T 2
]√

I(θ) < ∞.

Therefore, Eθ
[
T (X)lθ(X)

]
exists and is finite.

For θ̄ 6= θ, we obtain that

Eθ̄T − EθT
θ̄ − θ

−
∫

Ω\Ω0

T (x)
d

dθ
pθ(x) dµ(x)

=

∫
Ω\Ω0

T (x)
[pθ̄(x)− pθ(x)

θ̄ − θ
− d

dθ
pθ(x)

]
µ(x).
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Since, by assumption, d
dθ
pθ(x) is continuous in θ, the integrand on the right-hand side

converges to 0 as θ̄ → θ. For ε = ε(θ), we obtain that∫
Ω\Ω0

sup
θ̄ : |θ̄−θ|≤ε

{
|T (x)|

∣∣∣pθ̄(x)− pθ(x)

θ̄ − θ
− d

dθ
pθ(x)

∣∣∣} µ(x)

≤
∫

Ω\Ω0

|T (x)|
√
pθ(x) sup

θ̄ : |θ̄−θ|≤ε

{∣∣ d
dθ
pθ̄(x)− d

dθ
pθ(x)

∣∣/pθ(x)

}√
pθ(x) dµ(x)

≤
√
Eθ
[
T 2
]√∫

Ω\Ω0

(
qθ,ε(x)

)2
pθ(x) dµ(x)

< ∞.

Therefore, it follows from Lebesgue’s dominated convergence theorem that

Eθ̄T − EθT
θ̄ − θ

−→
θ̄→θ

∫
Ω\Ω0

T (x)
d

dθ
pθ(x) dµ(x).

An immediate implication of Lemma 2.6 is that, under (C1) and (C2),

Eθ
[
lθ(X)

]
= 0. (2.15)

Indeed, if we choose T (x) = 1 for all x, then Eθ
[
lθ(X)

]
= Eθ

[
1 lθ(X)

]
= d

dθ
1 = 0.

The following result of often helpful in calculating the Fisher information in connection
with independent random variables.

Proposition 2.7. Let X1 and X2 be random variables which are independent under Pθ,
for θ ∈ Θ. Suppose that Θ is an open subset of R and that the families of distributions{
PXi
θ : θ ∈ Θ

}
, i = 1, 2, satisfy the conditions (C1) and (C2). Denote by I1(θ) and

I2(θ) the respective Fisher information numbers about θ.
Then the family of distributions

{
P

(X1,X2)
θ : θ ∈ Θ

}
satisfies (C1) and (C2) and the

Fisher information about θ contained in (X1, X2) is equal to I1(θ) + I2(θ).

Proof. Suppose that the distributions PX1
θ and PX2

θ have densities p(1)
θ and p(2)

θ w.r.t. σ-
finite measures µ1 and µ2, respectively, and that these densities satisfy conditions (C1)
and (C2). Then P

(X1,X2)
θ has a density p(1,2)

θ w.r.t. the product measure µ1 ⊗ µ2 such
that

p
(1,2)
θ (x1, x2) = p

(1)
θ (x1)p

(2)
θ (x2) (µ1 ⊗ µ2)-almost everywhere.

Since
d

dθ
p

(1,2)
θ (x1, x2) =

( d
dθ
p

(1)
θ (x1)

)
p

(2)
θ (x2) + p

(1)
θ (x1)

( d
dθ
p

(2)
θ (x2)

)
,

we obtain

l
(1,2)
θ (x1, x2) =


d
dθ
p

(1)
θ (x1)

p
(1)
θ (x1)

+
d
dθ
p

(2)
θ (x2)

p
(2)
θ (x2)

if p(1)
θ (x1)p

(2)
θ (x2) > 0,

0 if p(1)
θ (x1)p

(2)
θ (x2) = 0.
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It follows that

l
(1)
θ (x1) + l

(2)
θ (x2) =

{
l
(1,2)
θ (x1, x2) if p(1)

θ (x1)p
(2)
θ (x2) > 0,

l
(1)
θ (x1) + l

(2)
θ (x2) if p(1)

θ (x1)p
(2)
θ (x2) = 0.

Since PXi
θ

(
{x : p

(i)
θ (x) = 0}

)
= 0 we therefore obtain that

l
(1,2)
θ (X1, X2) = l

(1)
θ (X1) + l

(2)
θ (X2) Pθ − a.s.

Hence, the Fisher information contained in (X1, X2) is given by

I1,2(θ) = Eθ
[(
l
(1,2)
θ (X1, X2)

)2]
= Eθ

[(
l
(1)
θ (X1) + l

(2)
θ (X2)

)2]
= I1(θ) + I2(θ) + 2Eθ

[
l
(1)
θ (X1)l

(2)
θ (X2)

]
.

Since the families
{
PXi
θ : θ ∈ Θ

}
, i = 1, 2, satisfy conditions (C1) and (C2) we obtain

by (2.15) that
Eθ
[
l
(i)
θ (Xi)

]
= 0, i = 1, 2,

which implies by independence of X1 and X2 that

Eθ
[
l
(1)
θ (X1)l

(2)
θ (X2)

]
= 0.

This completes the proof of the proposition.

Theorem 2.8. Suppose that (C1) and (C2) are fulfilled and let T = T (X) be an arbi-
trary estimator of θ such that Eθ

[
T 2
]
<∞ for all θ ∈ Θ.

(i) If T is unbiased for θ, then

Eθ
[
(T − θ)2

]
≥ 1

I(θ)
∀θ ∈ Θ.

(ii) The bias at θ, b(θ) = EθT − θ, is differentiable in θ and

Eθ
[
(T − θ)2

]
≥
(
1 + d

dθ
b(θ)

)2

I(θ)
+
(
b(θ)

)2 ∀θ ∈ Θ.

The inequality in (i) is the classical Cramér-Rao inequality which provides a universal
lower bound for the mean squared error of an unbiased estimator of θ. The inequality
in (ii) a not universal lower risk bound since the right-hand side depends on the estima-
tor T (X) through b(θ). It can be occasionally used for proving admissibility of a given
estimator; see Proposition 2.9 below.
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Proof of Theorem 2.8. (i) We have that

Eθ
[
(T − θ)lθ(X)

]
= Eθ

[
T lθ(X)

]
− θ Eθ

[
lθ(X)]︸ ︷︷ ︸
=0

=
d

dθ
EθT =

d

dθ
θ = 1.

Hence, we obtain by the Cauchy-Schwarz inequality

1 = Eθ
[
(T − θ)lθ(X)

]
≤
√
Eθ
[
(T − θ)2

]√
Eθ
[(
lθ(X)

)2]
,

which implies

Eθ
[
(T − θ)2

]
≥ 1

I(θ)
.

(ii) The mean squared error of T can be decomposed as

Eθ
[
(T − θ)2

]
= Eθ

[
(T − EθT )2

]
+
(
b(θ)

)2
.

Since

Eθ
[
(T − EθT )lθ(X)

]
= Eθ

[
T lθ(X)

]
− EθT Eθlθ(X)︸ ︷︷ ︸

=0

=
d

dθ
EθT =

d

dθ

(
b(θ) + θ

)
=

d

dθ
b(θ) + 1

we obtain, again by Cauchy-Schwarz, that( d
dθ
b(θ) + 1

)2 ≤ Eθ
[
(T − EθT )2

]
Eθ
[(
lθ(X)

)2]
,

which completes the proof.

It follows from part (i) of Theorem 2.8 that an unbiased estimator is optimal in the class
of all unbiased estimators if its mean squared error equals the Cramér-Rao lower bound.
Occasionally the (generalized) Cramér-Rao lower bound (see (ii) of Theorem 2.8) can be
used for proving admissibility of a given estimator in the class of all estimators.

Proposition 2.9. Suppose that (C1) and (C2) are fulfilled, Θ = (a, b), where
−∞ ≤ a < b ≤ ∞, and I(θ) > 0 ∀θ ∈ Θ. Let T is an unbiased estimator of θ such
that

Eθ
[
(T − θ)2

]
=

1

I(θ)
∀θ ∈ Θ, (2.16)

Furthermore, suppose that∫ θ

a

I(u) du =

∫ b

θ

I(u) du = ∞ ∀θ ∈ (a, b).

Then T is admissible in the class of all estimators.
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Proof. Suppose that some estimator T ∗ is better than T , that is,

Eθ
[(
T ∗ − θ

)2] ≤ Eθ
[(
T − θ

)2] ∀θ ∈ (a, b)

and
Eθ0
[(
T ∗ − θ0

)2]
< Eθ0

[(
T − θ0

)2] for some θ0 ∈ (a, b).

Let b(θ) = EθT
∗ − θ be the bias of T ∗ at θ. The estimator T ∗ fulfills the conditions of

Theorem 2.8 and it follows from (ii) of this theorem that

(1 + b′(θ))2

I(θ)
+ b2(θ) ≤ Eθ

[(
T ∗ − θ

)2] ≤ Eθ
[(
T − θ

)2]
=

1

I(θ)
∀θ ∈ (a, b).

This implies
2b′(θ) +

(
b′(θ)

)2

I(θ)
≤ −b2(θ) ∀θ ∈ (a, b)

and therefore
2b′(θ) ≤ −b2(θ) I(θ) ∀θ ∈ (a, b).

Hence, θ 7→ b(θ) is monotonically non-increasing. If b(θ) 6= 0, we obtain in particular
that

1

2
I(θ) ≤ − b

′(θ)

b2(θ)
=

(
1

b(θ)

)′
. (2.17)

It follows from (2.16) that T is a best unbiased estimator of θ. Since T ∗ is assumed to
be better there exists some θ∗ ∈ (a, b) such that b(θ∗) 6= 0. In what follows we show that
there exist θ1, θ2 such that θ1 < θ∗ < θ2 and |b(θi)| < |b(θ∗)|, i = 1, 2, which contradicts
the monotonicity of b(·).

(i) If b(θ) 6= 0 ∀θ > θ∗, then it follows from

1

b(θ)
− 1

b(θ∗)
=

∫ θ

θ∗

(
1

b(u)

)′
du ≥ 1

2

∫ θ

θ∗
I(u) du −→

θ→b
∞,

which implies that b(θ)−→θ→b 0. Hence, there exists some θ2 > θ such that |b(θ2)| <
|b(θ∗)|.

(ii) If b(θ) 6= 0 ∀θ < θ∗, then it follows from

1

b(θ∗)
− 1

b(θ)
=

∫ θ∗

θ

(
1

b(u)

)′
du ≥ 1

2

∫ θ∗

θ

I(u) du −→
θ→a
∞,

which implies that b(θ)−→θ→a 0. Hence, there exists some θ1 < θ such that |b(θ1)| <
|b(θ∗)|.

This leads, however, to a contradiction:

• If b(θ∗) > 0, then b(θ) < b(θ∗) for some θ < θ∗.

• If b(θ∗) < 0, then there exists some θ > θ∗ such that |b(θ)| < |b(θ∗)|, which implies
that b(θ) > b(θ∗).

In both cases, we obtain a contradiction to the monotonicity of b(·). Hence, our assump-
tion that T is inadmissible is wrong.
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Here is an example of an application of Proposition 2.9:
Suppose that X1, . . . , Xn are i.i.d., Xi ∼ N(θ, σ2), where σ2 > 0 is fixed and θ ∈ Θ := R.
The sample mean X̄n is an unbiased estimator of θ and it holds that

Eθ
[(
X̄n − θ

)2]
=

σ2

n
=

1

I(θ)
∀θ ∈ Θ.

Since ∫ θ

−∞
I(u) du =

∫ ∞
θ

I(u) du = ∞

we conclude that X̄n is admissible in the class of all estimators.

Sufficiency
Before we explain what is meant by the word “sufficiency” we consider once more our bino-
mial example: Suppose that realizations x1, . . . , xn of i.i.d. random variables X1, . . . , Xn

are observed, where Xi ∼ Bin(1, θ) and θ ∈ Θ := (0, 1). Let X =
(
X1, . . . , Xn

)T and
x =

(
x1, . . . , xn

)T . Then
Pθ
(
X = x

)
=

n∏
i=1

θxi(1− θ)1−xi = θ
∑n
i=1 xi(1− θ)n−

∑n
i=1 xi ∀x ∈ {0, 1}n.

Now we consider the statistic T = T (X) :=
∑n

i=1Xi. We have that T ∼ Bin(n, θ), that
is

Pθ
(
T = k

)
=

(
n

k

)
θk(1− θ)n−k ∀k = {0, 1, . . . , n}.

The conditional distribution of X given T = k is given by

Pθ
(
X = x | T = k

)
=

Pθ
(
X = x, T = k

)
Pθ
(
T = k

) =

{
1/
(
n
k

)
if
∑n

i=1 xi = k,
0 otherwise. (2.18)

Since P0(T = 0) = P1(T = n) = 1 we see that the conditional distribution can be chosen
such that (2.18) holds in case of θ ∈ {0, 1} as well. Hence, we see that the conditional
distribution of X given T = k does not depend on the unknown value of the parameter θ.
The following considerations indicate that no information about θ is lost by recording
only T rather than the original random variable X.

Suppose that U ∼ Uniform
(
[0, 1]

)
is independent of T under Pθ, for all possible values

θ ∈ Θ. In what follows we define a random variable X̃ = X̃(T, U) such that

P X̃
θ = PX

θ ∀θ ∈ Θ. (2.19)

Recall that
Pθ
(
X = x | T = k

)
=

{
1/
(
n
k

)
if x ∈ Ωk,

0 if x 6∈ Ωk,

where Ωk :=
{
x ∈ {0, 1}n :

∑n
i=1 xi = k

}
. We number the elements of Ωk as

xk,1, . . . , xk,(nk)
and choose

X̃ = X̃(T, U) := xk,l if T = k and U ∈
(

(l − 1)/

(
n

k

)
, l/

(
n

k

)]
.
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Then
Pθ
(
X̃ = x | T = k

)
=

{
1/
(
n
k

)
if x ∈ Ωk,

0 if x 6∈ Ωk,

and, therefore, (2.19) is fulfilled. These considerations show that, even if only T rather
than X is recorded, we can always generate a random variable X̃ with the same distribu-
tion as X. Since this does not require prior knowledge of θ, this shows that no essential
information about θ is lost by recording only T . This suggests the following definition.

Definition 2.4. Let X ∼ Pθ, where θ ∈ Θ. A statistic T = T (X) is sufficient for the
parameter θ if there exists a version of the conditional distribution Pθ

(
X ∈ · | T ∈ ·

)
that does not depend on θ.

In the following we show a second consequence of sufficiency: Whenever we have an
estimator based on the original random variable X, we can find an at least equally good
one which is based on a sufficient statistic T = T (X).
Suppose as above thatX1, . . . , Xn are i.i.d. such thatXi ∼ Bin(1, θ), where θ ∈ Θ ⊆ [0, 1],
and that T =

∑n
i=1Xi. Let θ̂ = θ̂(X) be an arbitrary estimator of θ such that its mean

squared error is finite. We define a new estimator θ̌ = θ̌(T ) by

θ̌(k) := Eθ
(
θ̂(X) | T = k

)
=
∑
x∈Ωk

θ̂(x)
1(
n
k

) .
(This is indeed a feasible estimator of θ since the conditional distribution of X given
T = k, and therefore the definition of θ̌(k) as well, does not depend on θ.)
Since x 7→ (x− θ)2 is a convex function we obtain by Jensen’s inequality

Eθ
[
(θ̂ − θ)2

]
=

n∑
k=0

Eθ
((
θ̂(X)− θ

)2 | T = k
)
Pθ
(
T = k

)
≥

n∑
k=0

(
Eθ
(
θ̂ | T = k

)
− θ

)2
Pθ
(
T = k

)
= Eθ

[
(θ̌ − θ)2

]
,

that is, θ̌ is not worse than θ̂.

As a simple, maybe somewhat naive special case, we consider the estimator θ̂ = X1.
Since

Eθ
(
X1 | T = k

)
= Pθ

(
X1 = 1 | T = k

)
=

#
{
x ∈ Ωk : x1 = 1

}
#Ωk

=

(
n−1
k−1

)(
n
k

) =
k

n

we obtain that θ̌ = X̄n. Needless to say that Eθ
[
(θ̌ − θ)2

]
≤ Eθ

[
(θ̂ − θ)2

]
.
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Before we derive a general criterion for a statistic to be sufficient, we consider a second
example where we can directly identify a sufficient statistic.

Let X =
(
X1, . . . , Xn

)T , where X1, . . . , Xn are i.i.d. real-valued random variables such
that Xi ∼ P ∈ P :=

{
Q : Q is a probability measure on (R,B)

}
. (Here, the family of

possible distributions is a nonparametric one.) Let Xn:k denote the kth smallest value
among X1, . . . , Xn. (Xn:k is the kth order statistic.) Then X↑ =

(
Xn:1, . . . , Xn:n

)T is a
sufficient statistic for P ∈ P .

To see why this holds true, we will first guess how P
(
X ∈ · | X↑ = x

)
looks

like. It seems to be natural to conjecture that the conditional distribution is such that
X1, . . . , Xn can only attain values from

{
Xn:1, . . . , Xn:n

}
and that, for reasons of sym-

metry, every order can appear with the same probability. For formalize this, let Pn :={
π : π is a permutation of 1, . . . , n

}
and, for x ∈ Rn, π ∈ Pn, xπ :=

(
xπ(1), . . . , xπ(n)

)T .
In line with the above discussion, it seems natural to conjecture that

P
(
X ∈ C | X↑ = x

)
=

1

n!

∑
π∈Pn

1C(xπ) ∀C ∈ Bn. (2.20)

In order to justify this conjecture, we choose arbitrary Borel sets C,D ∈ Bn and prove
that

P
(
X ∈ C,X↑ ∈ D

)
=

∫
D

1

n!

∑
π∈Pn

1C(xπ) dPX↑(x). (2.21)

Since P (X ∈ B) = P (Xπ ∈ B) ∀π ∈ Pn we have that

P
(
Xπ ∈ C,X↑ ∈ D

)
= P

(
Xπ ∈ C, (Xπ)↑ ∈ D

)
= P

(
X ∈ C,X↑ ∈ D

)
,

and so

P
(
X ∈ C,X↑ ∈ D

)
=

1

n!

∑
π∈Pn

P
(
Xπ ∈ C,X↑ ∈ D

)
=

1

n!

∑
π∈Pn

EP
[
1C(Xπ) 1D(X↑)

]
=

1

n!

∑
π∈Pn

EP
[
1C((X↑)π) 1D(X↑)

]
=

∫
Rn

1

n!

∑
π∈Pn

1C(xπ) 1D(x) dPX↑(x)

=

∫
D

1

n!

∑
π∈Pn

1C(xπ)︸ ︷︷ ︸
=P (X∈C|X↑=x)

dPX↑(x),

which implies (2.20).
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In general, finding a sufficient statistic by means of the definition of sufficiency is not
convenient since it involves guessing a statistic T that might be sufficient and computing
the conditional distribution. Fortunately, a simple, necessary and sufficient criterion for
a statistic to be sufficient is available. The results below is often referred to as the
factorization theorem for sufficient statistics.

Theorem 2.10. Suppose that X ∼ Pθ, where θ ∈ Θ. Suppose further that there exists a
σ-finite measure µ such that Pθ � µ ∀θ ∈ Θ and denote by pθ the density of Pθ w.r.t. µ.

Then a statistic T = T (X) is sufficient for θ if and only if there exist non-negative
functions gθ and h such that

pθ(x) = gθ(T (x))h(x) ∀x ∈ ΩX .

Proof. We give the proof only in the discrete case. The proof in the general case can be
found e.g. in Shao [4, pp. 105-106].

We suppose that X is a discrete random variable with possible values x1, . . . , xN or
x1, x2, . . . (xj 6= xk if j 6= k) and that pθ is the density of Pθ w.r.t. the counting measure,
that is pθ(x) = Pθ(X = x).

(=⇒) Suppose that T is sufficient. Then Pθ
(
X = x | T = T (x)

)
does not depend on θ

and we obtain that

pθ(x) = Pθ
(
X = x

)
= Pθ

(
X = x, T = T (x)

)
= Pθ

(
T = T (x)

)︸ ︷︷ ︸
=: gθ(T (x))

Pθ
(
X = x | T = T (x)

)︸ ︷︷ ︸
=:h(x)

.

(⇐=) Suppose that

pθ(x) = Pθ
(
X = x

)
= gθ(T (x))h(x) ∀x ∈ ΩX .

Then
Pθ
(
T = t

)
=

∑
k : T (xk)=t

pθ(xk) =
∑

k : T (xk)=t

gθ(T (xk))h(xk).

If Pθ
(
T = t

)
> 0, then

Pθ
(
X = xj | T = t

)
=

Pθ
(
X = xj, T (X) = t

)
Pθ
(
T = t

)
=

{
Pθ(X=xj)

Pθ(T=t)
if T (xj) = t,

0 if T (xj) 6= t

=

{
h(xj)∑

k : T (xk)=t h(xk)
if T (xj) = t,

0 if T (xj) 6= t

If Pθ
(
T = t

)
= 0, then we can define Pθ(X = xj | T = t) in an arbitrary way, e.g.

Pθ
(
X = xj | T = t

)
=

{
h(xj)∑

k : T (xk)=t h(xk)
if T (xj) = t,

∑
k : T (xk)=t h(xk) > 0,

0 otherwise

The latter formula for the conditional distribution is correct in both cases and does
not depend on θ. Hence, T = T (X) is a sufficient statistic for θ.
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Example
Let X1, . . . , Xn be independent random variables, Xi ∼ N (µ, σ2), where θ =

(
µ
σ2

)
∈ Θ :={(

a
b

)
: a ∈ R, b > 0

}
. We can use the Factorization theorem (Theorem 2.10) to find a

sufficient statistic.

For θ ∈ Θ, let pθ be the density of X := (X1, . . . , Xn)T . Then

pθ(x) =
n∏
i=1

pθ(xi)

=
n∏
i=1

1√
2πσ2

e−(xi−µ)2/(2σ2)

=
1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(
xi − x̄n + x̄n − µ

)2
}

=
1

(2πσ2)n/2
exp

{
− 1

2σ2

[ n∑
i=1

(xi − x̄n)2 + n(x̄n − µ)2
]}

︸ ︷︷ ︸
=: gθ(T (x))

.

Hence T (X) =
(

X̄n∑n
i=1(Xi−X̄n)2

)
is a sufficient statistic for θ ∈ Θ.
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2.6 Bayes and minimax estimators

As indicated by the binomial example, apart from trivial estimation problems, a uniformly
best estimator of an unknown parameter θ does not exist in general. This is basically
because there is only a partial order but not a total order between the risk functions of
candidate estimators. A common way out of this dilemma is to consider some “average
value” of the risk functions, which leads to the following concept. To simplify matters,
we use the mean squared error R(T, θ) = Eθ

[
(T − q(θ))2

]
of a candidate estimator T

for q(θ) as a measure of its performance.

Definition 2.5. Suppose that a realization of X ∼ Pθ is observed, where θ ∈ Θ. Let π
be a probability measure on

(
Θ,AΘ

)
, where AΘ is a σ-algebra on the parameter space Θ.

Then, for an estimator T = T (X) of q(θ),

r(T, π) =

∫
Θ

R(T, θ) dπ(θ)

=

∫
Θ

[ ∫ (
T (x)− q(θ)

)2
dPθ(x)

]
dπ(θ)

is called the Bayes risk of T w.r.t. a prior distribution π.
T ∗ is called Bayes estimator of q(θ), if

r
(
T ∗, π

)
= inf

{
r(T, π) : T estimator of q(θ)

}
.

Remark 2.2. (i) The existence of the integral
∫

Θ
R(T, θ) dπ(θ) requires measurability

of the function θ 7→ R(T, θ) and is therefore not ensured in general. This mea-
surability will be obvious in simple cases, e.g. if Θ is a finite or countably infinite
set. Sufficient conditions which ensure measurability will be given by Lemma 2.11
below.

(ii) So far T ∗ is only implicitly defined, as a minimizer of r( · , π). A simple method
of computing a Bayes estimator is applicable in “textbook cases” and will be
described below.

One possible interpretation of this approach is the following one. We can think of θ
as a random variable following a distribution π. The goal is to estimate the unob-
served realization θ0 of this random variable, with the help of an observed realization
of X ∼ Pθ0 . The probability measure Pθ0 may then be interpreted as the conditional
distribution PX|θ=θ0 of X given θ = θ0. Then

r
(
T, π

)
=

∫
Θ

[ ∫
ΩX

(
T (x)− q(θ0)

)2
dPX|θ=θ0(x)

]
dπ(θ0)

=

∫
ΩX×Θ

(
T (x)− q(θ0)

)2
dPX,θ(x, θ0),

i.e. the Bayes risk r(T, π) is the expected value of
(
T (X)− q(θ)

)2 w.r.t. the joint distri-
bution PX,θ of X and θ, which is defined by

PX,θ(B × C) =

∫
C

Pθ(B) dπ(θ).
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In this sense, r(T, π) characterizes the overall performance of T w.r.t. θ ∼ π.
We will show below that Bayes estimators are admissible under certain conditions.

Therefore, this approach makes also sense without the interpretation of θ as a random
variable. The Bayes approach is also a method of constructing admissible estimators.

Recall that the Bayes risk of an estimator T for q(θ) w.r.t. a prior distribution π is defined
by r(T, π) =

∫
Θ
R(T, θ) dπ(θ). The following lemma provides sufficient conditions for the

measurability of the function θ 7→ R(T, θ) and, therefore, for the existence of the Bayes
risk.

Lemma 2.11. Suppose that X ∼ Pθ is observed, where X takes values in Rn and
θ ∈ Θ ⊆ Rd. Assume that there exists a σ-finite measure µ on (Rn,Bn) such that Pθ � µ
for all θ ∈ Θ. Assume further that, for pθ := dPθ/dµ, the function θ 7→ pθ(x) is con-
tinuous for all x. Let q : Rd → R be a continuous function and let T = T (X) be an
arbitrary estimator of q(θ) which takes values in q(Θ) =

{
q(θ) : θ ∈ Θ

}
.

(i) If q(Θ) is bounded, then the risk function θ 7→ R(T, θ) is bounded and continuous,
therefore (Bd − B)-measurable.

(ii) If q(Θ) is unbounded, then the risk function θ 7→ R(T, θ) takes values in [0,∞)∪{∞}
and is (Bd − B̄)-measurable, where B̄ = σ(B ∪ {∞}).

Proof. (i) Let T = T (X) be an arbitrary estimator of q(θ) and let θ ∈ Θ be arbitrary.
We have to show that, for any sequence (θn)n∈N such that θn −→

n→∞
θ,

R
(
T, θn

)
−→
n→∞

R
(
T, θ
)
.

Suppose that (θn)n∈N is such a sequence. We have that∣∣R(T, θn) − R(T, θ)∣∣ =
∣∣∣ ∫ {(T (x)−q(θn)

)2
pθn(x) −

(
T (x)−q(θ)

)2
pθ(x)

}
dµ(x)

∣∣∣.
The term in curly braces tends to zero, as n → ∞. This, however, does not
automatically imply that

∣∣ ∫ {. . .} dµ(x)
∣∣ −→
n→∞

0. On the other hand, we know from
Lebesgues’s dominated convergence theorem that the latter result would follow if
there were a function h : ΩX → [0,∞) such that |{. . .}| ≤ h(x) for all x and∫
h(x) dµ(x) < ∞. Since such a function does not exist in general we have to

modify our approach and split up∣∣∣R(T, θn) − R
(
T, θ
)∣∣∣ ≤ ∫ ∣∣∣(T (x)− q(θn)

)2 −
(
T (x)− q(θ)

)2
∣∣∣pθ(x) dµ(x)

+

∫ (
T (x)− q(θn)

)2∣∣pθn(x) − pθ(x)
∣∣ dµ(x)

= In,1 + In,2. (2.22)

Since q(Θ) is bounded a dominating integrable function for the integrand in In,1
is given by Mpθ(x), where M := sup{(s − t)2 : s, t ∈ q(Θ)}, and we obtain by
Lebesgues’s dominated convergence theorem that

In,1 −→
n→∞

0. (2.23)
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The second term on the right-hand side of (2.22) can be estimated by

In,2 ≤ M

∫ ∣∣pθn(x) − pθ(x)
∣∣ dµ(x). (2.24)

To complete the proof of (i), it remains to show that∫ ∣∣pθn(x) − pθ(x)
∣∣ dµ(x) −→

n→∞
0. (2.25)

As above, there does not necessarily exist a dominating integrable function for the
integrand in (2.25). Since |pθn(x)− pθ(x)| = (pθ(x)− pθn(x))+ + (pθn(x)− pθ(x))+

we obtain that∫ ∣∣pθn(x)−pθ(x)
∣∣ dµ(x) =

∫ (
pθ(x)−pθn(x)

)+
dµ(x) +

∫ (
pθn(x)−pθ(x)

)+
dµ(x).

Since pθ is obviously a dominating integrable function for the integrand of the first
term on the right-hand side of this formula, we obtain from Lebesgues’s dominated
convergence theorem ∫ (

pθ(x)− pθn(x)
)+
dµ(x) −→

n→∞
0.

The second integral has to be treated in a different way. Since∫ (
pθ(x)− pθn(x)

)+
dµ(x) −

∫ (
pθn(x)− pθ(x)

)+︸ ︷︷ ︸
= (pθ(x)−pθn (x))−

dµ(x)

=

∫ (
pθ(x)− pθn(x)

)
dµ(x) = 0

we can conclude, without resorting to the dominated convergence theorem,
that

∫ (
pθn(x)−pθ(x)

)+
dµ(x) −→

n→∞
0, which completes the proof of (2.25). (i) follows

now from (2.22) to (2.25).

As a continuous real-valued function, θ 7→ R(T, θ) is also (Bd − B)-measurable.

(ii) Now we allow q(Θ) to be unbounded. It follows from the same considerations as in
the proof of (i) that, for any M <∞,

θ 7→ RM

(
T, θ
)

:= Eθ
[(
T (X)− θ

)2 ∧M
]

is continuous and therefore (Bd − B)-measurable, which also yields (Bd − B̄)-
measurability. By monotone convergence,

R
(
T, θ
)

= lim
M→∞

RM

(
T, θ
)
,

i.e. R(T, ·) is the pointwise limit of (Bd − B̄)-measurable functions. Hence, θ 7→
R(T, θ) is also (Bd − B̄)-measurable.
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As an illustration, we consider once more our binomial example. Suppose that realizations
x1, . . . , xn of i.i.d. random variables X1, . . . , Xn are observed, where Xi ∼ Bin(1, θ),
θ ∈ Θ := [0, 1]. As prior distribution, we choose a so-called Beta distribution with
parameters α, β > 0. This distribution has a density pα,β w.r.t. Lebesgue measure, where

pα,β(t) = c(α, β) tα−1(1− t)β−1
1(0,1)(t) ∀t ∈ R,

and the constant c(α, β) is chosen such that
∫ 1

0
pα,β(t) dt = 1. (The normal-

ization constant c(α, β) may also be expressed by the gamma function, c(α, β)
= Γ(α + β)/(Γ(α)Γ(β)), but knowledge of this fact is not necessary here.)
We seek a Bayes estimator T ∗ of θ w.r.t. the mean squared error.

Solution:
Let X =

(
X1, . . . , Xn

)T and x = (x1, . . . , xn)T . Then pθ(x) := Pθ
(
X = x

)
= θ

∑n
i=1 xi(1−

θ)n−
∑n
i=1 xi and the risk function of an arbitrary estimator T = T (X) is given by

R
(
T, θ
)

= Eθ
[
(T (X)− θ)2

]
=

∑
x∈{0,1}n

(
T (x)− θ

)2
pθ(x).

The Bayes risk of T is equal to

r(T, θ) =

∫ 1

0

[ ∑
x∈{0,1}n

(
T (x)− θ

)2
pθ(x)

]
pα,β(θ) dθ

=
∑

x∈{0,1}n

∫ 1

0

(
T (x)− θ

)2
pθ(x) pα,β(θ)︸ ︷︷ ︸

= c(α,β) θ
∑
xi+α−1(1−θ)n−

∑
xi+β−1

dθ (2.26)

= c(α, β)
∑

x∈{0,1}n

1

c(
∑
xi + α, n−

∑
xi + β)

∫ 1

0

(
T (x)− θ

)2
p∑xi+α,n−

∑
xi+β(θ) dθ︸ ︷︷ ︸

=:h(T (x))

.

To minimize r(T, π), we can minimize each of the terms h(T (x)) separately. For a random
variable Y such that E

[
Y 2
]
< ∞, it is well-known that c 7→ E

[
(c − Y )2

]
attains its

minimum at c = EY . With h(T (x)) =
∫ 1

0

(
T (x)− θ

)2
p∑xi+α,n−

∑
xi+β(θ) dθ, θ takes the

role of the random variable Y , having a Beta distribution with parameters
∑

i xi + α
and n−

∑
i xi + β. Therefore, h(T (x)) is minimized by the choice

T ∗(x) =

∫ 1

0

θ p∑xi+α,n−
∑
xi+β(θ) dθ. (2.27)

Before we compute the integral on the right-hand side of (2.27), we stop for a moment
and comment on the calculations in (2.26): The quantities θ and X can be thought of
as random variables of a two-stage experiment. First, “nature” chooses a value θ0 of the
random variable θ ∼ Beta(α, β), and afterwards the random variable X is generated with
a distribution Pθ0 having a probability mass function pθ0 (i.e. a density w.r.t. counting
measure). With this view, Pθ0 is the conditional distribution of X given θ = θ0. In the
third line of display (2.26), the roles of θ and X are interchanged: p∑xi+α,n−

∑
xi+β in

the integral on the right-hand side can be thought of as the density of the conditional
distribution of θ given X = x. This distribution is called posterior distribution since



57

it is an update of the prior distribution after the event X = x has occurred. While π
expresses our prior belief about the parameter θ, this posterior distribution reflects our
updated belief about θ after a realization x of X was revealed.

Now we compute the integral on the right-hand side of (2.27). Let a =
∑n

i=1 xi + α and
b = n−

∑n
i=1 xi + β. Then∫ 1

0

θ pa,b(θ) dθ =

∫ 1

0

θ c(a, b)θa−1(1− θ)b−1 dθ =

∫ 1

0
θa(1− θ)b−1 dθ∫ 1

0
θa−1(1− θ)b−1 dθ

. (2.28)

The integrals on the right-hand side of (2.28) can be represented in terms of the gamma
function, however, there does not exist a simple closed-form expression for these integrals.
Fortunately, we do not need to compute each of these integrals; rather it suffices to
compute their ratio. We take the numerator and apply integration by parts:∫ 1

0

θa︸︷︷︸
=: f(θ)

(1− θ)b−1︸ ︷︷ ︸
=: g′(θ)

dθ

=
[
θa
(
− 1

b
(1− θ)b

)︸ ︷︷ ︸
g(θ)

]1

0
−
∫ 1

0

aθa−1︸ ︷︷ ︸
f ′(θ)

(
− 1

b
(1− θ)b

)︸ ︷︷ ︸
g(θ)

dθ

= 0 +
a

b

∫ 1

0

θa−1(1− θ)b dθ

=
a

b

∫ 1

0

θa−1(1− θ)b−1 dθ − a

b

∫ 1

0

θa(1− θ)b−1 dθ.

Rearranging terms we obtain that

(a+ b)

∫ 1

0

θa(1− θ)b−1 dθ = a

∫ 1

0

θa−1(1− θ)b−1 dθ,

which yields ∫ 1

0

θpa,b(θ) dθ =
a

a+ b
.

Therefore,

T ∗(x) =

∑n
i=1 xi + α

n + α + β

and the Bayes estimator is given by

T ∗ = T ∗(X) =

∑n
i=1Xi + α

n + α + β
.

Note that the case of “no prior information about θ” corresponds to π = Uniform
(
[0, 1]

)
,

which is achieved with α = β = 1. In this case, the Bayes estimator is given by T ∗ =
(
∑n

i=1Xi + 1)/(n+ 2).
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Here is a brief sketch of the algorithm to compute the Bayes estimator of a param-
eter q(θ0): Denote by PX,θ the joint distribution of X and θ, which is given by
PX,θ(B × C) =

∫
C
Pθ0(B) dπ(θ0). For an arbitrary estimator T = T (X), where X takes

values in ΩX , it follows from the definition of conditional distributions that

r
(
T, π

)
=

∫
Θ

[ ∫
ΩX

(
T (x)− q(θ0)

)2
dPθ0(x)

]
dπ(θ0)

=

∫
ΩX×Θ

(
T (x)− q(θ0)

)2
dPX,θ(x, θ0)

=

∫
ΩX

[ ∫
Θ

(
T (x)− q(θ0)

)2
dP θ|X=x(θ0)︸ ︷︷ ︸

h(T (x))

]
dPX(x). (2.29)

To compute T ∗(x), only the inner integral on the right-hand of (2.29) has to be minimized
and it is not necessary to determine the unconditional distribution PX of X. In case of
the squared error loss (T − q(θ0))2, we obtain that

T ∗(x) =

∫
Θ

q(θ0) dP θ|X=x(θ0).

If we replace the squared error loss by the absolute value loss |T − q(θ0)|, then the Bayes
estimator T ∗ = T ∗(X) is given by

T ∗(x) = median
(
P q(θ)|X=x

)
.

We consider a second example. Suppose that realizations of i.i.d. random variables
X1, . . . , Xn are observed, where Xi ∼ N(θ0, σ

2). To simplify matters, we assume that
σ2 > 0 is fixed. As a measure for the performance of an estimator T of θ0, we choose
again the mean squared error, R(T, θ0) = Eθ0

[
(T − θ0)2

]
. Let π = N(0, τ 2) be the chosen

prior distribution for the parameter θ0. We seek a Bayes estimator T ∗ of θ0.

Solution
Let T = T (X) be an arbitrary estimator of θ, where X = (X1, . . . , Xn)T . Then its Bayes
risk is equal to

r(T, π) =

∫
R

[∫
Rn

(
T (x)− θ0

)2
dPX

θ0
(x)

]
dπ(θ0)

=

∫
R

[∫
Rn

(
T (x)− θ0

)2 1

(2πσ2)n/2
e−

∑n
i=1(xi−θ0)2

2σ2 dλn(x)

]
1√

2πτ 2
e−

θ20
2τ2 dλ(θ0).

Before we proceed, we combine the exponents of the exponential functions and rearrange
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the terms:

− 1

2σ2

n∑
i=1

(xi − θ0)2 − 1

2τ 2
θ2

0 = − 1

2σ2

n∑
i=1

(xi − x̄n)2 − 1

2σ2
n(x̄n − θ0)2 − 1

2τ 2
θ2

0

= −1

2

{( n
σ2

+
1

τ 2

)
θ2

0 −
2n

σ2
θ0x̄n + g(x)

}
= −1

2

{
nτ 2 + σ2

σ2τ 2
θ2

0 −
2nτ 2

σ2τ 2
θ0x̄n + g(x)

}
= −1

2

{
nτ 2 + σ2

σ2τ 2

(
θ0 −

nτ 2

nτ 2 + σ2
x̄n

)2

+ g̃(x)

}
,

where g(x) ad g̃(x) are terms which only depend on x but not on θ0. We obtain that

r(T, π)

=

∫
Rn

[∫
R

(
T (x)− θ0

)2
exp

{
− nτ 2 + σ2

2σ2τ 2

(
θ0 −

nτ 2

nτ 2 + σ2
x̄n

)2}
dλ(θ0)

]
c(x) dλn(x) (2.30)

=

∫
Rn

∫
R

(
T (x)− θ0

)2 1√
2π σ2τ2

nτ2+σ2

exp
{
− nτ 2 + σ2

2σ2τ 2

(
θ0 −

nτ 2

nτ 2 + σ2
x̄n

)2}
dλ(θ0)

 dPX(x),

where c(x) is some constant only depending on x. It can be seem from this formula
that the posterior distribution of θ given X = x is a normal distribution with location
parameter nτ2

nτ2+σ2 x̄n and variance σ2τ2

nτ2+σ2 . Therefore, the Bayes estimate given X = x is

T ∗(x) =
nτ 2

nτ 2 + σ2
x̄n.

In line with this, the Bayes estimator is given by

T ∗(X) =
nτ 2

nτ 2 + σ2
X̄n.

Since the value of the inner integral on the right-hand side of (2.30) is equal to
var
(
θ | X = x

)
= σ2τ2

nτ2+σ2 we see that the Bayes risk of T ∗ is equal to

r
(
T ∗, π

)
=

σ2τ 2

nτ 2 + σ2
. (2.31)
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The following theorem shows that the Bayes approach can be used for identifying admis-
sible estimators. As before, we confine ourselves to the case where the performance of an
estimator is measured by the mean squared error.

Theorem 2.12. Suppose that a realization of X ∼ Pθ is observed, where θ ∈ Θ ⊆ Rd. Let
T = T (X) be a Bayes estimator for a parameter q(θ) ∈ R w.r.t. a prior distribution π.

(i) If Θ =
{
θ1, . . . , θN

}
or Θ =

{
θ1, θ2, . . .

}
(i.e. Θ is finite or countably infinite),

π({θ}) > 0 ∀θ ∈ Θ, and r(T, π) <∞, then T is admissible.

(ii) Suppose that π(Uδ(θ)) > 0 for all θ ∈ Θ, δ > 0, where
Uδ(θ) =

{
θ′ ∈ Θ: ‖θ′ − θ‖ < δ

}
. Suppose further that there exists a σ-finite

measure µ such that Pθ � µ for all θ ∈ Θ, and that, for pθ := dPθ/dµ, the function
θ 7→ pθ(x) is continuous for all x. If q(Θ) = {q(θ) : θ ∈ Θ} is a bounded subset
of R, q : Θ→ R is a continuous mapping, then T is admissible.

Proof. (i) We prove this assertion by contradiction. Suppose that T is inadmissible.
Then there exists some estimator T ∗ which is better than T , that is

R
(
T ∗, θi

)
≤ R

(
T, θi

)
for all i ≥ 1,

R
(
T ∗, θi0

)
< R

(
T, θi0

)
for some i0.

This implies that

r
(
T, π

)
=

∑
i≥1

R
(
T, θi

)
π
(
{θi}

)
>

∑
i≥1

R
(
T ∗, θi

)
π
(
{θi}

)
= r

(
T ∗, π

)
.

(The case of “∞ = ∞” is excluded since r(T, π) < ∞.) Hence, we have a contra-
diction and T is therefore admissible.

(ii) Here we have to take into account that it could be the case that π
(
{θ}
)

= 0 holds
for some θ ∈ Θ. We adapt the above method of proof and assume again that T is
inadmissible. Then there exists some estimator T ∗ which is better than T , that is

R
(
T ∗, θ

)
≤ R

(
T, θ
)

for all θ ∈ Θ,

R
(
T ∗, θ0

)
< R

(
T, θ0

)
for some θ0 ∈ Θ.

It follows from (i) of Lemma 2.11 that the risk functions R
(
T, ·
)
and R

(
T ∗, ·

)
are

continuous and bounded, which implies that there exists some sufficiently small
δ > 0 such that

R
(
T ∗, θ

)
< R

(
T, θ
)

for all θ ∈ Uδ(θ0).

Since π
(
Uδ(θ0)

)
> 0 we obtain

r
(
T, π

)
=

∫
Uδ(θ0)

R
(
T, θ
)︸ ︷︷ ︸

>R(T ∗,θ)

dπ(θ) +

∫
Θ\Uδ(θ0)

R
(
T, θ
)︸ ︷︷ ︸

≥R(T ∗,θ)

dπ(θ)

>

∫
Uδ(θ0)

R
(
T ∗, θ

)
dπ(θ) +

∫
Θ\Uδ(θ0)

R
(
T ∗, θ

)
dπ(θ)

= r
(
T ∗, θ

)
.
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Hence, we obtain a contradiction to our assumption and T is therefore admissible.

Instead of averaging the risk function as done with the Bayes approach we can look
at the worst possible risk. That is, we prefer an estimator T to T ′, if and only if,

sup
θ∈Θ

R
(
T, θ
)
< sup

θ∈Θ
R
(
T ′, θ

)
.

This leads to the following definition.

Definition 2.6. Suppose that X ∼ Pθ is observed, where θ ∈ Θ, and let q(θ) be the pa-
rameter of interest. An estimator T ∗ of q(θ) is called minimax estimator (it minimizes
the maximum risk) if

r̄
(
T ∗,Θ

)
:= sup

θ∈Θ
R
(
T ∗, θ

)
≤ inf

T
r̄
(
T,Θ

)
= inf

T
sup
θ∈Θ

R
(
T, θ
)
.

According to this definition, minimax estimators are given in an implicit manner. Un-
fortunately, there does not exist a general algorithm for the computation of minimax
estimators. A proof of the minimax property can sometimes be accomplished with the
help of Bayes estimators. The idea is quite simple: If π is any prior distribution for the
parameter θ, then

r
(
T, π

)
=

∫
Θ

R
(
T, θ
)
dπ(θ) ≤ sup

θ∈Θ
R
(
T, θ
)

= r̄
(
T, θ
)
,

that is, a Bayes risk is always less than or equal to the minimax risk. In case of the
opposite relation we can conclude that the corresponding estimator is minimax.

Theorem 2.13. Suppose that the assumptions of Lemma 2.11 are fulfilled. (This ensures
that the risk function of any arbitrary estimator is measurable.) Let (Tk)k∈N be a sequence
of Bayes estimators of q(θ) w.r.t. respective prior distributions (πk)k∈N. If an estimator T
satisfies

r̄
(
T,Θ

)
= sup

θ∈Θ
R
(
T, θ
)
≤ lim sup

k→∞

∫
Θ

R
(
Tk, θ

)
dπk(θ),

then T is a minimax estimator of q(θ) in Θ.

Proof. Let T ∗ be an arbitrary estimator of q(θ). Then

r̄
(
T ∗,Θ

)
≥
∫

Θ

R
(
T ∗, θ

)
dπk(θ) ≥

∫
Θ

R
(
Tk, θ

)
dπk(θ).

Taking the limit superior on both sides we obtain

r̄
(
T ∗,Θ

)
≥ lim sup

k→∞

∫
Θ

R
(
Tk, θ

)
dπk(θ) ≥ r̄

(
T,Θ

)
,

that is, T minimizes the maximum risk.
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Example
Suppose that realizations of i.i.d. random variables X1, . . . , Xn are observed, where
Xi ∼ N(θ, σ2). σ2 > 0 is fixed and θ ∈ Θ is the parameter of interest. As a measure
of performance for any estimator we take the mean squared error.

(i) If Θ = R, then X̄n is a minimax estimator.

(ii) If Θ = [a, b], −∞ < a < b <∞, then X̄n is not a minimax estimator.

Proof. (i) First of all, we can actually apply Lemma 2.11 since the conditions imposed
there are satisfied. (For example, X =

(
X1, . . . , Xn

)T follows a multivariate normal
distribution with a density pθ w.r.t. λn and θ 7→ pθ(x) is a continuous function for
all x.)

To prove (i), we consider a sequence of Bayes estimators (Tk)k∈N w.r.t. (πk)k∈N,
πk = N(0, k). According to (2.31), the corresponding Bayes risks are given by

r
(
Tk, πk

)
=

σ2k

nk + σ2
.

Since
r
(
Tk, πk

)
−→
k→∞

σ2

n
= sup

θ∈R
R
(
X̄n, θ

)
it follows from Theorem 2.13 that X̄n is minimax in Θ = R.

(ii) If Θ = [a, b], then X̄n is inadmissible and can be improved by the estimator Tn
given by

Tn =


X̄n if X̄n ∈ [a, b],
a if X̄n < a,
b if X̄n > b.

For θ ∈ Θ, we obtain

Pθ
(
(Tn − θ)2 ≤ (X̄n − θ)2

)
= 1

and
Pθ
(
(Tn − θ)2 < (X̄n − θ)2

)
> 0,

which implies that
R
(
Tn, θ

)
< R

(
X̄n, θ

)
∀θ ∈ Θ. (2.32)

Furthermore, it follows from (i) of Lemma 2.11 that θ 7→ R(Tn, θ) is continuous.
Therefore, there exists some θ0 ∈ Θ such that

sup
θ∈Θ

R
(
Tn, θ

)
= R

(
Tn, θ0

)
.

It follows from (2.32) that

r̄
(
Tn,Θ

)
= R

(
Tn, θ0

)
< R

(
X̄n, θ0

)
=

σ2

n
= r̄

(
X̄n,Θ

)
,

that is, X̄n is not minimax in Θ.
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3 Testing statistical hypotheses
There are many questions in the sciences, in industry, and in life generally that require
a definite answer. For example, does a new (pharmaceutical) drug help? Or, is one
type of car safer than another? Does a lot of manufactured items contain an excessive
number of defectives? We begin with a simple but common example. Suppose that a
pharmaceutical company has developed a new drug and involved scientists believe that
this drug increases the rate of recovery from some disease over the recovery rate when an
established treatment (a well-tested drug or even no treatment at all) is applied. Suppose
that it is known from past experience that a fixed proportion θ0 = 0.2 recover from the
disease with the established treatment. In view of possible side effects of the new drug,
but also in order to avoid any sort of costs after the drug is introduced into the market,
people involved in the decision about the introduction into the market want to make sure
that the new drug increases the chance of recovery. To this end, a random experiment
has to be performed. Most simply, one would select n patients, administer the new drug,
and then base the decision on the observed rate of recovery.

3.1 The elements of hypothesis testing

We use the simple drug example to develop the framework of the classical hypothesis
testing theory. Let θ denote the rate of recovery when the new drug is given. When
the n patients that are given the drug are selected from a large pool of patients, then
the random number X of recoveries follows (approximately) a binomial distribution with
parameters n and θ. For reasons explained below we choose as our hypothesis (null
hypothesis) H0 that the new drug has no effect or even that the new drug has either no
or a negative effect on the recovery rate. This corresponds to θ ∈ Θ0, where Θ0 = {θ0}
(the drug never harms) or Θ = [0, θ0], respectively. The alternativeH1 (“positive effect”)
is described by θ ∈ Θ1, where Θ1 = (θ0, 1]. On the basis of our observed number x of
recoveries among the n randomly selected patients who have been administered the drug
we are to decide whether to accept H0 and state that the true value of θ is in Θ0 or to
reject H0 (i.e. accept H1) and state that the true value of θ is in Θ1. We can distinguish
between two structural possibilities for Θi, i = 1, 2. If Θ0 consists of one point only we
call the null hypothesis H0 simple. Otherwise, if Θ0 consists of more than one point we
call H0 composite. The same convention applies to Θ1.

To end up with a decision between H0 and H1 we need a rule for action. If ΩX denotes
the set of possible values of the random variable X, then we have to determine how we
decide if the event X = x occurs, for all x ∈ ΩX . Such a rule is conveniently described by
a function ϕ : ΩX → {0, 1}, where ϕ(x) = 1 means that we reject H0 if the event X = x
occurs. ϕ(x) = 0 describes that we do not reject H0 in case of X = x. Such a function
ϕ : ΩX → {0, 1} is called test of H0 versus H1. In our drug example, it seems reasonable
to reject H0 if the observed value of X exceeds or equals some natural number k, and
accept H0 otherwise, which leads to a test function (or test) ϕk given by

ϕk(x) =

{
1 if x ≥ k,
0 if x < k.

In this simple case, X is called test statistic since it is constructed for the purpose of
testing whether or not H0 is true. The value k which completes the specification of our
test is referred to as the critical value of the test.



64

In more involved cases we cannot describe our decision rule by reference to test statis-
tics or critical values. This can then be done by describing all sample points x for which
we reject H0. Suppose that a test ϕ is given by

ϕ(x) =

{
1 if x ∈ ΩX,1,
0 if x ∈ ΩX,0.

ΩX,1 is then called the critical or rejection region of the test ϕ whereas ΩX,0 is called
the acceptance region. In the above example, we have that ΩX,1 = {k, k + 1, . . . , n}
and ΩX,0 = {0, 1, . . . , k − 1}.

The only reasonable measure of performance of a test is given by the probabilities
that we make correct judgments when we use it. There are two types of error we can
commit: we can reject the null hypothesis, when we should have accepted; or we can
accept the null hypothesis, when we should have rejected. The first of these errors is a
type I error and the second one a type II error. In the drug example, a type I error is
committed if H0 is rejected, when in fact θ = θ0 (or θ ≤ θ0, respectively), and a type II
error is committed if H0 is accepted, when in fact θ > θ0. We consider the case of a
simple null hypothesis, that is Θ0 = {θ0}. Then the probability of a type I error is given
by

Pθ0
(
ϕk(X) = 1

)
= Pθ0

(
X ∈ ΩX,1

)
= Pθ0

(
X ≥ k

)
=

n∑
j=k

(
n

j

)
θj0(1− θ0)n−j.

The probability of a type II error is harder to deal with since it depends not only on
the test but also on the particular alternative being considered. For the test ϕk and an
alternative θ > θ0, this probability is given by

Pθ
(
ϕk(X) = 0

)
= Pθ

(
X ∈ ΩX,0

)
= Pθ

(
X ≥ k

)
=

k−1∑
j=0

(
n

j

)
θj(1− θ)n−j.

This error probability is closely connected to the power of a test, which is defined as
follows.

Definition 3.1. The power of a test against the alternative θ is the probability of
rejecting H0 when θ is true.

Thus, the power is one minus the probability of a type II error. It can be thought of as
the probability that the test will “detect” that the alternative θ holds. The power is a
function of θ on Θ1. If Θ0 is composite as well, then the probability of a type I error is
also a function of θ. Both the power and the probability of a type I error are contained
in the power function which is defined for all θ ∈ Θ := Θ0 ∪Θ1 by

β(θ, ϕ) = Pθ
(
“Rejection”

)
= Pθ

(
ϕ(X) = 1

)
.

In the drug example above, we have

β(θ, ϕk) =
n∑
j=k

(
n

j

)
θj(1− θ)n−j.

For a given test problem, say H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, there are typically many
tests that seem to be reasonable. In fact, any function ϕ : ΩX → {0, 1} can serve as a
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test. It is natural to choose a test on the basis of its performance which is characterized by
the corresponding probabilities of type I and type II errors. We have seen in Section 2.4
of these Lecture Notes that a uniformly best estimator does not exist, except in trivial
cases. Using analogous arguments as in the case of parameter estimation we can easily
see that an ideal test also does not exist. We consider again the drug example, that is
we test

H0 : θ = θ0 vs. H1 : θ > θ0,

where θ0 = 0.2. Information about θ is provided by a random variable X ∼ Bin(n, θ).
A test ϕ : {0, 1, . . . , n} → {0, 1} has a probability of a type I error 0 if and only if
ϕ(x) = 0 for all x ∈ {0, 1, . . . , n}. (This follows from the fact that Pθ0

(
X = x

)
> 0

∀x ∈ {0, 1, . . . , n}.) On the other hand, the power of this test is 0, for all θ > θ0, whereas
a test ϕ̄ such that ϕ̄(x) = 1 ∀x ∈ {0, 1, . . . , n} has maximum power 1. This explains why
the search for a “uniformly best” test is pointless.

The Russian born American mathematician Jerzy Neyman (1894-1981) and the
British statistician Egon Sharpe Pearson (1895-1980) proposed a possible way out of
this dilemma. They remarked there there is often an asymmetry between the two types
of error which grows out of a corresponding asymmetry between hypothesis and alterna-
tive. In the drug example with a simple hypothesisH0 (i.e. Θ0 = {θ0}), the alternativeH1

is composite and there are alternatives in Θ1 that are arbitrarily close to θ0. Rejection
of H0 has the clear meaning that the drug works, but acceptance could well occur because
an alternative practically indistinguishable from θ0 holds. More importantly, committing
a type I error means that a useless new treatment, possibly with unknown side effects,
will be introduced in the market, while a reliable and well-tested treatment will be aban-
doned. In this case it becomes clear that it is more important to avoid the commitment
of a type I error, which leads to the Neyman-Pearson proposal.

We begin by specifying a (usually small) number α > 0 and restrict our attention to
tests which in fact have the probability of rejection less than or equal to α for all θ ∈ Θ0.
Such tests are said to have level (of significance) α and we speak of rejecting H0 at
level α. The values α = 0.01 and 0.05 are commonly used in practice. Since a test of
level α is also of level α′ > α it is customary to give a name to the smallest level of
significance of a test. This quantity is called the size of a test, and is evidently the
maximum probability of a type I error.

In case of the drug example, one would choose as null hypothesis H0 that the drug
does not work, that is Θ0 = {θ0} or even Θ0 = [0, θ0]. Of course, persons involved
in the development of this drug hope that the hypothesis is rejected, which offers the
opportunity to announce that the drug leads to significant improvements. By using a
small level α one controls the probability of wrongly rejecting the hypothesis. Thus, if
α = 0.05, one can be 95% sure about not issuing a false claim, when the improvement
is announced. If H0 is not rejected, this does not necessarily mean that the new drug is
useless. In such a case, usually nothing is announced and one goes on to an additional
experiment.

Having restricted attention to tests of level α, Neyman and Pearson then propose
that we select within this class on the basis of the power against the alternatives we are
interested in. If, as is sometimes possible, there is a test which has maximal power among
all α tests against all alternatives, it is chosen. Otherwise subsidiary criteria are brought
in. We pursue this matter in the next subsection.
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3.2 Optimal tests

In the previous subsection we introduced the framework of testing hypotheses. In partic-
ular, we introduced a test statistic on an ad hoc basis in order to construct a “reasonable”
level α test, for a prescribed value of α > 0. Now we want to derive tests which deserve
the term “optimal”. We assume that a realization x of a random variable X ∼ Pθ with
possible values in a set ΩX is observed, where θ ∈ Θ is the unknown parameter, and that
we want to decide which of the following statements is true:

H0 : θ ∈ Θ0 or H1 : θ ∈ Θ1,

where Θ0 ∪ Θ1 = Θ and Θ0 ∩ Θ1 = ∅. Any rule of action can be conveniently described
by a function ϕ : ΩX → {0, 1}, where

ϕ(x) =

{
1, if X = x implies rejection of H0,
0, if X = x implies acceptance of H0.

Recall that the power function β(·, ϕ) of a test ϕ is defined by

β
(
θ, ϕ
)

= Pθ
(
ϕ(X) = 1

)
.

If θ ∈ Θ0, then β
(
θ, ϕ
)
describes the probability of a type I error (under Pθ). Alterna-

tively, if θ ∈ Θ1, then β
(
θ, ϕ
)
describes the power of ϕ against the alternative θ, i.e.,

one minus the probability of a type II error (under Pθ). As indicated in the previous
subsection, we follow the proposal by Neyman and Pearson, fix a level of significance α
and try to find a best test within the class of level α tests.

Definition 3.2. A test ϕ∗ is a uniformly most powerful (UMP) level α test for
H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 if

β
(
θ, ϕ∗

)
≤ α ∀θ ∈ Θ0 (3.1a)

and
β
(
θ, ϕ∗

)
≥ β

(
θ, ϕ
)

∀θ ∈ Θ1 (3.1b)

holds for all level α tests ϕ.

To simplify matters, we confine ourselves first to the case of testing a simple hypothesis
(Θ0 = {θ0}) versus a simple alternative (Θ1 = {θ1}). If X is a discrete random variable
with values in a finite or countably infinite set ΩX , then the probability of a type I error
for a test ϕ is given by

Pθ0
(
ϕ(X) = 1

)
= β

(
θ0, ϕ

)
=

∑
x∈ΩX : ϕ(x)=1

Pθ0
(
X = x

)
.

On the other hand, the probability of a type II error is equal to

Pθ1
(
ϕ(X) = 0

)
= 1 − β

(
θ1, ϕ

)
=

∑
x∈ΩX : ϕ(x)=0

Pθ1
(
X = x

)
.

In view of this, it seems advisable to reject H0 in case of X = x if Pθ0
(
X = x

)
is small

while Pθ1
(
X = x

)
is large. The following lemma shows that an optimal test can be

obtained on the basis of the ratio of the densities under Pθ1 and Pθ0 .
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Lemma 3.1. (Neyman-Pearson lemma)
Suppose that X ∼ Pθ, where θ ∈

{
θ0, θ1

}
, and that Pθ0 and Pθ1 have respective densi-

ties pθ0 and pθ1 w.r.t. some σ-finite measure µ. (For example, µ = Pθ0 + Pθ1 does the
job.) For the problem of testing

H0 : θ = θ0 vs. H1 : θ = θ1

a test ϕ may have the form

ϕ(x) =

 1, if pθ1 (x)

pθ0 (x)
> c,

0, if pθ1 (x)

pθ0 (x)
< c,

(3.2)

where c ∈ [0,∞) is a constant. (If pθ0(x) = 0 then the ratio pθ1(x)/pθ0(x) takes on the
value ∞ when pθ1(x) > 0; and, by convention, equals 0 when pθ1(x) = 0.)

If ϕ∗ is another test such that

Pθ0
(
ϕ∗(x) = 1

)
≤ Pθ0

(
ϕ(x) = 1

)
,

then
Pθ1
(
ϕ∗(x) = 0

)
≥ Pθ1

(
ϕ(x) = 0

)
,

that is, ϕ is a most powerful test for the significance level given by the size of ϕ, ᾱ :=
Pθ0
(
ϕ(x) = 1

)
.

Proof. Let ϕ∗ be an arbitrary test such that

Pθ0
(
ϕ∗(x) = 1

)
≤ Pθ0

(
ϕ(x) = 1

)
.

We show first that(
ϕ(x)− ϕ∗(x)

)
c pθ0(x) ≤

(
ϕ(x)− ϕ∗(x)

)
pθ1(x) ∀x ∈ ΩX . (3.3)

Indeed, if pθ0(x) > 0, we have that

a) pθ1(x)/pθ0(x) > c implies pθ1(x) > c pθ0(x) and
(
ϕ(x)︸︷︷︸

=1

−ϕ∗(x)
)
≥ 0,

b) pθ1(x)/pθ0(x) < c implies pθ1(x) < c pθ0(x) and
(
ϕ(x)︸︷︷︸

=0

−ϕ∗(x)
)
≤ 0,

c) pθ1(x)/pθ0(x) = c implies pθ1(x) = c pθ0(x).

In these three cases (3.3) is satisfied.
If pθ0(x) = 0, then (3.3) follows immediately if pθ1(x) = 0. Otherwise, if pθ1(x) > 0,
then pθ1(x)/pθ0(x) = ∞, which implies that

(
ϕ(x)︸︷︷︸

=1

−ϕ∗(x)
)
≥ 0. Hence, (3.3) is again

satisfied.
It follows from Pθ0

(
ϕ∗(x) = 1

)
≤ Pθ0

(
ϕ(x) = 1

)
that

0 ≤ c ·
{
Pθ0
(
ϕ(x) = 1

)
− Pθ0

(
ϕ∗(x) = 1

)}
=

∫
ΩX

(
ϕ(x)− ϕ∗(x)

)
c pθ0(x) dµ(x)

≤
∫

ΩX

(
ϕ(x)− ϕ∗(x)

)
pθ1(x) dµ(x) (by (3.3))

= Pθ1
(
ϕ(x) = 1

)
− Pθ1

(
ϕ∗(x) = 1

)
,

which completes the proof.
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In certain cases, Lemma 3.1 can be used to derive a most powerful level α test. We
consider two examples.

Example 1
Suppose that we observe realizations of i.i.d. random variables X1, . . . , Xn, where
Xi ∼ N (θ, σ2). To simplify matters, we assume that θ ∈ {θ0, θ1} and that σ2 > 0 is
known. We want to test

H0 : θ = θ0 vs. H1 : θ = θ1,

where α ∈ (0, 1) is the chosen level of significance. The following calculations show how
Lemma 3.1 can be used for determining a most powerful test.

Solution
The random vector X :=

(
X1, . . . , Xn)T has possible densities pθj w.r.t. Lebesgue mea-

sure λn (j = 0, 1), where

pθj(x) =
( 1√

2π σ

)n
exp

{
− 1

2σ2

n∑
i=1

(
xi − θj

)2
}
.

Let, w.l.o.g., θ0 < θ1. In line with Lemma 3.1, we confine our attention to tests of the
form

ϕ(x) =

 1, if pθ1 (x)

pθ0 (x)
> c,

0, if pθ1 (x)

pθ0 (x)
< c,

(3.4a)

and try to find some c ∈ [0,∞) such that

Pθ0
(
ϕ(X) = 1

)
= α. (3.4b)

If we achieve this goal, then it follows from Lemma 3.1 that ϕ is a most powerful level α
test.

Before we proceed, we perform an auxiliary calculation. It holds that

pθ1(x)

pθ0(x)
= exp

{
1

2σ2

n∑
i=1

[ (
xi − θ1 + θ1 − θ0

)2 −
(
xi − θ1

)2︸ ︷︷ ︸
= 2(xi−θ1)(θ1−θ0) + (θ1−θ0)2

]}

= exp

{
1

2σ2

[ n∑
i=1

2
(
xi − θ1

)(
θ1 − θ0

)
+ n

(
θ1 − θ0

)2
]}

= exp

{
1

2σ2

[
2n
(
x̄n − θ1

)(
θ1 − θ0

)
+ n

(
θ1 − θ0

)2
]}

.

Hence, the function x 7→ pθ1(x)/pθ0(x) is strictly monotonically increasing in x̄n. There-
fore, (3.4a) can be rewritten as

ϕ(x) =

{
1, if x̄n > c̃,
0, if x̄n < c̃,

for some c̃. Since, under the null hypothesis H0, X̄n ∼ N
(
θ0, σ

2/n
)
we represent the

test ϕ in the equivalent form

ϕ(x) =

{
1, if x̄n−θ0

σ/
√
n
> c̄,

0, if x̄n−θ0
σ/
√
n
< c̄.

(3.5)
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(3.5) allows us to determine the critical value of the test appropriately. We have

Pθ0
(
ϕ(X) = 1

)
= Pθ0

(X̄n − θ0

σ/
√
n
≥ c̄
)

= 1 − Φ(c̄) = α

if and only if c̄ = Φ−1(1−α). (Φ denotes the distribution function of aN (0, 1) distribution
and its inverse, Φ−1, is the corresponding quantile function.) Therefore,

ϕ(x) =

{
1, if x̄n−θ0

σ/
√
n
≥ Φ−1(1− α),

0, if x̄n−θ0
σ/
√
n
< Φ−1(1− α).

is a most powerful level α test. Unfortunately, there does not exist a closed-form ex-
pression for the values of Φ−1. However, tables of these functions can be found in
many textbooks. Examples for typical values of this function are Φ−1(0.95) ≈ 1.64,
Φ−1(0.975) ≈ 1.96, and Φ−1(0.99) ≈ 2.33.

The next example reveals limitations of our approach to obtain most powerful tests.

Example 2
Suppose that a realization of a random variable X ∼ Bin(n, θ) is observed. For simplicity
we constrain ourselves again to the case that the parameter θ can only take on two possible
values and we want to test

H0 : θ = θ0 vs. H1 : θ = θ1.

We assume that 0 < θ0 < θ1 < 1 and we want to find a most powerful level α test, where
α ∈ (0, 1). We denote by pθ0 and pθ1 the respective densities of X w.r.t. the counting
measure, where pθi(k) = Pθi(X = k) =

(
n
k

)
θki (1 − θi)

n−k, for k = 0, 1, . . . , n, i = 1, 2.
Guided by Lemma 3.1, we consider tests ϕ : {0, 1, . . . , n} → {0, 1} of the form

ϕ(k) =

 1, if pθ1 (k)

pθ0 (k)
> c,

0, if pθ1 (k)

pθ0 (k)
< c,

(3.6a)

and try to find some c ∈ [0,∞) such that

Pθ0
(
ϕ(X) = 1

)
= α. (3.6b)

Since
pθ1(k)

pθ0(k)
=

(
n
k

)
θk1(1− θ1)n−k(

n
k

)
θk0(1− θ0)n−k

=
( θ1(1− θ0)

θ0(1− θ1)︸ ︷︷ ︸
>1

)k (1− θ1

1− θ0

)n
we see that the mapping k 7→ pθ1(k)/pθ0(k) is strictly monotonically increasing. There-
fore, (3.6a) can be equivalently rewritten as

ϕc̄(k) =

{
1, if k ≥ c̄,
0, if k < c̄.

To obtain a level α test, the critical value c̄ must be chosen such that

Pθ0
(
ϕc̄(X) = 1

)
= Pθ0

(
X ≥ c̄

)
=

n∑
k=c̄

(
n

k

)
θk0(1− θ0)n−k ≤ α,
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that is, c̄ must be large enough. If we succeed to find some c̄ such that the size of the
corresponding test ϕc̄ is equal to α, then it follows from Lemma 3.1 that this test is
a most powerful level α test. Otherwise, taking into account that the probability of a
type II error is equal to

Pθ1
(
ϕc̄(X) = 0

)
= Pθ1

(
X < c̄

)
=

c̄−1∑
k=0

(
n

k

)
θk1(1− θ1)n−k,

we could choose c̄ as the smallest integer such that the size of ϕc̄ does not exceed α, i.e.

c̄ = min
{
c :

n∑
k=c

(
n

k

)
θk0(1− θ0)n−k ≤ α

}
.

This test is the best level α test within the class of tests of the form (3.6a), however, it is
not clear if it is also the most powerful level α test among all tests. In fact, any function
ϕ : {0, 1, . . . , n} → {0, 1} can serve as a test for H0 versus H1. In order to find the most
powerful level α test we could consider all possible tests, sort those out which have a size
greater than α, and then choose that one among the remaining tests which has maximum
power against θ1. In fact, we have to consider 2n+1 possible tests, which is clearly not
feasible unless n is very small. A way out of this dilemma is described in what follows.

Recall that in Example 1, the equality in (3.4b) can always be achieved by a suitable
choice of the critical value c in (3.4a). This is, however, not true in general. In Example 2,
for instance, there are only n + 2 different tests of the form (3.6a). Hence, it could well
happen that we want to set a level of significance α such that

Pθ0
(
X ≥ k

)
6= α ∀k ∈ {0, 1, . . . , n+ 1}.

In this case, the Neyman-Pearson lemma (Lemma 3.1) does not help us to find a most
powerful level α test. In such cases, we may consider so-called randomized tests, which
are introduced next.

Definition 3.3. Suppose that we observe a realization of a random variable X ∼ Pθ
with values in ΩX and that we want to test

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1.

A randomized test for the test problem H0 vs. H1 is a function ϕ : ΩX → [0, 1], where
ϕ(x) is the (conditional) probability of rejecting H0 if X = x. If ϕ(x) ∈ {0, 1} for all
x ∈ ΩX , then the test ϕ is called nonrandomized.

To carry out a randomized test, we need an additional random experiment (to flip a coin,
...). In case of simple hypotheses, the probability of a type I error is given by

Pθ0
(
H0 is rejected

)
=

∫
ΩX

Pθ0
(
H0 is rejected | X = x

)︸ ︷︷ ︸
=ϕ(x)

dPθ0(x) = Eθ0
[
ϕ(X)

]

and that of a type II error by

Pθ1
(
H0 is accepted

)
=

∫
ΩX

Pθ1
(
H0 is accepted | X = x

)︸ ︷︷ ︸
=1−ϕ(x)

dPθ0(x) = Eθ1
[
1− ϕ(X)

]
.
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Accordingly, the power function β(·, ϕ) is given by

β
(
θ, ϕ
)

= Eθ
[
ϕ(X)

]
∀θ ∈ Θ0 ∪Θ1.

The next theorem shows that, for testing a simple hypothesis versus a simple alternative,
there always exists a most powerful test for a given level of significance.

Theorem 3.2. Suppose that X ∼ Pθ, θ ∈ {θ0, θ1}, and that Pθ0 and Pθ1 have respective
densities pθ0 and pθ1 w.r.t. some σ-finite measure µ. Let the test problem be given by

H0 : θ = θ0 vs. H1 : θ = θ1.

(i) For each α > 0, there exists a most powerful level α test ϕα, which is given by

ϕα(x) =


1, if pθ1 (x)

pθ0 (x)
> cα,

γα, if pθ1 (x)

pθ0 (x)
= cα,

0, if pθ1 (x)

pθ0 (x)
< cα,

(3.7a)

where cα ∈ [0,∞) and γα ∈ [0, 1] are chosen such that

Eθ0
[
ϕα(X)

]
= α. (3.7b)

(ii) If ϕ∗ is a most powerful level α test, then

ϕ∗(x) =

 1, if pθ1 (x)

pθ0 (x)
> cα,

0, if pθ1 (x)

pθ0 (x)
< cα,

with a possible exception on a set of zero µ-measure, i.e.

µ
({
x ∈ ΩX : ϕ∗(x) 6= ϕα(x) and pθ1(x)/pθ0(x) 6= cα

})
= 0.

Proof. (i) Let α > 0 be arbitrary. For any test ϕα of the form (3.7a) we have

Eθ0
[
ϕα(X)

]
= Pθ0

({
x : pθ1(x)/pθ0(x) > cα

})
+ γα Pθ0

({
x : pθ1(x)/pθ0(x) = cα

})
.

To obtain a test of size α, we first seek a constant cα ∈ [0,∞) such that

Pθ0
({
x : pθ1(x)/pθ0(x) > cα

})
≤ α (3.8a)

and
Pθ0
({
x : pθ1(x)/pθ0(x) ≥ cα

})
≥ α. (3.8b)

If Pθ0({x : pθ1(x)/pθ0(x) > cα}) = α, then the choice of γα = 0 implies that
(3.7b) is satisfied.. Otherwise, if Pθ0({x : pθ1(x)/pθ0(x) > cα}) < α, it follows
that Pθ0({x : pθ1(x)/pθ0(x) = cα}) > 0, and (3.7b) is satisfied by the choice
γα =

(
α− Pθ0({x : pθ1(x)/pθ0(x) > cα})

)
/Pθ0({x : pθ1(x)/pθ0(x) = cα}).

To find the sought constant cα, we consider the function g : [0,∞)→ [0, 1] defined
by

g(c) := Pθ0
({
x : pθ1(x)/pθ0(x) ≥ c

})
.

This function has the following properties:
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– g is monotonically non-increasing,

– g(0) = Pθ0
({
x : pθ1(x)/pθ0(x) ≥ 0

})
= 1,

– by continuity from above,

lim
c→∞

g(c) = lim
c→∞

Pθ0
({
x : pθ1(x)/pθ0(x) ≥ c

})
= Pθ0

(⋂
c>0

{
x : pθ1(x)/pθ0(x) ≥ c

}
︸ ︷︷ ︸

= {x : pθ0 (x)=0}

)
= 0.

(Note that probability densities should take on values in [0,∞).)

– g is left-continuous. It follows again from continuity from above that

g
(
c0 − 0

)
= lim

c↗c0, c<c0
Pθ0
({
x : pθ1(x)/pθ0(x) ≥ c

})
= Pθ0

( ⋂
c : c<co

{
x : pθ1(x)/pθ0(x) ≥ c

}
︸ ︷︷ ︸

= {x : pθ1 (x)/pθ0 (x)≥c0}

)
= g

(
c0

)
.

Let cα := sup
{
c : g(c) ≥ α

}
. Then, by left-continuity of g,

Pθ0
({
x : pθ1(x)/pθ0(x) ≥ cα

})
= g

(
cα
)

= lim
c↗cα, c<cα

g(c)︸︷︷︸
≥α

≥ α

and
g
(
cα + 0

)
= lim

c↘cα, c>cα
g(c)︸︷︷︸
<α

≤ α.

On the other hand, by continuity from below,

g
(
cα + 0

)
= lim

c↘cα, c>cα
Pθ0
({
x : pθ1(x)/pθ0(x) ≥ c

})
= Pθ0

( ⋃
c : c>cα

{
x : pθ1(x)/pθ0(x) ≥ c

}
︸ ︷︷ ︸

= {x : pθ1 (x)/pθ0 (x)>cα}

)

= Pθ0
({
x : pθ1(x)/pθ0(x) > cα

})
,

i.e. (3.8a) and (3.8b) are satisfied.

If Pθ0
({
x : pθ1(x)/pθ0(x) > cα

})
= α, then choose γα = 0.

If Pθ0
({
x : pθ1(x)/pθ0(x) > cα

})
< α, then

Pθ0
({
x : pθ1(x)/pθ0(x) = cα

})
> 0

and

γα :=
α − Pθ0

({
x : pθ1(x)/pθ0(x) > cα

})
Pθ0
({
x : pθ1(x)/pθ0(x) = cα

})
=

α − Pθ0
({
x : pθ1(x)/pθ0(x) > cα

})
Pθ0
({
x : pθ1(x)/pθ0(x) ≥ cα

})
− Pθ0

({
x : pθ1(x)/pθ0(x) > cα

}) ∈ [0, 1].
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In both cases, we obtain that

Eθ0
[
ϕα(X)

]
= Pθ0

({
x : pθ1(x)/pθ0(x) > cα

})
+ γα Pθ0

({
x : pθ1(x)/pθ0(x) = cα

})
= α,

as required.

The proof that ϕα is a most powerful level α test follows the same lines as the proof
of Lemma 3.1 above.

(ii) Let ϕ∗ be an arbitrary test such that

Pθ0
(
ϕ∗(x) = 1

)
≤ Pθ0

(
ϕα(x) = 1

)
.

We can show analogously to (3.3) that(
ϕα(x)− ϕ∗(x)

)
cα pθ0(x) ≤

(
ϕα(x)− ϕ∗(x)

)
pθ1(x) ∀x ∈ ΩX . (3.9)

If
µ
({
x ∈ ΩX : ϕ∗(x) 6= ϕα(x) and pθ1(x)/pθ0(x) 6= cα

})
> 0,

then

µ
({
x :
(
ϕα(x)− ϕ∗(x)

)
cα pθ0(x) <

(
ϕα(x)− ϕ∗(x)

)
pθ1(x)

})
> 0,

which yields in conjunction with (3.9) that

0 ≤ cα ·
{
Pθ0
(
ϕα(x) = 1

)
− Pθ0

(
ϕ∗(x) = 1

)}
=

∫
ΩX

(
ϕα(x)− ϕ∗(x)

)
cα pθ0(x) dµ(x)

<

∫
ΩX

(
ϕα(x)− ϕ∗(x)

)
pθ1(x) dµ(x)

= Pθ1
(
ϕα(x) = 1

)
− Pθ1

(
ϕ∗(x) = 1

)
,

i.e. ϕ∗ has less power against θ1 than ϕα.

Example 2 (continued)
To obtain a most powerful level α test, we choose cα as the maximum value from
{0, 1, . . . , n+ 1} such that

Pθ0
(
X ≥ cα

)
≥ α.

Then
Pθ0
(
X > cα

)
= Pθ0

(
X ≥ cα + 1

)
< α.

With γα :=
(
α− Pθ0

(
X > cα

))
/Pθ0

(
X = cα

)
we obtain that

Pθ0
(
X > cα

)
+ γα Pθ0

(
X = cα

)
= α.

Hence, ϕα defined by

ϕα(k) =


1, if k > cα,
γα, if k = cα,
0, if k < cα

satisfies Eθ0ϕα(X) = α, i.e. the size of this test equals α. Since ϕα has Neyman-Pearson
structure it is a most powerful level α test.
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Tests of composite hypotheses
Our restriction to simple hypotheses guaranteed that we were able to find best (most
powerful) tests for any given level of significance α > 0; see Theorem 3.2 above. On the
other hand, cases where we know in advance that an unknown parameter can only attain
two possible values are rather rare and it is certainly desirable to extend our results to
the more realistic case of composite hypotheses. Recall that a test ϕ∗ is a uniformly
most powerful (UMP) level α test for H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 if

β
(
θ, ϕ∗

)
≤ α ∀θ ∈ Θ0

and
β
(
θ, ϕ∗

)
≥ β

(
θ, ϕ
)

∀θ ∈ Θ1

holds for all level α tests ϕ. In the following we consider again the problem of testing
hypotheses about the location parameter of normally distributed random variables and
we investigate under which circumstances a UMP test can be obtained.

Suppose that realizations x1, . . . , xn of i.i.d. random variables X1, . . . , Xn are observed,
where Xi ∼ N (θ, σ2) and σ2 is known. Recall that we found for the problem of testing a
simple hypothesis versus a simple alternative,

H0 : θ = θ0 vs. H1 : θ = θ1

with θ0 < θ1, a most powerful level α test ϕα, where

ϕα(x) =

{
1, if x̄n−θ0

σ/
√
n
≥ Φ−1(1− α),

0, if x̄n−θ0
σ/
√
n
< Φ−1(1− α).

Now we consider the test problem

H ′0 : θ ≤ θ0 vs. H ′1 : θ > θ0.

Since the corresponding sets of parameters, Θ0 = (−∞, θ0] and Θ1 = (θ0,∞) contain
both more than one element, we are faced with a composite hypothesis and a composite
alternative. In this particular case it turns out that the test ϕα, which was originally
derived as a most powerful test for H0 versus H1, is actually an optimal test for H ′0
versus H ′1. To see this, we proceed in two steps.

1) The test ϕα depends on θ0 and the fact that θ1 > θ0, however, it does not depend
on the particular value of θ1. Therefore, we obtain that

Eθ1
[
ϕα(X)

]
= sup

{
Eθ1
[
ϕ̄(X)

]
: Eθ0

[
ϕ̄(X)

]
≤ α

}
∀θ1 > θ0, (3.10)

i.e. ϕα is a uniformly most powerful level α test for H0 versus H ′1.

2) We prove first that the power function θ 7→ β(θ, ϕα) = Eθ
[
ϕα(X)

]
is monotonically

increasing. Indeed, we obtain, for θ < θ′,

Eθ
[
ϕα(X)

]
= Pθ

(√
n
X̄n − θ0

σ
≥ Φ−1(1− α)

)
= Pθ

(√
n
X̄n − θ
σ︸ ︷︷ ︸

∼N (0,1)

≥ Φ−1(1− α) +
√
n
θ0 − θ
σ

)

< Pθ′
(√

n
X̄n − θ′

σ︸ ︷︷ ︸
∼N (0,1)

≥ Φ−1(1− α) +
√
n
θ0 − θ′

σ

)
= Eθ′

[
ϕα(X)

]
.
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Therefore we obtain that

Eθ
[
ϕα(X)

]
≤ Eθ0

[
ϕα(X)

]
= α ∀θ ≤ θ0,

i.e. ϕα is a level α test for H ′0.

Since the family of level α tests for H ′0 is contained in the family of level α tests for H0 we
conclude from (3.10) that ϕα is a uniformly most powerful level α tests for H ′0 versus H ′1.

Now we consider a test problem which reveals the limitation of our approach. Suppose
again that realizations x1, . . . , xn of i.i.d. random variablesX1, . . . , Xn are observed, where
Xi ∼ N (θ, σ2) and σ2 is known. We consider the problem of testing a simple hypothesis
versus a two-sided alternative,

H0 : θ = θ0 vs. H ′′1 : θ 6= θ0.

The two-sided alternative hypothesis H ′′1 claims that the parameter θ is simply not equal
to the value θ0 given by the null hypothesis – the direction does not matter. It follows
from Theorem 3.2 that a uniformly most powerful level α for H0 versus H ′′1 does not
exist if α ∈ (0, 1). This can be seen as follows. Suppose that such a test ϕ does exist.
Then ϕ is in particular a most powerful level α for H0 : θ = θ0 versus H>

1 : θ = θ0 + 1.
According to Theorem 3.2, this implies that

ϕ(x) =

{
1, if

√
n x̄n−θ0

σ
> Φ−1(1− α),

0, if
√
n x̄n−θ0

σ
< Φ−1(1− α)

λn − almost everywhere. (3.11a)

On the other hand, ϕ must also be a most powerful level α for H0 : θ = θ0 versus
H<

1 : θ = θ0 − 1. Using again Theorem 3.2, we obtain that

ϕ(x) =

{
1, if

√
n x̄n−θ0

σ
< Φ−1(α),

0, if
√
n x̄n−θ0

σ
> Φ−1(α)

λn − a.e., (3.11b)

which contradicts (3.11a). Hence, for any non-trivial level of significance α ∈ (0, 1), there
does not exist a uniformly most powerful test for H0 : θ = θ0 versus H ′′1 : θ 6= θ0.

Next we are going to prove a general result regarding the existence and uniqueness of
a UMP test for composite hypotheses. Before we proceed, we look back to the prob-
lems of testing hypotheses about the location parameter of normally distributed random
variables. In this case, a uniformly most powerful level α test does not exist when we
have to deal with a two-sided alternative. On the other hand, it exists when a one-sided
hypothesis versus a one-sided alternative has to be tested. In this case, we could start
with a most powerful level α test ϕα for a simple null hypothesis H0 : θ = θ0 versus a
simple alternative H1 : θ = θ1. It turned out that this test does not depend on the par-
ticular value of θ1; it was only essential that θ1 > θ0. This led to the fact that ϕα is also
uniformly most powerful against all values of θ contained in the composite alternative
hypothesis H ′1 : θ > θ0. The reason why most powerful tests of H0 versus alternatives
H1 : θ = θ1 have the same form for all θ1 > θ0 is that the corresponding likelihood ratios
pθ1(x)/pθ0(x) have some sort of similar structure. The next definition makes this point
clear.
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Definition 3.4. Suppose that the distribution of a random variable X taking values
in ΩX is in P =

{
Pθ : θ ∈ Θ

}
, a parametric family indexed by a real-valued parameter θ,

and that P is dominated by a σ-finite measure µ. Let pθ = dPθ/dµ ∀θ ∈ Θ.
The family P is said to have amonotone likelihood ratio in the real-valued statistic

t(X) if and only if, for any θ1 < θ2 (θ1, θ2 ∈ Θ), there exists a monotonically non-
decreasing function gθ1,θ2 : R→ (0,∞) such that

pθ2(x)

pθ1(x)
= gθ1,θ2

(
t(x)

)
∀x ∈ ΩX .

Example
Suppose that X1, . . . , Xn ∼ N (θ, σ2) are independent, θ := Θ := R and σ2 > 0 fixed.
Let pθ be the density of X =

(
X1, . . . , Xn

)T if θ is the corresponding location parameter.
Then, for θ1 < θ2,

pθ2(x)

pθ1(x)
=

exp
{
− 1

2σ2

∑n
i=1

(
xi − θ2

)2
}

exp
{
− 1

2σ2

∑n
i=1

(
xi − θ1

)2
}

= exp
{ 1

2σ2

n∑
i=1

(
xi − θ2 + θ2 − θ1

)2 −
(
xi − θ2

)2
}

= exp
{ n

2σ2

(
θ2 − θ1

)2
+

n

σ2

(
x̄n − θ2

)(
θ2 − θ1

)}
.

Hence, x 7→ pθ2(x)/pθ1(x) is monotonically increasing in t(x) = x̄n.

Theorem 3.3. Let X ∼ Pθ, where θ ∈ Θ ⊆ R. Suppose that there exists some σ-finite
measure µ such that Pθ � µ for all θ ∈ Θ, let pθ = dPθ/dµ be the corresponding densities,
and suppose that the family

{
Pθ : θ ∈ Θ

}
has a monotone likelihood ratio in t(X). We

consider the test problem

H0 : θ ≤ θ0 vs. H1 : θ > θ0,

where θ0 ∈ Θ and
{
θ ∈ Θ: θ ≤ θ0

}
,
{
θ ∈ Θ: θ > θ0

}
are non-empty sets.

(i) For each α ∈ (0, 1), there exists a uniformly most powerful level α test ϕα, which
is equal to

ϕα(x) =


1, if t(x) > cα,
γα, if t(x) = cα,
0, if t(x) < cα,

(3.12a)

where cα ∈ R and γα ∈ [0, 1] are chosen such that

Eθ0
[
ϕα(X)

]
= α. (3.12b)

(ii) Assume in addition that the function gθ0,θ1 is strictly monotonically increasing for
some θ1 > θ0. If ϕ̄ is a uniformly most powerful level α test, α ∈ (0, 1), then

µ
({
x : ϕ̄(x) 6= ϕα(x) and t(x) 6= cα

})
= 0.
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Proof.

(i) a) (Existence of cα and γα)
We have to show that there exist cα ∈ R and γα ∈ [0, 1] such that

Pθ0
(
t(X) > cα

)
+ γα Pθ0

(
t(X) = cα

)
= α. (3.13)

To this end, we first seek a constant cα such that

Pθ0
(
t(X) > cα

)
≤ α (3.14a)

and
Pθ0
(
t(X) ≥ cα

)
≥ α. (3.14b)

If Pθ0(t(X) > cα) = α, then the choice of γα = 0 implies that (3.13) is satis-
fied. Otherwise, if Pθ0(t(X) > cα) < α, it follows that Pθ0(t(X) = cα) > 0,
and (3.13) is satisfied by the choice γα =

(
α−Pθ0(t(X) > cα)

)
/Pθ0(t(X) = cα).

To find an appropriate value of cα, we consider the function h : R→ [0, 1] be
defined by

h(c) := Pθ0
(
t(X) ≥ c

)
.

Then h is monotonically non-increasing, left-continuous and

h(c) −→
c→∞

0,

h(c) −→
c→−∞

1.

Let cα := sup
{
c : h(c) ≥ α

}
. Then cα ∈ R,

Pθ0
(
t(X) ≥ cα

)
≥ α (since h is left-continuous)

and

Pθ0
(
t(X) > cα

)
= Pθ0

( ⋃
c : c>cα

{
x : t(x) ≥ c

})
= lim

c↘cα, c>cα
Pθ0
(
t(X) ≥ c

)︸ ︷︷ ︸
<α

≤ α.

Now we distinguish between two cases:
If Pθ0

(
t(X) > cα

)
= α, then we set γα := 0.

If Pθ0
(
t(X) > cα

)
< α, then Pθ0

(
t(X) = cα

)
= Pθ0

(
t(X) ≥ cα

)
− Pθ0

(
t(X) >

cα
)
> 0 and we set

γα :=
α − Pθ0

(
t(X) > cα

)
Pθ0
(
t(X) = cα

) ∈ [0, 1].

In both cases, cα and γα are such that (3.13) is satisfied.

b) (Optimality of ϕα)
Let ϕ̄ be an arbitrary test such that Eθ0

[
ϕ̄(X)

]
≤ α and let θ1 > θ0 be

arbitrary. We have that

pθ1(x)

pθ0(x)
= gθ0,θ1

(
t(x)

)
.
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Let dα := gθ0,θ1
(
cα
)
.

Since g : R → (0,∞) is monotonically non-decreasing, we obtain that
pθ1(x) ≥ dα pθ0(x) when t(x) ≥ cα and pθ1(x) ≤ dα pθ0(x) when t(x) ≤ cα.
Therefore,

pθ1(x) < dα pθ0(x) implies t(x) < cα,

pθ1(x) > dα pθ0(x) implies t(x) > cα.

Hence, (
ϕα(x)− ϕ̄(x)

)(
pθ1(x)− dα pθ0(x)

)
≥ 0 ∀x ∈ ΩX .

Now we obtain optimality of the test ϕα:

0 ≤ dαEθ0
[
ϕα(X)− ϕ̄(X)

]
=

∫
ΩX

(
ϕα(x)− ϕ̄(x)

)
dα pθ0(x) dµ(x)

≤
∫

ΩX

(
ϕα(x)− ϕ̄(x)

)
pθ1(x) dµ(x)

= Eθ1
[
ϕα(X)

]
− Eθ1

[
ϕ̄(X)

]
.

This means that the power of ϕ̄ against the alternative θ1 is not greater than
that of ϕα. Since this relation holds true for all θ1 > θ0 we conclude that ϕα
is a uniformly most powerful test of H=

0 : θ = θ0 versus H1 : θ > θ0.

c) (Admissibility w.r.t. H0)
It remains to show that

Eθ
[
ϕα(X)

]
≤ α ∀θ < θ0. (3.15)

We can see by calculations analogous to those in part b) that (1 − ϕα) is a
UMP test of size 1− α for H=

0 : θ = θ0 versus H<
1 : θ < θ0. Since ϕ∗ given by

ϕ∗(x) = 1−α ∀x ∈ ΩX is also a level 1−α test for H=
0 vs. H<

1 we obtain that

Eθ
[
1− ϕα(X)

]
≥ Eθ

[
ϕ∗(X)

]
= 1 − α ∀θ < θ0,

which implies that (3.15) is satisfied. Hence, ϕα is a level α test for H0 : θ ≤ θ0

versus H1. Since the set of level α tests for H0 : θ ≤ 0 is contained in the set
of level α tests for H=

0 : θ = θ0 we conclude in conjunction with part b) that
ϕα is a UMP level α test of H0 versus H1.

(ii) (Uniqueness)
Let ϕ̄ be an arbitrary level α test for H0 vs. H1, that is sup

{
Eθϕ̄(X) : θ ≤ θ0

}
≤ α.

By assumption, there exists some θ1 > θ0 such that the function gθ0,θ1 is strictly
monotonically increasing. Let, as above, dα := gθ0,θ1(cα). Then

pθ1(x) < dα pθ0(x) if and only if t(x) < cα,

pθ1(x) > dα pθ0(x) if and only if t(x) > cα.

Hence, {
x ∈ ΩX : ϕ̄(x) 6= ϕα(x) and t(x) 6= cα

}
=

{
x ∈ ΩX : ϕ̄(x) 6= ϕα(x) and pθ1(x) 6= dα pθ0(x)

}
.
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Assume that

µ
({
x ∈ ΩX : ϕ̄(x) 6= ϕα(x) and t(x) 6= cα

})
> 0.

Since (
ϕα(x)− ϕ̄(x)

)(
pθ1(x)− dα pθ0(x)

)
≥ 0 ∀x ∈ ΩX

we obtain that

0 ≤ dα

(
Eθ0ϕα(X) − Eθ0ϕ̄(X)

)
=

∫
ΩX

(
ϕα(x)− ϕ̄(x)

)
dα pθ0(x) dµ(x)

<

∫
ΩX

(
ϕα(x)− ϕ̄(x)

)
pθ1(x) dµ(x)

= Eθ1ϕα(X) − Eθ1ϕ̄(X).

Hence, ϕ̄ has less power against the alternative θ1 than ϕα. Therefore, ϕ̄ is not a
UMP level α test of H0 : θ ≤ θ0 versus H1 : θ > θ0.

The p-value
Our approach to testing hypotheses involves a subjective choice of a level of signifi-
cance. It could happen that experimenter I may be satisfied to reject the hypothesis H0

using a test with size α = 0.05, while experimenter II insists on using α = 0.01. Even
if both use the same test statistic, it is then possible that experimenter I rejects the
hypothesis H0 while experimenter II accepts H0 on the basis of the same outcome x of
the experiment. Moreover, in some cases an ultimate decision for or against a hypothe-
sis H0 is not necessary. For example, econometricians often use regression models with
a large number of parameters. Of course, it would be desirable to reduce such a model
by dropping all superfluous parameters which do not contribute to explain a cause-effect
relation. In such a case, it is natural to test hypotheses about the significance of these
parameters. However, an ultimate decision about inclusion or exclusion of such a pa-
rameters is not absolutely necessary since one can maintain the maximal model. The
difficulty of selecting a level of significance may be overcome by reporting the outcome
of the experiment in terms of the observed size or p-value of the test. Recall that the
size of a nonrandomized test based on a statistic T and a critical value t is given by

α(t) = sup
{
Pθ(T (X) ≥ t) : θ ∈ Θ0

}
.

(This should not be mixed up with the level of significance; a test with size α is a level ᾱ
test for all ᾱ ≥ α.) If (ϕα)α∈(0,1) is a family of tests such that ϕα has size α, then
the p-value α̂(x) is a statistic which is defined as the smallest level of significance at
which an experimenter using T would reject on the basis of the observed outcome x,
i.e. α̂(x) = inf{α : ϕα(x) = 1}.
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Example
Suppose that realizations x1, . . . , xn of i.i.d. random variables X1, . . . , Xn are observed,
Xi ∼ N(θ, σ2) (i = 1, . . . , n), where σ2 > 0 is known. A most powerful level α test ϕα for

H0 : θ = θ0 vs. H1 : θ = θ1,

θ0 < θ1 is given by

ϕα(x) =

{
1, if

√
n x̄n−θ0

σ
≥ Φ−1(1− α),

0, if
√
n x̄n−θ0

σ
< Φ−1(1− α

If X = x, then the actual p-value α̂(x) is such that

Φ−1
(
1− α̂(x)

)
=
√
n
x̄n − θ0

σ
,

which is equivalent to

α̂(x) = 1 − Φ
(√

n
x̄n − θ0

σ

)
.

Note that α̂(x) depends on the realization x of X and is therefore random; α̂(X) is the
corresponding statistic (random variable).

While a small p-value provides a strong evidence against H0, a medium value does not
mean much. This is indicated by the following lemma.

Lemma 3.4. Suppose that we observe a realization x of some random varieble X and
that

(
ϕα)α∈[0,1] is a family of nonrandomized tests for H0 : θ = θ0 versus any alternative,

where Pθ0
(
ϕα(X) = 1

)
= α. Moreover, we assume that, for 0 ≤ α ≤ β ≤ 1,

ϕα(x) ≤ ϕβ(x) ∀x ∈ ΩX .

Then
P
α̂(X)
θ0

= Uniform[0, 1].

Proof. We have to show that

Pθ0
(
α̂(X) ≤ u

)
= u ∀u ∈ (0, 1).

First of all, we have{
x : α̂(x) < u

}
=
{
x : inf{α : ϕα(x) = 1} < u

}
⊆
{
x : ϕu(x) = 1

}
and {

x : ϕu(x) = 1
}
⊆
{
x : inf{α : ϕα(x) = 1} ≤ u

}
=
{
x : α̂(x) ≤ u

}
.

Therefore,

Pθ0
(
α̂(X) < u

)
≤ Pθ0

(
ϕu(X) = 1

)
= u ≤ Pθ0

(
α̂(X) ≤ u

)
,

which implies, for 0 ≤ u < u+ ε ≤ 1,

u ≤ Pθ0
(
α̂(X) ≤ u

)
≤ Pθ0

(
α̂(X) < u+ ε

)
≤ u+ ε.
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3.3 Likelihood ratio tests

We have seen in the previous subsection that a uniformly most powerful level α test may
not exist. Indeed, when realizations of i.i.d. random variables X1, . . . , Xn ∼ N (θ, σ2)
are observed, there does not exist a UMP test for H0 : θ = θ0 versus the two-sided
alternativeH1 : θ 6= θ0. In view of this, there is no clear guideline how a good test should
be constructed. In this subsection, we introduce a generalization of the Neyman-Pearson
statistics which yields good procedures for a great number of hypothesis testing problems.
Suppose that we observe a realization x = (x1, . . . , xn)T of a random variable X =
(X1, . . . , Xn)T ∼ Pθ and that we wish to test H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1. Suppose
further that there exists a σ-finite measure µ such that Pθ � µ for all θ ∈ Θ = Θ0 ∪Θ1

and let pθ := dPθ/dµ denote the corresponding densities. The test statistic we want to
consider is the likelihood ratio given by

L(x) =
sup

{
pθ(x) : θ ∈ Θ1

}
sup

{
pθ(x) : θ ∈ Θ0

} . (3.16)

Tests that reject H0 for large values of L(x) are called likelihood ratio tests. The
statistic L(x) coincides with the optimal test statistic when Θ0 =

{
θ0

}
and Θ1 =

{
θ1

}
.

In some cases we shall consider, θ 7→ pθ(x) is a continuous function of θ for all x and the
set Θ1 is dense in Θ = Θ0 ∪Θ1. Therefore, sup

{
pθ(x) : θ ∈ Θ1

}
= sup

{
pθ(x) : θ ∈ Θ

}
,

and the test statistic L(x) is equal to

L̃(x) =
sup

{
pθ(x) : θ ∈ Θ

}
sup

{
pθ(x) : θ ∈ Θ0

} . (3.17)

For typical “textbook examples” maximum likelihood estimators exist and we may proceed
as follows:

1) Calculate the maximum likelihood estimate θ̂ of θ where θ may vary in Θ = Θ0∪Θ1.

2) Calculate the maximum likelihood estimate θ̂0 of θ in the restricted model where θ
may vary only in Θ0.

3) Form L̃(x) = pθ̂(x)/pθ̂0(x).

4) Find a function h which is strictly increasing on the range of L̃ such that h
(
L̃(X)

)
has a simple form and a tabulated distribution under H0. Since h

(
L̃(X)

)
is equiv-

alent to L̃(X) we specify the size α likelihood ratio test through the test statis-
tic h

(
L̃(X)

)
and its (1− α)-quantile obtained from the table.

In what follows we consider a few examples.

Example 1: Two-sided z test
Suppose that we observe realizations x1, . . . , xn of i.i.d. random variables
X1, . . . , Xn ∼ N (θ, σ2), where θ ∈ Θ := R is the parameter of interest and σ2 > 0 is
assumed to be known. We consider the test problem

H0 : θ = θ0 vs. H1 : θ 6= θ0

and we intend to derive a size α likelihood ratio test.
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Solution:
Let X =

(
X1, . . . , Xn

)T and x =
(
x1, . . . , xn

)T and let pθ be the density of X under Pθ.
Since θ 7→ pθ(x) is a continuous function and Θ1 =

{
θ ∈ Θ: θ 6= θ0

}
is dense in Θ,

the statistic L(x) is equal to L̃(x) and we only have to find the respective maximum
likelihood estimates of θ in the unrestricted model and in the model given by Θ0 = {θ0}.
The former is given by θ̂ = X̄n and, since H0 is a simple hypothesis, the latter by θ̂0 = θ0.
The statistic L̃(x) is equal to

L̃(x) =
pθ̂(x)

pθ̂0(x)

=
exp

{
− 1

2σ2

∑n
i=1(xi − x̄n)2

}
exp

{
− 1

2σ2

∑n
i=1(xi − θ0)2

}
= exp

{ 1

2σ2

[ n∑
i=1

(xi − x̄n + x̄n − θ0)2 −
n∑
i=1

(xi − x̄n)2
]}

= exp
{ n

2σ2
(x̄n − θ0)2

}
.

We see that L̃(x) is strictly increasing in
∣∣x̄n− θ0

∣∣. Therefore, the searched-for likelihood
ratio test has the following form:

ϕ(x) =


1, if L̃(x) > cα,

γα, if L̃(x) = cα,

0, if L̃(x) < cα

=


1, if |x̄n − θ0| > c′α,
γα, if |x̄n − θ0| = c′α,
0, if |x̄n − θ0| < c′α

It remains to determine an appropriate critical value c′α and the randomization con-
stant γα. Under the null hypothesis H0 we have that X̄n ∼ N (θ0, σ

2/n). Therefore, it is
most convenient if ϕ is represented in the following equivalent form:

ϕ(x) =


1, if

√
n|x̄n−θ0|

σ
> c′′α,

γα, if
√
n|x̄n−θ0|

σ
= c′′α,

0, if
√
n|x̄n−θ0|

σ
< c′′α

This test has size α ∈ (0, 1) if c′′α ∈ R and γα ∈ [0, 1] are chosen such that

α = sup
θ∈Θ0

Eθϕ(X) = Eθ0ϕ(X)

= Pθ0

(∣∣∣ √n(X̄n − θ0)

σ︸ ︷︷ ︸
∼N (0,1)

∣∣∣ > c′′α

)
+ γα Pθ0

(∣∣∣√n(X̄n − θ0)

σ

∣∣∣ = c′′α

)
︸ ︷︷ ︸

= 0

,

which is accomplished by the choice c′′α = Φ−1(1− α/2) and γα = 1.
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Example 2: Two-sided t test
Suppose that we observe realizations x1, . . . , xn of i.i.d. random variables X1, . . . , Xn ∼
N (µ, σ2). Now we assume that both µ and σ2 are unknown and the underlying distri-
butions are therefore parametrized by θ =

(
µ
σ2

)
, where θ ∈ Θ := R × (0,∞). We intend

to test again whether the location parameter is equal to some particular value, say µ0.
However, we have to take into account that σ2 is also unknown and the test problem is
therefore correctly stated as follows.

H0 : θ ∈ Θ0 := {µ0}× (0,∞) vs. H1 : θ = Θ1 = Θ \Θ0 = (R \ {µ0})× (0,∞).

We seek again a size α likelihood ratio test.

Solution:
Let pθ be the density of X =

(
X1, . . . , Xn

)T under Pθ. Since θ 7→ pθ(x) is continuous for
all x ∈ Rn and Θ1 is dense in Θ we obtain that L(x) = L̃(x) = pθ̂(x)/pθ̂0(x), where θ̂ and
θ̂0 are the maximum likelihood estimators when θ varies in Θ and Θ0, respectively.

In the unrestricted case, the corresponding maximum likelihood estimator θ̂ of θ is
already known. It is given by θ̂ =

( µ̂
σ̂2

)
=
(

X̄n
n−1

∑n
i=1(Xi−X̄n)2

)
. If θ varies in Θ0, then

the maximum likelihood estimator µ̂0 of the location parameter is given by µ0 and the
maximum likelihood estimator σ̂2

0 of the variance parameter can be shown to be equal to
n−1

∑n
i=1(Xi − µ0)2. Hence, θ̂0 =

(
µ0

n−1
∑n
i=1(Xi−µ0)2

)
. The test statistic L̃(X) is given by

L̃(x) =

1

(2π σ̂2)n/2
exp

{
−

=n/2︷ ︸︸ ︷
1

2σ̂2

n∑
i=1

(xi − x̄n)2
}

1

(2π σ̂2
0)n/2

exp
{
− 1

2σ̂2
0

n∑
i=1

(xi − µ0)2

︸ ︷︷ ︸
=n/2

}

=

(
σ̂2

0

σ̂2

)n/2
=

(
n−1

∑n
i=1(xi − x̄n + x̄n − µ0)2

n−1
∑n

i=1(xi − x̄n)2

)n/2
=

(
1 +

(x̄n − µ0)2

σ̂2

)n/2
.

Therefore, the searched-for likelihood ratio test can be represented as

ϕ(x) =


1, if (x̄n−µ0)2

n−1
∑n
i=1(xi−x̄n)2 > cα,

γα, if (x̄n−µ0)2

n−1
∑n
i=1(xi−x̄n)2 = cα,

0, if (x̄n−µ0)2

n−1
∑n
i=1(xi−x̄n)2 < cα.

To obtain a size α test, we have to find cα ∈ R and γα ∈ [0, 1] such that

sup
θ∈Θ0

Eθϕ(X) = α.

It will be shown below that, in case of µ = µ0, the distribution of

Tn(X) =

√
n(X̄n − µ0)√

(n− 1)−1
∑n

i=1(Xi − X̄n)2
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does not depend on the particular value of σ2. In fact, we will see that Tn(X) has under
the null hypothesis a so-called t distribution with n− 1 degrees of freedom. Therefore, it
is most convenient to represent the likelihood ratio test in the following form:

ϕ(x) =


1, if |Tn(x)| > c′α,
γα, if |Tn(x)| = c′α,
0, if |Tn(x)| < c′α.

The constants c′α ∈ R and γα ∈ [0, 1] have to be chosen such that the size of the test
equals a prescribed value α > 0. Since a t distribution has a density which is symmetric
about 0, we choose c′α as the (1− α/2)-quantile of a t distribution with n− 1 degrees of
freedom. Since P(µ0

σ2)
(
|Tn| = c′α

)
= 0 we can choose γα as an arbitrary number from [0, 1].

In particular, there is no need for a randomization and we may choose γα = 1.

In the following we give a detailed derivation of the distribution of the statistic Tn(X)
under the null hypothesis. We begin with a constructive definition of the t distribution.

Definition 3.5.

(i) Let X1, . . . , Xk be independent and identically distributed, Xi ∼ N (0, 1) (i =
1, . . . , k). Then

Y := X2
1 + · · ·+X2

k

has a χ2 distribution with k degrees of freedom. (Y ∼ χ2
k)

(ii) Let X ∼ N (0, 1) and Y ∼ χ2
k be independent. Then

Z :=
X√
Y/k

has a t distribution with k degrees of freedom. (Z ∼ tk)

The following theorem states that the above statistic Tn(X) has a tn−1 distribution under
the null hypothesis.

Theorem 3.5. Let X1, . . . , Xn ∼ N
(
µ, σ2

)
be independent. Then

Tn(X) =

√
n(X̄n − µ)

σ̂n
∼ tn−1,

where σ̂n =
√

1
n−1

∑n
i=1(Xi − X̄n)2.

Before we prove this theorem we derive two auxiliary results.

Lemma 3.6. Let X ∼ N
(
µ, σ2In

)
, µ ∈ Rn, σ2 > 0, and let A and B be (k × n)- and

(l × n)-matrices, respectively.
If ABT = 0k×l, then AX and BX are independent.

(0k×l denotes the matrix with k rows and l columns where all entries are zero.)
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Proof. We derive first the characteristic function of a multivariate normal distribution
with parameters µ ∈ Rn and Σ. It is well-known that the characteristic function ϕX of a
standard normal variable X ∼ N (0, 1) is given by

ϕX(t) = E
[
eitX

]
= e−t

2/2 ∀t ∈ R.

If now X = (X1, . . . , Xn)T ∼ N
(
0n, In

)
, then X1, . . . , Xn are independent and follow a

standard normal distribution. Therefore, the characteristic function ϕX of X is given by

ϕX(t) = E
[
eit

TX
]

= E
[ n∏
j=1

eitjXj
]

=
n∏
j=1

E
[
eitjXj

]
=

n∏
j=1

e−t
2
j/2 = e−t

T t/2 ∀t = (t1, . . . , tn)T ∈ Rn.

If Y = Σ1/2X + µ, then Y ∼ N (µ,Σ) and the corresponding characteristic function ϕY
is given by

ϕY (t) = E
[
eit

T (Σ1/2X+µ)
]

= eit
TµEeit

T (Σ1/2X) = eit
TµEei(Σ

1/2t)TX

= eit
Tµ ϕX(Σ1/2t) = eit

Tµ−tTΣt/2 ∀t = (t1, . . . , tn)T ∈ Rn.

Let now X ∼ N
(
µ, σ2In

)
. Then ϕX(t) = eit

Tµ−tT σ2Int/2 ∀t ∈ Rn. For arbitrary
t1 ∈ Rk, t2 ∈ Rl, we obtain that

ϕ(AXBX)

(( t1
t2

))
= E

[
e
i(t1t2)

T
(AB)X] = E

[
ei(t

T
1 A+tT2 B)X

]
= ei(t

T
1 A+tT2 B)µ− (tT1 A+tT2 B)σ2In(AT t1+BT t2)

= eit
T
1 Aµ−σ2tT1 AA

T t1/2 eit
T
2 Bµ−σ2tT2 BB

T t2/2.

(e−σ2tT1 AB
T t2 = 1 since, by assumption, ABT = 0k×l.)

Moreover, we see that

ϕAX(t1) = Eeit
T
1 (AX) = Eei(t

T
1 A)X = ϕX(AT t1)

= eit
T
1 Aµ−σ2tT1 AA

T t1/2

and, analogously,

ϕBX(t2) = eit
T
2 Bµ−σ2tT2 BB

T t2/2. (3.18)

Therefore, we have

ϕ(AXBX)

(( t1
t2

))
= ϕAX(t1)ϕBX(t2) ∀t1 ∈ Rk, ∀t2 ∈ Rl,

which implies that AX and BX are independent.

Lemma 3.7. Let X ∼ N
(
0n, In

)
and let M be a symmetric (n × n)-matrix such that

M2 = M . (M is an orthogonal projection matrix.)
Then

XTMX ∼ χ2
m,

where m = rank(M).
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Proof. We use the spectral decomposition of M :

M = DTDiag
(

1, . . . , 1︸ ︷︷ ︸
m times

, 0, . . . , 0︸ ︷︷ ︸
n−m times

)
D,

where D is an orthogonal matrix, i.e. DDT = DTD = In. Then

Y =
(
Y1, . . . , Yn

)T
:= DX ∼ N

(
D0n, DInD

T
)

= N
(
0n, In

)
and, therefore,

XTMX = XTDTDiag
(
1, . . . , 1, 0, . . . , 0

)
DX

=
m∑
i=1

Y 2
i ∼ χ2

m.

Proof of Theorem 3.5. We have that

Tn(X) =

√
n
(
X̄n − µ

)
σ̂n

=

√
n
(
X̄n − µ

)
/σ√

1
n−1

∑n
i=1(Xi − X̄n)2/σ2

=:
V1√

V2/(n− 1)
.

We show that

a) V1 ∼ N (0, 1),

b) V2 ∼ χ2
n−1,

c) V1 and V2 are independent.

Then we obtain, according to our definition of a t distribution, that

Tn(X) =
V1√

V2/(n− 1)
∼ tn−1.

While a) is obvious, it takes a few lines to prove b). Let Yi := (Xi − µ)/σ. Then
Y1, . . . , Yn are independent and follow a standard normal distribution. We have

V2 =
n∑
i=1

(Xi − µ
σ

− X̄n − µ
σ

)2

=
n∑
i=1

(
Yi − Ȳn

)2

=
n∑
i=1

Y 2
i − nȲ 2

n = Y TMY,

where

M = In −

 1/n . . . 1/n
... . . . ...

1/n . . . 1/n

 , Y =

 Y1
...
Yn

 .

Since M is an orthogonal projection matrix of rank n− 1 it follows from Lemma 3.7 that
V2 ∼ χ2

n−1.
Note that V1 =

(
1/
√
n, · · · , 1/

√
n
)
Y and V2 = Y TMTMY . Since(

1/
√
n, · · · , 1/

√
n
)
MT = 01×n it follows from Lemma 3.6 that the random variables V1

and MY , and therefore V1 and V2 = Y TMTMY as well, are independent.
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After studying the distribution of our test statistic under H0 we summarize our find-
ings. On the basis of realizations x1, . . . , xn of i.i.d. random variables X1, . . . , Xn ∼
N (µ, σ2) we may test

H0 : θ ∈ Θ0 := {µ0} × (0,∞) vs. H1 : θ = (R \ {µ0})× (0,∞).

Our likelihood ratio approach led us to the so-called two-sided t test ϕ, which for a given
level of significance α ∈ (0, 1) has the form

ϕ(x) =

{
1, if |Tn(x)| ≥ tn−1,1−α/2,
0, if |Tn(x)| < tn−1,1−α/2,

where tn−1,1−α/2 denotes the (1− α/2)-quantile of a t distribution with n− 1 degrees of
freedom. Indeed, if θ ∈ Θ0, then P

Tn(X)
θ = tn−1 and we obtain

Pθ
(∣∣Tn(X)

∣∣ ≥ tn−1,1−α/2
)

= Pθ
(
Tn(X) ≥ tn−1,1−α/2

)︸ ︷︷ ︸
=α/2

+ Pθ
(
Tn(X) ≤ −tn−1,1−α/2

)︸ ︷︷ ︸
=α/2

= α.

Example 3: One-sided t test
Suppose again that we observe realizations x1, . . . , xn of i.i.d. random variables
X1, . . . , Xn ∼ N (µ, σ2). Now we intend to test whether the location parameter is less
than or equal to some particular value µ0. For θ =

(
µ
σ2

)
, the corresponding pair of

hypotheses is given by

H ′0 : θ ∈ Θ0 := (−∞, µ0]× (0,∞) vs. H ′1 : θ = Θ1 = (µ0,∞)× (0,∞).

We derive again a size α likelihood ratio test.

Solution:
The density p( µσ2) of X =

(
X1, . . . , Xn

)T under P( µσ2) is given by

p( µσ2)(x) =
1

(2πσ2)n/2
exp

{
− 1

2σ2

[ n∑
i=1

(xi − x̄n)2 + n(x̄n − µ)2
]}
.

We will see that

L(x) =
sup

{
pθ(x) : θ ∈ Θ1

}
sup

{
pθ(x) : θ ∈ Θ0

} =
pθ̂1(x)

pθ̂0(x)
,

where θ̂1 and θ̂0 are the maximum likelihood estimators under the respective restrictions
θ ∈ Θ1 and θ ∈ Θ0.

It can be shown that

pθ̂0(x) = sup
{
pθ(x) : θ ∈ Θ0

}
,

for θ̂0 =
(
µ̂0

σ̂2
0

)
such that

µ̂0 =

{
x̄n, if x̄n ≤ µ0,
µ0, if x̄n > µ0

and

σ̂2
0 =

1

n

n∑
i=1

(
xi − µ̂0

)2
.
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Analogously we can see that

pθ̂1(x) = sup
{
pθ(x) : θ ∈ Θ1

}
,

for θ̂1 =
(
µ̂1

σ̂2
1

)
such that

µ̂1 =

{
x̄n, if x̄n ≥ µ0,
µ0, if x̄n < µ0

and

σ̂2
1 =

1

n

n∑
i=1

(
xi − µ̂1

)2
.

Since

L(x) =
sup

{
pθ(x) : θ ∈ Θ1

}
sup

{
pθ(x) : θ ∈ Θ0

}
=

pθ̂1(x)

pθ̂0(x)

=

1
(2πσ̂2

1)n/2
exp

{
−

=n/2︷ ︸︸ ︷
1

2σ̂2
1

n∑
i=1

(xi − µ̂1)2
}

1
(2πσ̂2

0)n/2
exp

{
− 1

2σ̂2
0

n∑
i=1

(xi − µ̂0)2
}

︸ ︷︷ ︸
=n/2

we see that the test statistic is strictly increasing in σ̂2
0/σ̂

2
1. We obtain

σ̂2
0 =

1

n

n∑
i=1

(
xi − µ̂0

)2
=

1

n

n∑
i=1

(
xi − x̄n

)2

︸ ︷︷ ︸
=: σ̃2

n

+
(
x̄n − µ̂0

)2

and, analogously,

σ̂2
1 =

1

n

n∑
i=1

(
xi − x̄n

)2
+
(
x̄n − µ̂1

)2
.

This leads to

σ̂2
0

σ̂2
1

=
σ̃2
n + (x̄n − µ̂0)2

σ̃2
n + (x̄n − µ̂1)2

=

{
σ̃2
n + (x̄n−µ0)2

σ̃2
n

, if x̄n ≥ µ0,
σ̃2
n

σ̃2
n + (x̄n−µ0)2 , if x̄n ≤ µ0.

See see from this representation that σ̂2
0/σ̂

2
1 is strictly increasing in x̄n−µ0

σ̃n
and therefore

also in Tn(x) := x̄n−µ0

σ̂n
. Hence, the searched-for likelihood ratio test for H ′0 : θ ∈ Θ′0

versus H ′1 : θ ∈ Θ′1 is given by

ϕ(x) =

{
1, if Tn(x) ≥ c,
0, if Tn(x) < c.

This test has size α if c = tn−1,1−α.



89

While most powerful tests derived from the Neyman-Pearson lemma provide an op-
timal tradeoff between size and power against all alternatives, we do not have such a
property for likelihood ratio tests in general. In fact, when constructing a likelihood ratio
test, we have a prescribed test statistic and the focus is only on the choice of the critical
value such that the size of the test equals some given value. On the other hand, it seems
to be natural when the probability of rejection under the null hypothesis is smaller than
that under the possible alternatives. Such a property can actually be shown to hold
for some tests derived by the likelihood ratio approach. We consider the example of a
two-sided z test.

Example
Suppose that we observe realizations x1, . . . , xn of i.i.d. random variables
X1, . . . , Xn ∼ N (θ, σ2), where θ ∈ Θ := R is the parameter of interest, σ2 > 0 is
assumed to be known, and we wish to test

H0 : θ = θ0 vs. H1 : θ 6= θ0.

As already shown, a size α likelihood ratio test ϕα (α ∈ (0, 1)) is given by

ϕα(x) =

{
1, if

∣∣√n(x̄n−θ0)
σ

∣∣ ≥ Φ−1(1− α/2),

0, if
∣∣√n(x̄n−θ0)

σ

∣∣ < Φ−1(1− α/2).

While we have that
Eθ0
[
ϕα(X)

]
= α,

it follows that the power against any alternative is strictly greater than α. Since the
density of a N (θ, 1) distribution is strictly increasing on (−∞, θ], strictly decreasing
on [θ,∞), and symmetric about θ we obtain, for all θ 6= θ0,

Pθ
(
− c < X̄n − θ0 < c

)
< Pθ

(
− c < X̄n − θ < c

)
∀c > 0, (3.19)

which implies that

Eθ
[
ϕα(X)

]
= 1 − Pθ

(
− Φ−1(1− α/2) <

√
n(X̄n − θ0)

σ
< Φ−1(1− α/2)

)
︸ ︷︷ ︸

<Pθ

(
−Φ−1(1−α/2)<

√
n(X̄n−θ)

σ
<Φ−1(1−α/2)

)
= 1−α

> α.

We formalize this property by the following definition.

Definition 3.6. Suppose that ϕ is a test based on a realization x of a random vari-
able X ∼ Pθ.

ϕ is said to be an unbiased test for H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 if

sup
{
Eθϕ(X) : θ ∈ Θ0

}
≤ inf

{
Eθϕ(X) : θ ∈ Θ1

}
.
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The following examples show that some commonly used tests share the property of un-
biasedness.

Examples

1) If ϕ based on X is a uniformly most powerful level α test for H0 : θ ∈ Θ0 versus
H1 : θ ∈ Θ1, then ϕ is an unbiased test. Indeed, we have that

sup
{
Eθϕ(X) : θ ∈ Θ0

}
≤ α.

Since ϕ̄ given by ϕ̄(x) = α for all x is also a level α test we obtain that

Eθϕ(X) ≥ Eθϕ̄(X) = α ∀θ ∈ Θ1,

that is, ϕ is unbiased.

2) (Two-sided t test)
Recall that, based on i.i.d. random variables X1, . . . , Xn ∼ N (µ, σ2), a size α like-
lihood ratio test ϕ for

H0 : θ :=

(
µ

σ2

)
∈ Θ0 = {µ0} × (0,∞) vs. H1 : θ ∈ Θ1 = (R \ {µ0})× (0,∞)

is given by

ϕ(x) =

{
1, if

∣∣√n(x̄n−µ0)
σ̂

∣∣ ≥ tn−1,1−α/2,

0, if
∣∣√n(x̄n−µ0)

σ̂

∣∣ < tn−1,1−α/2.

As already shown, the critical value tn−1,1−α/2 is chosen such that

Eθϕ(X) = α ∀θ ∈ Θ0.

Let now θ ∈ Θ1, i.e. µ 6= µ0. Using the independence of X̄n and
σ̂ =

√
1

n−1

∑n
i=1(Xi − X̄n)2 we obtain from (3.19) that

Eθϕ(X) = Pθ

(∣∣∣√n(X̄n − µ0)

σ̂

∣∣∣ ≥ tn−1,1−α/2

)
=

∫
(0,∞)

Pθ
(√

n|X̄n − µ0| ≥ σ̂ tn−1,1−α/2
∣∣σ̂ = u

)
dP σ̂

θ (u)

=

∫
(0,∞)

Pθ
(√

n|X̄n − µ0| ≥ u tn−1,1−α/2
)︸ ︷︷ ︸

>P
(µ0
σ2)

(√
n|X̄n−µ0| ≥u tn−1,1−α/2

) d P σ̂
θ︸︷︷︸

=P σ̂

(µ0
σ2)

(u)

>

∫
(0,∞)

P(µ0
σ2)
(√

n|X̄n − µ0| ≥ u tn−1,1−α/2
)
dP σ̂

(µ0
σ2)

(u)

= . . . = E(µ0
σ2)
ϕ(X) = α.

Therefore, ϕ is an unbiased test.

We would like to add that we can show by analogous arguments that one-sided z and
t tests are also unbiased for the corresponding test problems with one-sided hypotheses
and alternatives.
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In what follows, we introduce one of the most important class of likelihood ratio tests,
the so-called F tests. These tests are derived in the context of linear regression models,
where the errors are assumed to be independent and identically distributed, following a
normal distribution. Recall that such a linear regression model can be represented in
vector/matrix form as Y1

...
Yn


︸ ︷︷ ︸

=:Y

=

 x11 . . . x1k
... . . . ...
xn1 . . . xnk


︸ ︷︷ ︸

=:X

 θ1
...
θk


︸ ︷︷ ︸

=: θ

+

 ε1
...
εn


︸ ︷︷ ︸

=: ε

.

Y1, . . . , Yn are the dependent variables. The matrixX is called design matrix and contains
the explanatory variables xij. We suppose throughout that the xij are nonrandom. The
term design refers to the fact that, in case of a planned experiment, it it is related to
the actual experimental design (the specific setting of the explanatory variables). The
vector θ contains unknown parameters which specify the linear relationship between the
explanatory variables and the corresponding dependent ones. The vector ε of errors is
assumed to follow a multivariate normal distribution, ε ∼ N (0n, σ

2In).
Typical hypotheses to be tested are e.g. H0,i : θi = 0 which means that the variables

x1i, . . . , xni do not contribute to an explanation (prediction) of the respective dependent
variables Y1, . . . , Yn. If such a hypothesis is actually true, then we could simplify the
model by deleting the corresponding column of the design matrix and dropping the
corresponding component of the vector θ. Another field of application of F tests is the
comparison of different medical treatments. Suppose that an experiment is performed
where k different treatments (drug A, drug B, placebo,...) are applied to respective groups
of n1, . . . , nk patients and that in each case a certain variable Yij with expected value θi
is measured which characterizes the success of the corresponding treatment. In this case,
we could employ the regression model

Y11
...

Y1n1

...
Yk1
...

Yknk


=


1n1 0n1 . . . . . . 0n1

0n2 1n2 0n2 . . . 0n2

... . . . . . . . . . ...
0nk−1

. . . 0nk−1
1nk−1

0nk−1

0nk . . . . . . 0nk 1nk


 θ1

...
θk

 +



ε11
...

ε1n1

...
εk1
...

εknk


.

Here 1l and 0l denote the vectors of length l consisting of ones and zeroes, respectively.
A common hypothesis that we may wish to test is that θ1 = . . . = θk which means that
there is no specific effect due to the different treatments.

A general framework which covers both cases mentioned above is given by the fol-
lowing formulation of the test problem. It is assumed that a realization x of a random
vector X is available, where

X ∼ N
(
γ, σ2In

)
,

and γ ∈ Γ ⊆ Rn and σ2 > 0 are both unknown parameters. We intend to test

H0 :

(
γ

σ2

)
∈ Γ0 × (0,∞) vs. H1 :

(
γ

σ2

)
∈ (Γ \ Γ0)× (0,∞),

where
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• Γ0 is an l-dimensional subspace of Rn,

• Γ is a k-dimensional subspace of Rn,

• Γ0 ⊂ Γ,

• 0 ≤ l < k < n. (If l = 0, then Γ0 := {0n}.)

The test statistic L(X) for a likelihood ratio test is given by

L(x) =
sup{pγ,σ2(x) : γ ∈ Γ \ Γ0, σ

2 > 0}
sup{pγ,σ2(x) : γ ∈ Γ0, σ2 > 0}

,

where pγ,σ2 is the density of a N (γ, σ2In) distribution, i.e.

pγ,σ2(x) =
1

(2πσ2)n/2
exp

{
− 1

2σ2
‖x− γ‖2

}
,

where ‖·‖ denotes the Euclidean norm in Rn. Since (Γ\Γ0)×(0,∞) is dense in Γ×(0,∞)

and
(
γ
σ2

)
7→ pγ,σ2(x) is continuous for all x ∈ Rn we obtain that L(x) = L̃(x), where

L̃(x) =
sup{pγ,σ2(x) : γ ∈ Γ, σ2 > 0}
sup{pγ,σ2(x) : γ ∈ Γ0, σ2 > 0}

.

Next we determine the maximum likelihood estimators for
(
γ
σ2

)
in the cases where this

parameter varies in Γ× (0,∞) and Γ0 × (0,∞), respectively.

a) MLE in Γ× (0,∞)
For arbitrary σ2 > 0, the function γ 7→ pγ,σ2(x) is maximized by

γ̂ = Px,

where Px is the orthogonal projection of x onto Γ. (P is the (n × n)-orthogonal
projection matrix onto Γ.)
It follows by simple calculations that σ2 7→ pPx,σ2(x) is maximized by

σ̂2 =
1

n

∥∥x− Px∥∥2
.

b) MLE in Γ0 × (0,∞)
We obtain in complete analogy to a) that the maximum likelihood estimators in
the smaller parameter space Γ0 × (0,∞) are given by

γ̂0 = P0x,

where P0x is the orthogonal projection of x onto Γ0, and

σ̂2
0 =

1

n

∥∥x− P0x
∥∥2
.
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Now we consider the test statistic L̃(X), and represent it in such a way that we recognize
an equivalent statistic which has a textbook distribution under the null hypothesis.

L̃(x) =
pγ̂,σ̂2(x)

pγ̂0,σ̂2
0
(x)

=
(2πσ̂2)−n/2 exp

{
−

=n/2︷ ︸︸ ︷
1

2σ̂2
‖x− Px‖2

}
(2πσ̂2

0)−n/2 exp
{
− 1

2σ̂2
0

‖x− P0x‖2︸ ︷︷ ︸
=n/2

}

=

(
‖x− P0x‖2

‖x− Px‖2

)n/2
=

(
‖x− P0x‖2 − ‖x− Px‖2

‖x− Px‖2
+ 1

)n/2
=

(
‖(P − P0)x‖2

‖(In − P )x‖2
+ 1

)n/2
. (3.20)

The last equation holds since

‖x− P0x‖2 − ‖x− Px‖2 = xT (In − P0)T (In − P0)x − xT (In − P )T (In − P )x

= xT (In − P0)x − xT (In − P )x

= xT (P − P0)x = ‖(P − P0)x‖2.

A slight modification of the right-hand side leads to the following representation of the
searched-for likelihood ratio test.

ϕ(x) =


1, if

1
k−l‖(P−P0)x‖2

1
n−k ‖(In−P )x‖2 > cα,

γα, if
1
k−l‖(P−P0)x‖2

1
n−k ‖(In−P )x‖2 = cα,

0, if
1
k−l‖(P−P0)x‖2

1
n−k ‖(In−P )x‖2 < cα.

(3.21a)

In order to obtain a size α test, we still have to find constants cα ∈ R and γα ∈ [0, 1] such
that

sup
{
E( γσ2)ϕ(X) : γ ∈ Γ0, σ

2 > 0
}

= α. (3.21b)

To this end, we need the following definition.

Definition 3.7. Let X1 and X2 be independent and have χ2
r and χ2

s distributions, re-
spectively. Then the distribution of

Y =
X1/r

X2/s

is called F distribution with r and s degrees of freedom. We write Y ∼ Fr,s.
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In the following we identify the distribution of the statistic
1
k−l‖(P−P0)X‖2

1
n−k ‖(In−P )X‖2 under(

γ
σ2

)
∈ Γ0 × (0,∞) as such an F distribution. Since quantiles of these distributions are

tabulated we can find appropriate constants such that (3.21b) is satisfied. Equipped with
these constants, the test ϕ given by (3.21a) has size α.

Theorem 3.8. Let X ∼ N (γ, σ2In) and let Γ0 and Γ be l- and k-dimensional subspaces
of Rn, respectively, where Γ0 ⊂ Γ, 0 ≤ l < k < n. Furthermore, let P0 and P be the
orthogonal projection matrices onto Γ0 and Γ, respectively. If γ ∈ Γ0 and σ2 > 0, then

T (X) :=
1
k−l‖(P − P0)X‖2

1
n−k‖(In − P )X‖2

∼ Fk−l,n−k.

Before we proceed with the proof of this theorem, we recall a few basic facts about
orthogonal projection matrices. Let P be a real orthogonal projection matrix of dimen-
sion n × n. Then P 2 = P = P T , i.e. the matrix P is idempotent and symmetric. We
consider the spectral decomposition of P ,

P = DTDiag(λ1, . . . , λn)D.

Here, {λ1, . . . , λn} are the eigenvalues of P (according to their multiplicity) and D =
(e1, . . . , en)T , where {e1, . . . , en} is an orthonormal system of eigenvectors corresponding
to λ1, . . . , λn. By idempotence of P we obtain that

P 2 = DTDiag(λ2
1, . . . , λ

2
n)D = P = DTDiag(λ1, . . . , λn)D,

which implies λ2
i = λi and therefore λi ∈ {0, 1} for all i = 1, . . . , n. Moreover, the number

of nonzero eigenvalues is equal to the rank of P .
To summarize, if P is an (n × n) orthogonal projection matrix of rank m, then we

can represent it as

P = DTDiag(1, . . . , 1︸ ︷︷ ︸
m times

, 0, . . . , 0︸ ︷︷ ︸
n−m times

)D =
m∑
i=1

eie
T
i ,

where D = (e1, . . . , en)T , {e1, . . . , em} is an arbitrary orthonormal system of eigenvectors
to the eigenvalue 1, and {em+1, . . . , en} is an arbitrary orthonormal system of eigenvectors
to the eigenvalue 0.

If in particular P0 and P are orthogonal projection matrices on the respective sub-
spaces Γ0 and Γ of Rn such that Γ0 ⊂ Γ, where the dimension of these subspaces is l
and k, respectively, (0 ≤ l < k ≤ n), then we can obtain the following representation of
the corresponding projection matrices P0 and P . First, we choose an orthonormal basis
{e1, . . . , el} of Γ0. e1, . . . , el are eigenvectors of P0 to the eigenvalue 1 and we obtain that

P0 =
l∑

i=1

eie
T
i .

We can augment {e1, . . . , el} by el+1, . . . , ek such that {e1, . . . , ek} forms an orthonormal
basis of Γ. The matrix P can be represented as

P =
k∑
i=1

eie
T
i .
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Using these particular representations of P0 and P we see that

P − P0 =
k∑

i=l+1

eie
T
i

is also an orthogonal projection matrix which has rank k − l.

Proof of Theorem 3.8. Since, in case of γ ∈ Γ0, P0γ = Pγ = Inγ = γ we obtain

T (X) =
1
k−l‖(P − P0)X‖2

1
n−k‖(In − P )X‖2

=
1
k−l‖(P − P0)(X − γ)/σ‖2

1
n−k‖(In − P ) (X − γ)/σ︸ ︷︷ ︸

=:Y

‖2
. (3.22)

The random vector Y has a N (0n, In) distribution. Now we collect the following results.

a) Since P − P0 is an orthogonal projection matrix of rank k − l we obtain
(P − P0)T (P − P0) = P − P0 and therefore, by Lemma 3.7,∥∥(P − P0)(X − γ)/σ‖2 = Y T (P − P0)Y ∼ χ2

k−l.

b) In − P is an orthogonal projection matrix of rank n− k which implies that∥∥(In − P )(X − γ)/σ‖2 = Y T (In − P )Y ∼ χ2
n−k.

c) Since (In − P )(P − P0)T = P − P0 − P 2 + PP0︸︷︷︸
=P0

= 0n×n it follows from Lemma 3.6

that the numerator and the denominator on the right-hand side of (3.22) are inde-
pendent.

We obtain from a) to c) that the term on right-hand side of (3.22) has a structure as in
our definition of an F distribution above, and we obtain that

T (X) ∼ Fk−l,n−k.
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Applications of F tests
After deriving the F test in a general framework we consider important applications.

In all cases, we consider a linear regression model,

Yi =
k∑
j=1

xijβj + εi, ∀i = 1, . . . , n,

and we impose the condition that the errors ε1, . . . , εn are i.i.d. and follow a normal
distribution with mean zero and a common variance σ2 > 0. The experimental design
varies between the different fields of application.

(i) Nested regression models
We consider the general linear regression model

Y = Xβ + ε,

where

Y =

 Y1
...
Yn

 , X =

 x11 . . . x1k
... . . . ...
xn1 . . . xnk

 , β =

 β1
...
βk

 , ε =

 ε1
...
εn

 .

We impose the condition that ε ∼ N (0n, σ
2In). We suppose that the design

matrix X has full column rank k, where 1 < k < n. A frequently encountered
problem in practice is to test if one or more columns of the design matrix can be
dropped which means that the corresponding components of the parameter β are
zero. Suppose, for definiteness, that we wish to test if βi = 0. The framework for
a corresponding F test is given by

Y ∼ N (γ, σ2In),

H0 :

(
γ

σ2

)
∈ Γ0 × (0,∞) vs. H1 :

(
γ

σ2

)
∈ (Γ \ Γ0)× (0,∞),

where

Γ0 =
{
Xα : αi = 0, α1, . . . , αi−1, αi+1, . . . , αk ∈ R}

=
{
X0α : α ∈ Rk−1

}
, X0 =

 x11 . . . x1,i−1 x1,i+1 . . . x1k
... . . . ...

... . . . ...
xn1 . . . xn,i−1 xn,i+1 . . . xnk

 ,

Γ =
{
Xα : α ∈ Rk

}
.

The orthogonal projections of Y onto Γ and Γ0 are given by PY and P0Y , respec-
tively, where P = X(XTX)−1XT and P0 = X0(XT

0 X0)−1XT
0 . To see this, recall

that, for each y ∈ Rn,

inf
{
‖y −Xα‖2 : α ∈ Rk

}
= ‖y −Xα̂‖2,

where α̂ = (XTX)−1XTy. Then X(XTX)−1XTy ∈ Γ and

‖y − X(XTX)−1XTy‖2 = inf
{
‖y −Xα‖2 : α ∈ Rk

}
.
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Hence, the matrix P which provides a projection onto Γ is given by X(XTX)−1XT .
ot that we ex Since X has full column rank k and 1 < k < n a size α test ϕα of H0

versus H1 is given by

ϕα(y) =

{
1, if ‖(P−P0)y‖2

‖(In−P )y‖2/(n−k)
≥ F1,n−k;1−α,

0, if ‖(P−P0)y‖2
‖(In−P )y‖2/(n−k)

< F1,n−k;1−α,

where F1,n−k;1−α denotes the (1−α)-quantile of an F distribution with 1 and n− k
degrees of freedom.

(ii) Lack-of-fit test
It is not uncommon that one is not sure about the adequacy of a linear regression
model. The underlying idea of an appropriate test is the same as in the previous
example, we compare the goodness-of-fit of the proposed model with that of a model
which is known to be adequate. Suppose e.g. that we wish to test a polynomial
regression model, where

Yi =
k∑
j=1

xj−1
i βj + εi, i = 1, . . . , n.

In this case and without additional information about the relationship between
the explanatory variables and the response, a linear model which guaranteed to
be adequate is not available in general. On the other hand, such a model exists
if we have multiple experimental runs with the same settings for the explanatory
variables, that is, xi = xj for some pair(s) (i, j), i 6= j. For each setting xi, we
assume to have respectively ni runs which leads to the regression model

Yij = γi + εij, j = 1, . . . , ni, i = 1, . . . , p.

In matrix/vector notation we obtain the model

Y11
...

Y1n1

...
Yp1
...

Ypnp


=


1n1 0n1 . . . . . . 0n1

0n2 1n2 0n2 . . . 0n2

... . . . . . . . . . ...
0np−1 . . . 0np−1 1np−1 0np−1

0np . . . . . . 0np 1np


︸ ︷︷ ︸

=X

 γ1
...
γp

 +



ε11
...

ε1n1

...
εp1
...

εpnp


.

On the other hand, if we believe that the relationship between an explanatory
variable xi and the corresponding response(s) Yij can be described by a polynomial
model of order k − 1, we could also use the model (xi 6= xj for i 6= j)

Y11
...

Y1n1

...
Yp1
...

Ypnp


=



1 x1 . . . xk−1
1

...
... . . . ...

1 x1 . . . xk−1
1

...
...

...
1 xp . . . xk−1

p
...

... . . . ...
1 xp . . . xk−1

p


︸ ︷︷ ︸

=X0

 β1
...
βk

 +



ε11
...

ε1n1

...
εp1
...

εpnp


.
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It follows from Exercise 2 (Problem sheet 1) that the matrix X0 has full column
rank k if there are at least k different xi. However, if k = p, then the matricesX and
X0 have both rank k and the two matrices have the same image. In order to employ
an F test for testing our polynomial model, we have to take care that p > k. Let
Γ0 and Γ be the subspaces of Rn which are spanned by the columns of the matrices
X0 and X, respectively, and let P0 = X0(XT

0 X0)−1XT
0 and P = X(XTX)−1XT be

the respective (n× n) projection matrices, where n = n1 + · · ·+ np.
It is possible to derive a simple explicit formula for the matrix P . Since {e1, . . . , ep}
with ei = ( 0, . . . , 0︸ ︷︷ ︸

n1+···+ni−1

, 1/
√
ni, . . . , 1/

√
ni︸ ︷︷ ︸

ni times

, 0, . . . , 0︸ ︷︷ ︸
ni+1+···+np

)T is an orthonormal basis of Γ it

follows that

P =

p∑
i=1

eie
T
i = DIAG

(
D1, . . . , Dp

)
(3.23)

is a block diagonal matrix, i.e. a block matrix that is a square matrix such that the
main-diagonal blocks are square matrices and all off-diagonal blocks are zero matri-
ces. The ith block Di is an (ni × ni)-matrix with all entries equal to 1/ni. For the
projection matrix P0 we may use the above representation P0 = X0(XT

0 X0)−1XT
0 .

The test problem “polynomial model is adequate” versus “polynomial model is not
adequate” can be described in the usual way: Given Y ∼ N (γ, σ2In), we wish to
test

H0 : θ =

(
γ

σ2

)
∈ Γ0 × (0,∞) vs. H1 : θ =

(
γ

σ2

)
∈ (Γ \ Γ0)× (0,∞),

where
Γ0 =

{
X0α : α ∈ Rk

}
and Γ =

{
Xα : α ∈ Rp

}
.

We have that Γ0 ⊂ Γ, dim(Γ0) = k and dim(Γ) = p, which leads to a size α test ϕα
such that

ϕα(x) =

{
1, if ‖(P−P0)x‖2/(p−k)

‖(In−P )x‖2/(n−p) ≥ Fp−k,n−p;1−α,

0, if ‖(P−P0)x‖2/(p−k)
‖(In−P )x‖2/(n−p) < Fp−k,n−p;1−α

Note that the denominator of the test statistic can be represented in an alternative
form. It follows from (3.23) that

PY =

 Ȳ1·1n1

...
Ȳp·1np

 ,

where Ȳi· = 1
ni

∑ni
j=1 Yij. We have in particular

∥∥(In − P )Y
∥∥2

=

p∑
i=1

ni∑
j=1

(
Yij − Ȳi·

)2
,

which implies that

Eθ
[∥∥(In−P )Y

∥∥2
/(n−p)

]
=

1

n− p

p∑
i=1

ni∑
j=1

Eθ
[(
Yij − Ȳi·

)2]
︸ ︷︷ ︸

= (ni−1)σ2

= σ2 ∀θ ∈ Γ×(0,∞),

i.e., the denominator of the test statistic is an unbiased estimator of σ2.
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(iii) Analysis of variance (ANOVA)
In examples (i) and (ii) we have seen applications of F tests in the context of linear
regression models in which the explanatory variables are usually quantitative. Now
we consider so-called p-sample problems in which the explanatory variables are
qualitative.
To fix ideas, suppose we are interested in comparing the performance of p ≥ 2
treatments on a population (e.g. in medicine: different medical drugs administered
to groups of patients, in agriculture: different fertilizers given to plants,...). We
suppose that we administer only one treatment to each subject and ni subjects get
treatment i, 1 ≤ i ≤ p, n1 + · · · + np = n. The effect of the treatment given to
the jth individual from the ith group is measured by some quantitative feature yij
which is modeled as a realization of a random variable Yij. This leads to a regression
model

Yij = θi + εij, j = 1, . . . , ni, i = 1, . . . , p.

We assume that the errors εij have zero mean. The parameters θ1, . . . , θp charac-
terize the respective effects of the different treatments and a common hypothesis
that we may wish to test is that θ1 = . . . = θp which means that there is no specific
effect due to the different treatments. To derive an appropriate test, we impose the
additional condition that the errors εij are independent N (0, σ2) variables. This
might be justified (to some extent) on the basis of central limit behavior, experi-
ence, and hope. To find an appropriate test, we rewrite the above regression model
in vector/matrix form:

Y11
...

Y1n1

...
Yp1
...

Ypnp


︸ ︷︷ ︸

=Y

=


1n1 0n1 . . . . . . 0n1

0n2 1n2 0n2 . . . 0n2

... . . . . . . . . . ...
0np−1 . . . 0np−1 1np−1 0np−1

0np . . . . . . 0np 1np


︸ ︷︷ ︸

=X

 θ1
...
θp

 +



ε11
...

ε1n1

...
εp1
...

εpnp


.

Here 1l and 0l denote vectors of length l consisting of ones and zeroes, respectively.
The random vector Y has a N (γ, σ2In) distribution. The test problem is given by

H0 :

(
γ

σ2

)
∈ Γ0 × (0,∞) vs. H1 :

(
γ

σ2

)
∈
(
Γ \ Γ0

)
× (0,∞),

where Γ0 = {α1n : α ∈ R} and Γ is spanned by the columns of the matrix X. The
test statistic for an appropriate F test is given by

T (Y ) =

∥∥(P − P0)Y
∥∥2
/(p− 1)∥∥(In − P )Y

∥∥2
/(n− p)

,

where P and P0 are the orthogonal projection matrices onto Γ and Γ0, respectively.
It is not difficult to find simple explicit formulas for these projections. As above, it
follows from (3.23) that

PY =

 Ȳ1·1n1

...
Ȳp·1np ,

 .
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where Ȳi· = 1
ni

∑ni
j=1 Yij. Analogously, we can see that

P0Y = Ȳ··1n,

where Ȳ·· = 1
n

∑p
i=1

∑ni
j=1 Yij. Therefore we can represent the test statistic in the

form

T (Y ) =

1
p−1

∑p
i=1 ni

(
Ȳi· − Ȳ··

)2

1
n−p

∑p
i=1

∑ni
j=1

(
Yij − Ȳi·

)2 ,

It follows from Theorem 3.8 that T (Y ) has under the null hypothesis an F distri-
bution with p− 1 and n− p degrees of freedom, and a size α test ϕ for H0 versus
H1 is given by

ϕ(y) =

{
1, if T (y) ≥ Fp−1,n−p;1−α,
0, if T (y) < Fp−1,n−p;1−α

.

But why are methods such as the above test called “analysis of variance”? We
can break up the sum of squares as follows:

p∑
i=1

ni∑
j=1

(
Yij − Ȳ··

)2

︸ ︷︷ ︸
=SST

=
∥∥(In − P0)Y

∥∥2

=
∥∥(In − P + P − P0)Y

∥∥2

=
∥∥(In − P )Y

∥∥2
+
∥∥(P − P0)Y

∥∥2

=

p∑
i=1

ni
(
Ȳi· − Ȳ··

)2

︸ ︷︷ ︸
=SSA

+

p∑
i=1

ni∑
j=1

(
Yij − Ȳi·)2

︸ ︷︷ ︸
=SSR

,

i.e., the total sum of squares SST is broken up into two sources of variation, the
variation among the p groups (measured by SSA) and the variation within each
group of observations (measured by SSR). The above test is based on a comparison
of these two sources of variation which also explains the name analysis of variance
(ANOVA).

There exist extensions of the so-called one-way ANOVAmodel described above.
The two-way analysis of variance (ANOVA) examines the influence of two
different categorical variables on one continuous dependent variable. For example,
suppose that the mean effect of p drugs designed to influence the blood pressure or
the mean survival time of a population are to be studied. Then it makes sense to
consider a second factor such as age, sex or occupation which may also influence the
success of the treatment. Or in agriculture, when the effects of different fertilizers on
the mean yield of a certain crop are studied, one could also consider soil condition,
since a high yield may be due to better soil conditions rather than the effect of
the treatment. This problem can be taken care of by dividing the field where
the crop is planted into q blocks where the soil conditions are as nearly equal as
possible. Next, each block is subdivided into pr plots, and each fertilizer is assigned
at random to r of these plots. Thus we are considering the factor “treatments” at
p levels in conjunction with the factor “soil conditions” at q levels.
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The corresponding regression model is

Yijk = µ + αi + βj + εijk, i = 1, . . . , p, j = 1, . . . , q, k = 1, . . . , r.

In vector/matrix notation this model can be written as

Y111
...

Y11r
...

Y1q1
...

Y1qr
...

Yp11
...

Yp1r
...

Ypq1
...

Ypqr


︸ ︷︷ ︸

=:Y

=



1r 1r

... . . .
0(p−1)r

1r 1r

1pqr
. . . ...

1r 1r

0(p−1)qr
... . . .

1r 1r


︸ ︷︷ ︸

=:X



µ
α1
...
αp
β1
...
βq


+



ε111
...

ε11r
...

ε1q1
...
ε1qr
...

εp11
...

εp1r
...

εpq1
...
εpqr



.

Note that this model is overdetermined, i.e. the design matrix X has not a full
column rank. Usually the side conditions

∑
i αi =

∑
j βj = 0 are augmented such

that the parametrization of the model becomes unique. Common hypotheses that
may be tested are α1 = . . . = αp = 0 and β1 = . . . = βq = 0.
We consider an F test for the hypothesis that the first factor has no influence,

i.e. α1 = . . . = αp. As usual, we impose the condition that Y ∼ N
(
γ, σ2In), where

n = pqr. The test problem is correctly formulated as

H0 :

(
γ

σ2

)
∈ Γ0 × (0,∞) vs. H1 :

(
γ

σ2

)
∈
(
Γ \ Γ0

)
× (0,∞),

where Γ0 is spanned by the first and the last q columns of the matrix X and Γ is
spanned by all columns of the matrix X. Note that the first column of the matrix X
can also be represented as the sum of columns 2 to p+1, or as the sum of the last q
columns. This means that Γ0 is in fact a q-dimensional subspace of Rn, and Γ \ Γ0

is a (p + q − 1)-dimensional subspace of Rn. The corresponding projections of Y
onto the respective subspaces Γ0 and Γ are given by

P0Y =



Ȳ·1·1r
...

Ȳ·q·1r
...

Ȳ·1·1r
...

Ȳ·q·1r


and PY =



(Ȳ1·· + Ȳ·1· − Ȳ···)1r
...

(Ȳ1·· + Ȳ·q· − Ȳ···)1r
...

(Ȳp·· + Ȳ·1· − Ȳ···)1r
...

(Ȳp·· + Ȳ·q· − Ȳ···)1r


,

where Ȳi·· = 1
qr

∑
j,k Yijk, Ȳ·j· =

1
pr

∑
i,k Yijk, and Ȳ··· =

1
pqr

∑
i,j,k Yijk.
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This leads to the test statistic

T (Y ) =
‖(P − P0)Y ‖2/(rank(P )− rank(P0))

‖(In − P )Y ‖2/(rank(In)− rank(P ))

=

1
p−1

qr
∑p

i=1(Ȳi·· − Ȳ···)2

1
n−p−q+1

∑
i,j,k(Yijk − Ȳi·· + Ȳ·j· − Ȳ···)2

.

It follows from Theorem 3.8 that T (Y ) has under the null hypothesis an F distri-
bution with p− 1 and n− p− q + 1 degrees of freedom, and a size α test ϕ for H0

versus H1 is given by

ϕ(y) =

{
1, if T (y) ≥ Fp−1,n−p−q+1;1−α,
0, if T (y) < Fp−1,n−p−q+1;1−α.

It is also possible to take interaction effects between the independent variables
into account which leads to the model

Yijk = µ + αi + βj + γij + εijk, i = 1, . . . , p, j = 1, . . . , q, k = 1, . . . , r.

Under the side conditions
∑

i αi =
∑

j βj =
∑

i,j γij = 0, µ is the grand mean, αi
is the additive main effect of level i from the first factor, βj is the additive main
effect of level j from the second factor, and γij is the non-additive interaction effect
of treatment (i, j) from both factors.
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For the derivation of t and F tests we imposed the condition that the random vari-
ables are independent and normally distributed with a common variance σ2. This allowed
us to show that the test statistic has a known distribution under the null hypothesis, and
the critical value could be chosen such that the test has the desired size α. Of course,
the assumption that the errors are normally distributed is at best approximately ade-
quate when such a test is used in practice. We show in the following that even without
the assumption of normally distributed random variables t tests and F tests have an
asymptotic justification when the sample size n is large.

We begin with the one- and two-sided t tests. To derive these tests, we imposed the
assumption that realizations of i.i.d. random variables X1, . . . , Xn are available, where
Xi ∼ N (µ, σ2) and both µ and σ2 are unknown. When we intend to test whether the
location parameter is equal to some particular value, say µ0, then we are faced with the
following testing problem.

H0 : θ :=

(
µ

σ2

)
∈ {µ0} × (0,∞) vs. H1 : θ = (R \ {µ0})× (0,∞).

The two-sided t test is the corresponding likelihood ratio test which has for a given level
of significance α ∈ (0, 1) the form

ϕ(x) =

{
1, if |Tn(x)| ≥ tn−1;1−α/2,
0, if |Tn(x)| < tn−1;1−α/2

,

where tn−1;1−α/2 denotes the (1− α/2)-quantile of a t distribution with n− 1 degrees of

freedom. Here, Tn(x) =
√
n(x̄n − µ0)/σ̂n, where σ̂n =

√
1

n−1

∑n
i=1(xi − x̄n)2. When we

want to test whether or not µ is less than or equal to some threshold µ0, the corresponding
testing problem is given by

H ′0 : θ :=

(
µ

σ2

)
∈ (−∞, µ0]× (0,∞) vs. H ′1 : θ = (µ0,∞)× (0,∞).

For this pair of hypotheses, we may use the one-sided t test which has for a given level
of significance α ∈ (0, 1) the form

ϕ(x) =

{
1, if Tn(x) ≥ tn−1;1−α,
0, if Tn(x) < tn−1;1−α

.

The following theorem shows that these two tests have asymptotically the prescribed size
if the assumption of a normal distribution is dropped.

Theorem 3.9. Suppose that (Xi)i∈N is a sequence of i.i.d. random variables, where
EXi = µ and var(Xi) = σ2 ∈ (0,∞). Then

(i)
√
n(X̄n−µ)
σ̂n

d−→ Z ∼ N
(
0, 1
)
,

(ii) P
(√

n(X̄n−µ)
σ̂n

≥ tn−1;1−α

)
−→
n→∞

α for each α ∈ (0, 1),

(iii) P
(∣∣∣√n(X̄n−µ)

σ̂n

∣∣∣ ≥ tn−1;1−α/2

)
−→
n→∞

α for each α ∈ (0, 1).
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Proof. (i) It follows by the Lindeberg-Lévy central limit theorem that

√
n
(
X̄n − µ

)
/σ

d−→ Z.

Furthermore, we obtain by the strong law of large numbers that

σ̂2
n/σ

2 a.s.−→ 1.

These two relations together imply that
√
n
(
X̄n − µ

)
σ̂2
n

=
σ

σ̂n

√
n
(
X̄n − µ

)
σ

d−→ Z.

(ii) Since N (0, 1) has a continuous distribution function we obtain from (i) that

sup
x

∣∣∣P(√n(X̄n − µ)

σ̂n
< x

)
− Φ

(
x
)∣∣∣ −→

n→∞
0. (3.24)

For the special case of N (µ, σ2) distributed X1, . . . , Xn, we know that
√
n(X̄n−µ)
σ̂n

∼
tn−1, which implies, for Tn−1 ∼ tn−1,

sup
x

∣∣∣P(Tn−1 < x
)
− Φ

(
x
)∣∣∣ −→

n→∞
0. (3.25)

(3.24) and (3.25) together imply that∣∣∣∣P(√n(X̄n − µ)

σ̂n
≥ tn−1;1−α

)
− α︸︷︷︸

=P (Tn−1≥tn−1;1−α)

∣∣∣∣
≤ sup

x

∣∣∣P(√n(X̄n − µ)

σ̂n
≥ x

)
− P

(
Tn−1 ≥ x

)∣∣∣
−→
n→∞

0.

(iii) Analogous.
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In case of a one-way ANOVA, we imposed the condition that the dependent variables
Y11, . . . , Y1n1 , . . . , Yp1, . . . , Ypnp are independent and normally distributed with a common
variance σ2. To set up an appropriate framework for our asymptotic considerations we
assume that we have p independent sequences (Yi,j)j∈N, i = 1, . . . , p, of i.i.d. random
variables, where EYij = θi, var(Yij) = σ2. In order to apply a central limit theorem, we
suppose that all subsample sizes n1, . . . , np tend to infinity. To fix this idea, we suppose
that ni = ni(n) such that ni(n) −→

n→∞
∞ for all i = 1, . . . , p. (We do not assume that

ni(n)/n −→
n→∞

ci for some ci ∈ (0, 1) and each i, i.e., we do not exclude different rates of
growth of the subsample sizes.) To describe our asymptotic consideration in a transparent
way, we equip the relevant quantities with the additional subindex n, i.e.,

Tn =

∥∥(Pn − Pn0)Y
∥∥2
/(p− 1)∥∥(In − Pn)Y

∥∥2
/(n− p)

.

The following theorem states the asymptotic correctness of the F test.

Theorem 3.10. Suppose that (Yi,j)j∈N, i = 1, . . . , p, are independent sequences of
i.i.d. random variables, where EYij = θi, var(Yij) = σ2. If θ1 = . . . = θp =: θ, then

(i) Tn
d−→ T∞ ∼ 1

p−1
χ2
p−1,

(ii) P
(
Tn ≥ Fp−1,n−p;1−α

)
−→
n→∞

α ∀α ∈ (0, 1).

Proof.

(i) We have that

Tn =

1
p−1

∑p
i=1 ni

(
Ȳi· − Ȳ··

)2

1
n−p

∑p
i=1

∑ni
j=1

(
Yij − Ȳi·

)2 =:
Tn1

Tn2

.

We consider the numerator Tn1 and the denominator Tn2 separately. First we prove
that

Sn :=


√
n1(n)(Ȳ1· − θ)/σ

...√
np(n)(Ȳp· − θ)/σ

 d−→ Z ∼ N (0p, Ip). (3.26)

Note that a proof of (3.26) is more delicate than it appears. We cannot use a clas-
sical multivariate central limit theorem since the subsample sizes n1(n), . . . , np(n)
can vary independently from each other and the left-hand side Sn of (3.26) cannot
be rewritten in the form 1√

m

∑m
j=1 Yi, for some i.i.d. random vectors Y1, . . . , Ym.

However, we can prove asymptotic normality for each of the components of Sn and
then use their independence to deduce that (3.26) holds true. In fact, it follows
from the Lindeberg-Lévy central limit theorem that, for each i = 1, . . . , p,

Sni :=
√
ni(n)

Ȳi· − θ
σ

=
1√
ni(n)

ni(n)∑
j=1

Yij − θ
σ

d−→ Zi ∼ N (0, 1) as n→∞.
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Using the independence of the sequences (Y1,j)j∈N, . . . , (Yp,j)j∈N we obtain that

ϕSn(t) = E
[
eit

TSn
]

= E
[ p∏
j=1

eitjSnj
]

=

p∏
j=1

E
[
eitjSnj

]
−→
n→∞

p∏
j=1

e−t
2
j/2 = e−‖t‖

2/2

holds for all t = (t1, . . . , tp)
T ∈ Rp. Since pointwise convergence of characteris-

tic functions is equivalent to convergence in distribution of corresponding random
variables we obtain (3.26). Moreover, it follows from (3.26) that

DnSn
d−→ Z ∼ N (0p, Ip), (3.27)

where (Dn)n∈N is an arbitrary sequence of orthogonal matrices, i.e. DT
nDn =

DnD
T
n = Ip. Indeed, since (3.26) implies uniform convergence of the corresponding

characteristic functions on bounded sets3, i.e.

sup
t : ‖t‖≤K

∣∣EeitTSn − e−‖t‖
2/2
∣∣ −→
n→∞

0,

for each K <∞, we obtain that

Eeit
TDnSn = Eei(D

T
n t)

TSn −→
n→∞

e−‖D
T
n t‖2/2 = e−‖t‖

2/2 ∀t ∈ Rp,

which proves (3.27).
3 Let (µn)n∈N be a sequence of probability measures on (Rd,Bd) which converges weakly to a prob-

ability measure µ0, and let (ϕn)n∈N and ϕ0 be the corresponding characteristic functions. Uniform
convergence of ϕn to ϕ0 on bounded sets can be proved as follows:

1) For each ε > 0, there exists some R <∞ such that

µn
(
{x : ‖x‖ > R}

)
≤ ε ∀n ∈ N0. (3.28)

(We say that the collection (µn)n∈N0
is tight.)

To see this, note that there exists some R0 > 0 such that µ0

(
{x : ‖x‖ > R0}

)
≤ ε/2. Pick some

continuous function f : Rd → [0, 1] such that f(x) = 1 for ‖x‖ > 2R0 and f(x) = 0 for ‖x‖ ≤ R0.
Then

µn
(
{x : ‖x‖ > 2R0}

)
≤
∫
f dµn −→

n→∞

∫
f dµ0 ≤ µ0

(
{x : ‖x‖ > R0}

)
,

which implies that µn
(
{x : ‖x‖ > 2R0}

)
≤ ε for each n ≥ N and N sufficiently large. For each

n = 1, . . . , N −1, there exist finite reals R1, . . . , RN−1 such that µn
(
{x : ‖x‖ > 2Rn}

)
≤ ε. Hence,

(3.28) is satisfied for R := max{2R0, R1, . . . , RN−1}.
2) (ϕn)n∈N0

is uniformly equicontinuous on bounded sets, i.e. for each ε > 0 and each K < ∞
there exists some δ > 0 such that

sup
ξ,η : ‖ξ‖,‖η‖≤K, ‖ξ−η‖≤δ

∣∣ϕn(ξ) − ϕn(η)
∣∣ ≤ 3ε ∀n ∈ N0. (3.29)

Suppose w.l.o.g. that K ≥ R, and let SK := {x : ‖x‖ ≤ K}. Then∣∣ϕn(ξ) − ϕn(η)
∣∣ ≤ ∫

SK

∣∣eiξT x − eiη
T x
∣∣︸ ︷︷ ︸

≤ |ξT x−ηT x| ≤ ‖ξ−η‖ ‖x‖

dµn(x) +

∫
Sc
K

∣∣eiξT x − eiη
T x
∣∣︸ ︷︷ ︸

≤ 2

dµn(x)

≤ K ‖ξ − η‖ + 2 ε,

which implies that (3.29) holds true for δ := ε/K.

3) It is well-known that weak convergence of probability measures implies pointwise convergence
of the corresponding characteristic function. To prove uniform convergence on bounded sets, use
weak convergence on a sufficiently dense grid together with (3.29).
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Next we have
√
n1(n)(Ȳ1· − Ȳ··)/σ

...√
np(n)(Ȳp· − Ȳ··)/σ


=

Ip − ( √
n1(n)/

√
n

...√
np(n)/

√
n

)(√
n1(n)/

√
n · · ·

√
n1(n)/

√
n
)

︸ ︷︷ ︸
=:Mn


√
n1(n)(Ȳ1· − θ)/σ

...√
np(n)(Ȳp· − θ)/σ


︸ ︷︷ ︸

=Sn

.

Note that the matrix Mn is a (p× p)-projection matrix of rank p− 1, i.e., we have
in particular MT

nMn = Mn and Mn = DT
nDiag(1, . . . , 1, 0)Dn, for some orthogonal

matrix Dn. Since y 7→ 1
p−1

yTDiag(1, . . . , 1, 0)y is a continuous function we obtain
from (3.27) and the continuous mapping theorem

Tn1 =
σ2

p− 1

∥∥∥∥∥∥∥

√
n1(n)(Ȳ1· − Ȳ··)/σ

...√
np(n)(Ȳp· − Ȳ··)/σ


∥∥∥∥∥∥∥

2

=
σ2

p− 1


√
n1(n)(Ȳ1· − θ)/σ

...√
np(n)(Ȳp· − θ)/σ


T

Mn


√
n1(n)(Ȳ1· − θ)/σ

...√
np(n)(Ȳp· − θ)/σ


=

σ2

p− 1
(DnSn)T Diag(1, . . . , 1, 0)DnSn

d−→ σ2

p− 1
ZTDiag(1, . . . , 1, 0)Z.

We obtain from Lemma 3.7 that

ZTDiag(1, . . . , 1, 0)Z ∼ χ2
p−1,

which implies that

Tn1
d−→ σ2

p− 1
χ2
p−1. (3.30)

It follows from the strong law of large numbers that

Tn2 =
1

n− p

p∑
i=1

(ni − 1)
1

ni − 1

ni∑
j=1

(
Yij − Ȳi·

)2

︸ ︷︷ ︸
a.s.−→σ2

a.s.−→ σ2,

which implies that

Tn =
Tn1

Tn2

d−→ T∞ ∼
1

p− 1
χ2
p−1.

(ii) Let α ∈ (0, 1) be arbitrary. Since T∞ has a continuous distribution function we
obtain from (i)

sup
x

∣∣P(Tn ≥ x
)
− P

(
T∞ ≥ x

)∣∣ −→
n→∞

0.
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Note that (i) holds in particular when Yij ∼ N (θ, σ2). Let T 0
n be the test statistic

with such normally distributed Yij. Then

sup
x

∣∣(T 0
n ≥ x

)
− P

(
T∞ ≥ x

)∣∣ −→
n→∞

0.

Furthermore, we have that T 0
n ∼ Fp−1,n−p, which implies that

P
(
T 0
n ≥ Fp−1,n−p;1−α

)
= α. Therefore, we obtain∣∣P(Tn ≥ Fp−1,n−p;1−α

)
− α

∣∣
=

∣∣P(Tn ≥ Fp−1,n−p;1−α
)
− P

(
T 0
n ≥ Fp−1,n−p;1−α

)∣∣
≤

∣∣P(Tn ≥ Fp−1,n−p;1−α
)
− P

(
T∞ ≥ Fp−1,n−p;1−α

)∣∣
+
∣∣P(T∞ ≥ Fp−1,n−p;1−α

)
− P

(
T 0
n ≥ Fp−1,n−p;1−α

)∣∣
−→
n→∞

0.
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