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1 Models for time series
This course is intended to familiarize you with some popular models for time series and
their properties, as well as with statistical methods for estimating unknown parameters.
The following table shows measurements of the daily temperatures (in degree centigrade)
in the city of Jena in March 2021. These data, which are recorded at discrete times, form
a so-called time series. Loosely speaking, a time series is a set (xt)t∈T of observations, each
one being recorded at a specified time t. In our case, we have three series, (x

(i)
t )t∈{4,5,...,31},

where x(i)
t is the maximum, minimum or average temperature measured at day t, for

i = 1, 2, 3, respectively.

day maximum minimum average day maximum minimum average
3/4 12.6 2.5 6.0 3/18 7.4 0.3 2.9
3/5 5.8 -2.2 2.2 3/19 5.0 -2.3 1.3
3/6 6.8 -4.3 0.5 3/20 3.0 -4.0 0.2
3/7 7.5 -4.7 0.9 3/21 9.3 2.5 5.3
3/8 6.1 -2.1 1.8 3/22 9.6 2.3 5.4
3/9 7.4 -2.3 2.0 3/23 7.3 1.1 5.5
3/10 8.4 2.4 4.9 3/24 16.1 0.9 7.7
3/11 14.4 4.6 8.7 3/25 17.3 1.2 9.1
3/12 11.0 4.2 7.7 3/26 17.8 3.6 9.9
3/13 11.0 4.1 6.9 3/27 12.2 1.5 6.5
3/14 8.6 3.8 5.8 3/28 14.0 0.0 7.3
3/15 9.5 3.1 5.0 3/29 22.0 7.8 13.7
3/16 8.8 2.7 5.0 3/30 23.8 3.5 12.8
3/17 4.5 1.7 2.9 3/31 25.8 3.8 14.1

Some structure in these three time series can be detected in the picture on the bottom
of this page. The red curve shows the maximum temperatures while the blue and the
green curves show the minimum and average temperatures, respectively. When we think
of these measurements as realizations of random variables we can guess that these
random variables show a similar behavior over the entire period of measurements, a
property which will be called “stationarity”. Moreover, temperatures measured at day t
are not far from those measured at day t− 1. This indicates that an appropriate model
for our data should allow for dependence between the random variables. This course will
familiarize you with a few simple models for time series and with tools to deal with time
series data.
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1.1 Basic concepts, the Daniell-Kolmogorov existence theorem

In this subsection we introduce a few basic concepts which will be needed throughout
this course. We begin with a formal definition.

Definition. A stochastic process is a family of random variables X = (Xt)t∈T defined
on a common probability space (Ω,F , P ).
For each ω ∈ Ω, the function t 7→ Xt(ω) on T is called realization, trajectory or
sample path of the process X.
The term time series is used for the process X but also for a realization of X, where
the index set T is usually some set of equidistant points in R, usually but not necessarily
thought of time points.

In this course we restrict our attention to the following cases:

• T = N = {1, 2, . . .}, T = N0 = {0, 1, 2, . . .} or T = Z

• Xt takes values in R or (sometimes) in C or Rd

Problem: Suppose we have a (real) time series (Xt)t∈T which is defined on a prob-
ability space (Ω,F , P ). Since each of the Xt is a random variable on (Ω,F , P ) it is
clear that X−1(B) :=

{
ω ∈ Ω: X(ω) ∈ B

}
holds for all Borel sets B ∈ B, and so

P
(
{ω : Xt(ω) ∈ B}

)
is well-defined. (Note that X−1 does not denote the inverse map-

ping; X−1(B) is the inverse image (preimage) of the set B.) What is less clear, however,
is to what extent we can draw conclusions about the random behavior of this process
over finite or even infinite time periods.
Let, for definiteness, T = N. Does the probability measure P carry information about the
“joint distribution” of a finite or even an infinite number of random variables X1, X2, . . .?
In other words, for what kind of sets C ⊆ R∞ :=

{
(x1, x2, . . .) : xt ∈ R

}
is the proba-

bility of the event {ω ∈ Ω: (X1(ω), X2(ω), . . .) ∈ C} specified by the given probability
measure P? Since P is defined on the σ-Algebra F , we have to identify sets C ⊆ R∞
such that

{ω ∈ Ω: (X1(ω), X2(ω), . . .) ∈ C} ∈ F . (1.1.1)

To this end, we make use of the following result from measure theory:

Lemma 1.1.1. Let (Ω,F) and (Ω′,F ′) be measurable spaces, and let f : Ω → Ω′ be an
arbitrary mapping. If f−1(E ′) ∈ F holds for all E ′ ∈ E ′, where E ′ is a collection of
subsets of Ω′ such that σ

(
E ′) = F ′, then the mapping f is (F − F ′)-measurable.

Proof. We use the good set principle and define the system of good sets,

G :=
{
E ′ ⊆ Ω′ : f−1(E ′) ∈ F

}
.

The set G is a σ-algebra on Ω′. Indeed, we have:

a) f−1(Ω′) = Ω ∈ F , hence Ω′ ∈ G.
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b) If E ′ ∈ G, then f−1(E ′) ∈ F , and so f−1(E ′c) =
(
f−1(E ′)

)c ∈ F , which means that
E ′c ∈ G.

c) If E ′1, E ′2, . . . ∈ G, then f−1(E ′1), f−1(E ′2), . . . ∈ F , and hence f−1
(⋃∞

i=1E
′
i

)
=⋃∞

i=1 f
−1
(
E ′i
)
∈ F . This implies that

⋃∞
i=1E

′
i ∈ G.

Since by assumption E ′ ⊆ G we therefore obtain that

F ′ = σ
(
E ′
)
⊆ σ

(
G
)

= G,

i.e. f−1(E ′) ∈ F for all E ′ ∈ F ′. Hence, the mapping f : Ω→ Ω′ is (F−F ′)-measurable.

By assumption, X1, X2, . . . are random variables which means thatXt : Ω→ R is (F−B)-
measurable, i.e. X−1

t (B) := {ω : Xt(ω) ∈ B} ∈ F holds for all B ∈ B. It follows from
Lemma 1.1.1 that (X1, . . . , Xn) : Ω → Rn is (F − Bn)-measurable. Indeed, we have, for
arbitrary B1, . . . , Bn ∈ B,

(X1, . . . , Xn)−1
(
B1 × · · · ×Bn

)
=

{
ω :

(
X1(ω), . . . , Xn(ω)

)
∈ B1 × · · · ×Bn

}
=

{
ω : X1(ω) ∈ B1

}︸ ︷︷ ︸
∈F

∩ . . . ∩
{
ω : Xn(ω) ∈ Bn

}︸ ︷︷ ︸
∈F

∈ F .

Since σ
(
{B1 × · · · ×Bn : B1, . . . , Bn ∈ B}

)
= Bn we obtain by Lemma 1.1.1 that

(X1, . . . , Xn)−1
(
B
)
∈ F ∀B ∈ Bn. (1.1.2)

(1.1.2) means that the joint distribution of a finite number of random variables is specified
by P .

The transition from the finite-dimensional to the infinite-dimensional case is achieved
by using so-called finite-dimensional sets (cylinder sets). Let

Cn :=
{{

(x1, x2, . . .) : (x1, . . . , xn) ∈ B, xn+1, xn+2, . . . ∈ R
}

: B ∈ Bn
}

=
{
B×R∞ : B ∈ Bn

}
be the collection of all n-dimensional cylinder sets. Then the union of these sets,

C =
∞⋃
n=1

Cn,

is the family of all cylinder sets. C is an algebra, and therefore also a ring on R∞ but
not a σ-algebra. (C contains R∞ and is stable under the formations of complementation
and finite unions; but is not stable under the formation of countable unions.)
Let X(ω) = (X1(ω), X2(ω), . . .) and let C ∈ C be an arbitrary cylinder set. Then, there
exist some n ∈ N and Cn ∈ Bn such that C = Cn × R∞. Hence

X−1(C) =
{
ω : X(ω) ∈ C

}
=
{
ω :

(
X1(ω), . . . , Xn(ω)

)
∈ Cn

}
∈ F .

This implies, again by Lemma 1.1.1, that

{ω ∈ Ω: (X1(ω), X2(ω), . . .) ∈ C} = X−1(C) ∈ F ∀C ∈ σ(C). (1.1.3)
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While the σ-algebra σ(C) generated by the cylinder sets is too small for some purposes
in the case of processes in continuous time (i.e. T = [0,∞) or T = R), this set is usually
rich enough when we deal with processes in discrete time. For example, the set

{
x ∈

R∞ : n−1
∑n

t=1 xt −→n→∞µ
}
(µ ∈ R) is contained in σ(C) which means that the probability

P
(
{ω : X̄n(ω) −→

n→∞
µ}
)
is well-defined, where X̄n = n−1

∑n
t=1 Xt is the mean of a sample

of size n. Although the probabilities of events {ω ∈ Ω: (X1(ω), X2(ω), . . .) ∈ C} are well-

specified for all sets C ∈ σ(C), it might be difficult or even impossible to compute the
probabilities P

(
{ω ∈ Ω: (X1(ω), X2(ω), . . .) ∈ C}

)
explicitly unless the set C ∈ σ(C)

has a very simple structure. This is because X = (X1, X2, . . .) is an infinite-dimensional
object and sets C in σ(C) may have a complex structure, leaving the simple case of
cylinder sets aside. Fortunately, it turns out that important aspects of the behavior of
a process (Xt)t∈T can be read off from the so-called finite-dimensional distributions.
Here is a formal definition:

Definition. Let (Xt)t∈T be a stochastic process on a probability space (Ω,F , P ). For
k ∈ N and distinct times t1, . . . , tk ∈ T , PXt1 ,...,Xtk is a finite-dimensional distribution
of the process X.
(PXt1 ,...,Xtk (B) := P

(
{ω ∈ Ω: (Xt1(ω), . . . , Xtk(ω)) ∈ B}

)
for B ∈ Bn.)

Knowledge of the finite-dimensional distributions is sufficient for many pur-
poses. Actually, if for a process (Xt)t∈N the probabilities PX1,...,Xn(B) =
P
(
{ω : (X1(ω), X2(ω), . . .) ∈ B×R∞}

)
are given, it follows from the uniqueness theorem

of measure theory that P
(
{ω : (X1(ω), X2(ω), . . .) ∈ C}

)
is specified for all C ∈ σ(C).

Therefore, it should not come as a surprise when the definition of stationarity given in
the next Subsection 1.2S2.1 is based on the finite-dimensional distributions.

Exercises

Ex. 1.1.1 Show that C is an algebra but not a σ-algebra on R∞.

Ex. 1.1.2 Show that, for µ ∈ R,{
x ∈ R∞ :

1

n

n∑
t=1

xt −→
n→∞

µ
}
∈ σ

(
C
)
.

Ex. 1.1.3 Let (Xt)t∈[0,∞) be a stochastic process on a probability space (Ω,F , P ) such
that

– X0 = 0 with probability 1,
– for 0 < t1 < t2 < . . . < tk, k ∈ N, the incrementsXt1 , Xt2−Xt1 , . . . , Xtk−Xtk−1

are stochastically independent.
– for s < t, Xt −Xs ∼ N

(
0, t− s

)
.

Find the finite-dimensional distributions PXt1 ,...,Xtk .
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With our definition of a time series (Xt)t∈T we have tacitly assumed that we have an
infinite number of random variables on a probability space (Ω,F , P ) at our disposal. But
does such a probability space that supports a countable or even uncountable number of
random variables with given properties exist a all? Few results in probability theory are
more fundamental or more well-known than the Daniell-Kolmogorov existence theorem.
It was first discovered by the British mathematician Percy John Daniell in a slightly
different setting, and later rediscovered by the famous Russian mathematician Andrey
Nikolaevich Kolmogorov. This theorem is also referred to Kolmogorov existence theorem,
Kolmogorov extension theorem or Kolmogorov consistency theorem. It basically states,
for any “reasonable” family

{
µt1,...,tk : t1, . . . , tk ∈ T (ti 6= tj for i 6= j), k ∈ N

}
of prob-

ability distributions (µt1,...,tk is a probability measure on (Rk,Bk)), that there exists a
suitable probability space

(
Ω,F , P

)
and a stochastic process X = (Xt)t∈T on

(
Ω,F , P

)
such that

PXt1 ,...,Xtk = µt1,...,tk ∀k ∈ N, ∀t1, . . . , tk ∈ T (ti 6= tj for i 6= j).

Before we state this theorem, we take a closer look at the finite-dimensional distributions
of a given stochastic process (Xt)t∈T . It is obvious that, for each k ∈ N and arbitrary
distinct t1, . . . , tk ∈ T , the following properties are fulfilled:

1) For all permutations π of {1, . . . , k} and all B1, . . . , Bk ∈ B,

P
Xtπ(1) ,...,Xtπ(k)

(
Bπ(1) × · · · ×Bπ(k)

)
= PXt1 ,...,Xtk

(
B1 × · · · ×Bk

)
.

2) For k ≥ 2 and all B1, . . . , Bk−1 ∈ B,

PXt1 ,...,Xtk
(
B1 × · · · ×Bk−1 × R

)
= PXt1 ,...,Xtk−1

(
B1 × · · · ×Bk−1

)
.

While the validity of these two properties is clear, it is far less obvious that some sort of
converse statement holds true.

Theorem 1.1.2. (Daniell-Kolmogorov existence theorem)
Let T be a non-empty set. For each k ∈ N and distinct t1, . . . , tk ∈ T , let µt1,...,tk be
a probability measure on (Rk,Bk). Suppose that these probability measures satisfy the
following consistency conditions:

1) For all permutations π of {1, . . . , k} and all B1, . . . , Bk ∈ B,

µtπ(1),...,tπ(k)
(
Bπ(1) × · · · ×Bπ(k)

)
= µt1,...,tk

(
B1 × · · · ×Bk

)
. (1.1.4)

2) For k ≥ 2 and all B1, . . . , Bk−1 ∈ B,

µt1,...,tk
(
B1 × · · · ×Bk−1 × R

)
= µt1,...,tk−1

(
B1 × · · · ×Bk−1

)
. (1.1.5)

Then there exist a probability space
(
Ω,F , P

)
and a stochastic process X = (Xt)t∈T on(

Ω,F , P
)
such that, for each k ∈ N and distinct t1, . . . , tk ∈ T ,

PXt1 ,...,Xtk = νt1,...,tk , (1.1.6)

i.e. the process X has µt1,...,tk as its finite-dimensional distribution relative to t1, . . . , tk.
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Before we turn to a proof of this theorem we recall two well-known results from measure
theory and prove two auxiliary lemmas. The first of these theorems from measure the-
ory, named after the Greek mathematician Constantin Carathéodory, is one of the main
tools for the construction of measures. It states that a non-negative and σ-additive set
function µ on a ring R can be extended to a measure on the σ-algebra generated by R.

Theorem 1.1.3. (Carathéodory’s extension theorem)
Suppose that Ω is a non-empty set and that R is a collection of subsets of Ω such that

• ∅ ∈ R,

• if A,B ∈ R, then A \B ∈ R,

• if A,B ∈ R, then A ∪B ∈ R.

(R is a so-called ring (of sets) on Ω.)
Suppose further that µ0 : R → [0,∞] is a set function such that

• µ0(∅) = 0,

• if A1, A2, . . . ∈ R are pairwise disjoint sets such that
⋃∞
n=1An ∈ R, then

µ0

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ0

(
An
)
.

(µ0 is a pre-measure on R.)
Then there exists a measure µ on σ(R) such that

µ
(
A
)

= µ0

(
A
)

∀A ∈ R.

In other words, any pre-measure µ0 on a ring R can be extended to a measure µ on the
σ-algebra σ(R) generated by R. Note in passing that any ring R of sets is intersection-
stable, if A,B ∈ R, then A ∩ B ∈ R. Indeed, this follows from A ∩ B = A \ Bc =
A \ (A ∩Bc) = A \ (A \B).

Carathéodory’s extension theorem will be complemented by the Uniqueness theorem
which ensures that such an extension is unique if there exists a sequence (En)n∈N of sets
that belong to R such that

⋃∞
n=1En = Ω and µ0

(
En
)
<∞.

Theorem 1.1.4. (Uniqueness theorem)
Suppose that Ω is a non-empty set and that E is an intersection-stable collection of subsets
of Ω. Let µ and ν be measures on σ(E) such that

(i) µ(E) = ν(E) ∀E ∈ E,

(ii) there exist sets E1 ⊆ E2 ⊆ . . . that belong to E,
⋃∞
n=1 En = Ω, and µ(En) =

ν(En) <∞ ∀n ∈ N.

Then
µ(A) = ν(A) ∀A ∈ σ

(
E
)
.
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In particular, a probability measure P on a σ-algebra A is completely specified by its
values on an intersection-stable collection of sets E which generates A.

In order to make the proof of our main result in this section, the Daniell-Kolmogorov
theorem, transparent, we put some of the technical considerations in two lemmas. Since
we make use of Theorems 1.1.3 and 1.1.4 it essentially remains two show that a certain
set function which is obviously a content (i.e. finitely additive) is also countably additive.
Recall that one typically uses in the simpler case of the construction of Lebesgue measure
on (Rd,Bd) two major arguments: The ring of sets on which the construction is started
is given by the collection of finite unions of half-open rectangles. In this case it is obvious
that such sets can be approximated from below by closed rectangles such that the content
of the difference set is arbitrarily small. And it is easy to see that the intersection of a
non-increasing sequence of non-empty closed rectangles is also non-empty. In the present
case the situation is less obvious. Instead of the simple Lebesgue measure we have to
deal with arbitrary probability measures and since we work in the space R∞ we cannot
directly use the result for intersections of compact sets mentioned above. The following
two lemmas provide corresponding results which are tailor-made for our proof of the
Daniell-Kolmogorov theorem.

Lemma 1.1.5. Let P be a probability measure on (Rd,Bd), and let A ∈ Bd and ε > 0 be
arbitrary. Then there exists a compact (i.e. closed and bounded) set C such that C ⊆ A
and P (A \ C) ≤ ε.

Proof. In a first step we show that there exists a closed set F such that F ⊆ A and
P (F \ A) ≤ ε/2. To this end, we define a suitable collection of good sets,

G :=
{
B ∈ Bd : for all δ > 0 there exist a closed set Fδ and an open set Uδ

such that Fδ ⊆ B ⊆ Uδ and P (Uδ \ Fδ) ≤ δ
}
.

It is easy to see that G is a σ-algebra on Rd. Indeed, we have that

a) Rd ∈ G since Rd itself is both closed and open.

b) Let B ∈ G be arbitrary, i.e. for each δ > 0 there exist a closed set F and an open
set U such that F ⊆ B ⊆ U and P (U \ F ) ≤ δ. Note that the set U c is, as the
complement of an open set, a closed set, and F c is, as the complement of a closed
set, an open set. It holds that U c ⊆ Bc ⊆ F c and P (F c \ U c) = P (U \ F ) ≤ δ.
Hence, Bc also belongs to G.

c) Suppose that B1, B2, . . . are sets that belong to G. Then there are open sets
U1, U2, . . . such that Bn ⊆ Un and P (Un \ Bn) ≤ 2−(n+1)δ for all n ∈ N. The
set U :=

⋃∞
n=1 Un is an open set,

⋃∞
n=1Bn ⊆ U , and

P
(
U \

∞⋃
n=1

Bn

)
≤

∞∑
n=1

P
(
Un \

∞⋃
k=1

Bk

)
≤

∞∑
n=1

P
(
Un \Bn

)
≤ δ/2. (1.1.7)

Furthermore, there exist closed sets F1, F2, . . . such that Fn ⊆ Bn and P (Bn\Fn) ≤
2−(n+2)δ for all n ∈ N. Unfortunately, the set F :=

⋃∞
n=1 Fn is not necessarily a

closed set. However, since P is continuous from below and
⋃N
n=1 Fn ↗ F as N →∞

there exists some Nδ such that P
(
F \

⋃Nδ
n=1 Fn

)
≤ δ/4. The set F̃ :=

⋃Nδ
n=1 Fn is, as
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a finite union of closed sets, a closed set, and it holds that F̃ ⊆
⋃∞
n=1Bn as well

as

P
( ∞⋃
n=1

Bn \ F̃
)

= P
( ∞⋃
n=1

Bn \F
)

+ P
(
F \ F̃

)
≤ δ/4 + δ/4 = δ/2. (1.1.8)

To summarize, we have that F̃ ⊆
⋃∞
n=1Bn ⊆ U and it follows from (1.1.7) and

(1.1.8) that P (U \ F̃ ) ≤ δ. Hence, B1, B2, . . . ∈ G implies that
⋃∞
n=1Bn ∈ G.

It follows from a) to c) that G is a σ-algebra on Rd.
Next we show that G contains all half-open rectangles. Indeed, for an arbitrary

half-open rectangle (a, b] := (a1, b1] × · · · × (ad, bd] such that −∞ < ai ≤ bi < ∞
for all i = 1, . . . , d, we define Fn := [a1 + 1/n, b1] × · · · × [ad + 1/n, bd] and Un :=
(a1, b1 + 1/n) × · · · × (ad, bd + 1/n). Since Fn ↗ (a, b] it follows from continuity from
below that P

(
Fn
)
↗ P

(
(a, b]

)
. Similarly, since Un ↘ (a, b] we obtain from continuity

from above that P
(
Un
)
↘ P

(
(a, b]

)
. Hence, there exists for each δ > 0 some sufficiently

large N = N(δ) such that, besides FN ⊆ (a, b] ⊆ UN , P
(
UN \ FN

)
= P

(
UN \ (a, b]

)
+

P
(
(a, b] \ FN

)
≤ δ.

Now we can complete the proof of the first step in the usual way. Let Id :=
{

(a, b] : −
∞ < ai ≤ bi <∞ ∀i = 1, . . . , d

}
denote the collection of all half-open rectangles. Since

Id ⊆ G we obtain that σ
(
Id
)
⊆ σ

(
G
)
. It is well-known that σ

(
Id
)

= Bd. Furthermore,
since G is a σ-algebra we have that σ

(
G
)

= G. This implies in particular that there exists
a closed set F such that F ⊆ A and P (F \ A) ≤ ε/2.

The sets Fn := F ∩ ([−n, n]× · · · × [−n, n]) are closed and bounded, hence compact
sets. Since Fn ↗ F we obtain that P

(
Fn
)
↗ P

(
F
)
. Therefore, there exists some

N < ∞ such that P
(
F \ FN

)
≤ ε/2 and we have, besides FN ⊆ A, P

(
A \ FN

)
=

P
(
A \ F

)
+ P

(
F \ FN

)
≤ ε.

Before we turn to the next auxiliary result we note that, for an arbitrary sequence
(Dn)n∈N of non-empty compact sets of Rd such that Dn+1 ⊆ Dn holds for all n ∈ N,
the intersection of these sets is also nonempty. To see this, assume the contrary,
i.e.

⋂∞
n=1Dn = ∅. Then D1 ⊆

(⋂∞
n=2Dn

)c
=
⋃∞
n=2D

c
n. The sets Dc

2, D
c
3, . . . are,

as complements of compact sets, open sets and they cover the compact set D1. We
can find a finite subcover, e.g. Dc

2, . . . , D
c
N , i.e. D1 ⊆

(⋂N
n=2 Dn

)c which implies that
DN =

⋃N
n=1Dn = ∅. This, however, contradicts our hypothesis that all sets D1, D2, . . .

are non-empty. The following lemma provides a corresponding result in the infinite-
dimensional case.

Lemma 1.1.6. Suppose that (Dn)n∈N is a sequence of non-empty compact sets, Dn ⊆ Rn,
such that

Dn+1 ⊆ Dn × R ∀n ∈ N.

Then there exists a sequence (xn)n∈N such that

(
x1, x2, . . .

)
∈
∞⋂
n=1

(
Dn × R∞

)
.
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Proof. In order to find an appropriate sequence, we first direct our focus on single com-
ponents. To start with, we pick for each n ∈ N an arbitrary

(
x

(n)
1 , . . . , x

(n)
n

)
∈ Dn.

Since D1 is compact there exists a subsequence
(
n

(1)
k

)
k∈N of N such that

(
x

(n
(1)
k )

1

)
k∈N

converges to some x[1]
1 ∈ D1. The sequence

(
n

(1)
k

)
k∈N contains a further subsequence(

n
(2)
k

)
k∈N such that

(
(x

(n
(2)
k )

1 , x
(n

(2)
k )

2 )
)
k∈N converges to some limit, say (x

[2]
1 , x

[2]
2 ) ∈ D2.

This procedure will be continued as follows. Suppose that the (m− 1)th subsequence(
n

(m−1)
k

)
k∈N has already been chosen. Then there exists a further subsequence

(
n

(m)
k

)
k∈N

such that
(
(x

(n
(m)
k )

1 , . . . , x
(n

(m)
k )

m )
)
k∈N converges to some limit (x

[m]
1 , . . . , x

[m]
m ) ∈ Dm. Since

this construction is based on subsequences we obtain that x[m]
m = x

[m+1]
m = x

[m+2]
m =

. . .. The sought sequence
(
xn)n∈N is given by xn := x

[n]
n . Indeed, we have that(

x1, . . . , xn
)
∈ Dn for all n ∈ N, which implies that

(
x1, x2, . . .

)
∈
∞⋂
n=1

(
Dn × R∞

)
.

After these preparatory considerations we are in a position to prove the Daniell-
Kolmogorov theorem.

Proof of Theorem 1.1.2. We have to find a suitable probability space
(
Ω,F , P

)
and to

define a stochastic process X = (Xt)t∈T on this space such that (1.1.6) is fulfilled. To
simplify notation and in order not to obscure the main ideas by too many details of minor
importance, we consider the simple case where T = N. We choose

Ω = R∞ =
{

(ω1, ω2, . . .) : xt ∈ R
}
,

F = σ(C),

and define, for each t ∈ T ,
Xt(ω) = ωt.

It follows from the construction that all mappings Xt are (F − B)-measurable. Indeed,
we have for B ∈ B

X−1
t

(
B
)

=
{
ω : Xt(ω) ∈ B

}
=
{
ω : (ω1, . . . , ωt) ∈ Rt−1 ×B

}
⊆ Ct.

To some extent, the choice of the probability measure P is now canonical. In order
not to violate condition (1.1.6), we have to choose P on the collection of cylinder sets C
such that, for each k ∈ N and arbitrary B ∈ Bk,

P
(
B × R∞

)
= P

({
ω ∈ R∞ : (ω1, . . . , ωk)︸ ︷︷ ︸

= (X1(ω),...,Xk(ω))

∈ B
})

= µ1,...,k(B). (1.1.9)

As a starting point, we define the set function P0 : C → [0, 1] as

P0

(
B × R∞

)
:= µ1,...,k(B). (1.1.10)

We obtain from the second consistency condition (1.1.5) that such a definition does not
lead to a contradiction. Note that it is easy to see that the family of cylinder sets C is an
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algebra in Ω but not a σ-algebra. Therefore, it remains to extend the definition of P0 to a
probability measure P on a suitable σ-algebra. At first sight, such an extension may seem
to be out of reach since e.g. the σ-algebra σ(C) also contains sets with a very involved
structure. Fortunately, an explicit definition of all probabilities is not necessary.

It can be shown that P0 is a so-called content (a finitely additive set function) on
the algebra C. We will show that P0 is even a pre-measure (a σ-additive set function)
on C. Suppose that A1, A2, . . . are pairwise disjoint sets that belong to C, and that
A :=

⋃∞
n=1 An also belongs to C. We will show that

P0

( ∞⋃
n=1

An

)
=

∞∑
n=1

P0

(
An
)
. (1.1.11)

Since P0 is a content and therefore finitely additive we have

P0

( ∞⋃
n=1

An

)
= P0

(
A \

n⋃
k=1

Ak

)
+ P0

( n⋃
k=1

Ak

)
= P0

(
Bn

)
+

n∑
k=1

P0

(
Ak
)
,

where Bn := A \
⋃n
k=1Ak. Since

∑n
k=1 P0

(
Ak
)
−→
n→∞

∑∞
k=1 P0

(
Ak
)
it remains to show that

P0

(
Bn

)
−→
n→∞

0. (1.1.12)

Since Bn+1 ⊆ Bn for all n the sequence
(
P0(Bn)

)
n∈N is non-increasing and therefore

converges. Let us assume that (1.1.12) is not true, i.e. there exists some ε > 0 such that

P0

(
Bn

)
≥ ε ∀n ∈ N. (1.1.13)

We shall prove that in that case
∞⋂
n=1

Bn 6= ∅,

which is obviously wrong since
⋃n
k=1Ak ↗ A, and so Bn ↘ ∅. Suppose for simplicity of

notation (otherwise we can add sets in the sequence of sets Bn) that Bn = Cn ×R∞, for
some Cn ∈ Bn. It follows from Lemma 1.1.5 that there exist compact sets C∗n ⊆ Cn such
that

P0

((
Cn × R∞

)
\
(
C∗n × R∞

))
= µ1,...,n

(
Cn \ C∗n

)
≤ ε 2−n.

Let
Dn :=

(
C∗1 × Rn−1

)
∩ · · · ∩

(
C∗n−1 × R1

)
∩ C∗n.

It follows that Dn ⊆ Cn and Dn+1 ⊆ Dn × R. Moreover,

µ1,...,n

(
Dn

)
= µ1,...,n

(
Cn
)
− µ1,...,n

(
Cn \Dn

)
≥ µ1,...,n

(
Cn
)
− µ1,...,n

(
Cn ∩

(
(C∗1 × Rn−1) ∩ · · · ∩ (C∗n−1 × R1) ∩ C∗n

)c)
≥ µ1,...,n

(
Cn
)
− µ1,...,n

(
Cn \ (C∗1 × Rn−1)

)
− · · · − µ1,...,n

(
Cn \ (C∗n−1 × R1)

)
−µ1,...,n

(
Cn \ C∗n

)
≥ µ1,...,n

(
Cn
)
− µ1

(
C1 \ C∗1

)
− · · · − µ1,...,n−1

(
Cn−1 \ C∗n−1

)
− µ1,...,n

(
Cn \ C∗n

)
≥ ε − ε

(
2−1 + · · · + 2−n

)
> 0.
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Hence, Dn 6= ∅ and it follows from Lemma 1.1.6 that
⋂∞
n=1 Dn×R∞ 6= ∅. Since

⋂∞
n=1Dn×

R∞ ⊆
⋂∞
n=1Bn we get a contradiction and we conclude that (1.1.12) holds true. Hence,

P0 is a pre-measure on C. At this point, we can simply use Caratheodory’s extension
theorem (Theorem 1.1.3) and the Uniqueness theorem (Theorem 1.1.4) to conclude that
there exists a unique extension of P0 to a probability measure P on the σ-algebra σ(C).

It follows from (1.1.10) for each k ∈ N and distinct t1, . . . , tk ∈ T , that

PXt1 ,...,Xtk = µt1,...,tk ,

as required.

Many classical theorems in probability require that there exists a sequence (Xt)t∈N
of independent and identically distributed random variables satisfying appropriate reg-
ularity conditions. One such example is the strong law of large numbers which states
that with probability 1 the sequence of sample means X̄n converges to EXt, as n tends
to infinity. As usual in mathematics, “existence” means that one can construct a cor-
responding model free of contradiction. To obtain such a model for a sequence (Xt)t∈N
of independent random variables following a common distribution Q, choose a family of
distributions as

µt1,...,tk = Q⊗ · · · ⊗Q︸ ︷︷ ︸
k times

, t1, . . . , tk ∈ N, ti 6= tj for i 6= j.

This family satisfies the consistency conditions (1.1.5) and (1.1.6). According to the
proof of Theorem 1.1.2, we can choose a probability space (Ω,F , P ) such that Ω = R∞,
F = σ(C), and P such that P ({ω : (ωt1,...,tk) ∈ C}) = µt1,...,tk(C) for ti 6= tj in case of
i 6= j and C ∈ Bk. Then the random variables Xt given as Xt(ω) = ωt are independent,
Xt ∼ Q.

In cases where T = N, it is convenient to use the order structure of N and take the
µt1,...,tk to be specified initially only for k-tuples (t1, . . . , tk) = (1, 2, . . . , k). Using the
consistency conditions (1.1.5) and (1.1.6) this completely specifies the finite-dimensional
distributions µt1,...,tk for all k-tuples of distinct points of N.
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1.2 Stationarity

Typical problems in the statistical analysis of time series are the estimation of model
parameters or the prediction of future values. Suppose that we observe realizations
x1, . . . , xn (our data) of the random variables X1, . . . , Xn, where (Xt)t∈N is our time
series. The prediction of future values Xn+1, Xn+2, . . . can only be successful if the Xt

are not completely unrelated to each other. Consistency of (sequences of) estimators for
certain parameters will be possible if we obtain an increasing amount of new information
about the underlying situation as the sample size n tends to infinity. This is usually the
case if the dependence between the observed random variables is not too strong and if
the parameters do not change over time. The latter requirement leads to the important
concept of stationarity of a process. Stationarity roughly means that the properties of
the process do not change as time proceeds. An exact definition of such a notion will be
given on the basis of the finite-dimensional distributions of a process.

Definition. Let X = (Xt)t∈Z be a (real-valued) stochastic process on (Ω,F , P ).

(i) X is said to be strictly stationary if

PXt1 ,...,Xtk = PXt1+t,...,Xtk+t ∀t1, . . . , tk, t ∈ Z, ∀k ∈ N.

(ii) X is said to be stationary (weakly stationary) if

a) EX2
t <∞ ∀t ∈ Z,

b) EXt = µ ∀t ∈ Z and some µ ∈ R,
c) cov(Xr, Xs) = cov(Xr+t, Xs+t) ∀r, s, t ∈ Z.

In this case, γX(k) := cov(Xt+k, Xt) is the autocovariance at lag k,
γX : Z→ R is the autocovariance function.

If T = N0 or T = N, then the above definition has to be adapted accordingly.

As already mentioned, a process (Xt)t∈N with the property of strict stationarity as
defined above has also a shift-invariant behavior when infinite stretches are consid-
ered. Indeed, since the finite-dimensional distribution determine probabilities such as
P
(
{ω : (X1(ω), X2(ω), . . .) ∈ C}

)
for C ∈ σ(C), we conclude that

P
(
{ω : (X1(ω), X2(ω), . . .) ∈ C}

)
= P

(
{ω : (Xk+1(ω), Xk+2(ω), . . .) ∈ C}

)
∀k ∈ N, ∀C ∈ σ(C).

Therefore the above definition of strict stationarity will be sufficient for (almost?) all
purposes. The following proposition clarifies the relation between strict and weak sta-
tionarity.
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Proposition 1.2.1. Let X = (Xt)t∈Z be a real-valued process on (Ω,F , P ).

(i) If X is strictly stationary and EX2
0 <∞, then X is also weakly stationary.

(ii) The converse statement is not true in general.

Proof. (i) First of all, since EX2
0 <∞ the expectation of X0 exists and is finite. There-

fore we obtain from PXt = PXt+s that EXt = EXt+s ∀t, s ∈ Z. Furthermore, cov(Xr, Xs)
also exists and it follows from PXr,Xs = PXr+t,Xs+t that cov(Xr, Xs) = cov(Xr+t, Xs+t)
for all r, s, t ∈ Z.
(ii) Here is a counter-example: Let X = (Xt)t∈Z be a (two-sided) sequence of indepen-
dent random variables, where

Xt ∼
{

Poisson(λ), if t is odd,
N(λ, λ), if t is even .

Then EXt = λ ∀t ∈ Z and

cov(Xt, Xs) =

{
λ, if t = s,
0, if t 6= s

.

Hence, X is weakly but not strictly stationary.

An important special case is that of a Gaussian process.

Definition. X = (Xt)t∈Z is a Gaussian process on (Ω,F , P ) if all finite-dimensional
distributions are Gaussian.

Lemma 1.2.2. If X = (Xt)t∈Z is a Gaussian process on a probability space (Ω,F , P ),
then the following two statements are equivalent.

a) X is strictly stationary,

b) X is weakly stationary.

Proof. [a) =⇒ b)] Gaussianity implies that EX2
0 < ∞. Therefore, b) follows from (i)

of Proposition 1.2.1.
[b) =⇒ a)] Suppose that X is weakly stationary. Let k ∈ N and t1, . . . , tk, t ∈ Z be
arbitrary. We have to show that

PXt1 ,...,Xtk = PXt1+t,...,Xtk+t . (1.2.1)

We have that
PXt1 ,...,Xtk ∼ N(µ,Σ),

where

µ =
(
EXt1 , . . . , EXtk

)T and Σ =

 cov(Xt1 , Xt1) . . . cov(Xt1 , Xtk)
... . . . ...

cov(Xtk , Xt1) . . . cov(Xtk , Xtk)

 .
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Analogously,
PXt1+t,...,Xtk+t ∼ N(µ̃, Σ̃).

We obtain from weak stationarity that

µ̃ =
(
EXt1+t, . . . , EXtk+t

)T
= µ

and cov(Xti+t, Xtj+t) = cov(Xti , Xtj), which implies that

Σ̃ = Σ.

Therefore, (1.2.1) is satisfied which means that X is strictly stationary.

Examples

1) Let (εt)t∈Z be a sequence of i.i.d. random variables. This process is strictly station-
ary. If in addition E[ε2

t ] <∞, then it is also weakly stationary.

2) Let Y and Z be uncorrelated random variables such that EY = EZ = 0 and
EY 2 = EZ2 = 1. We define, for any θ ∈ [−π, π],

Xt := Y cos(θt) + Z sin(θt).

Then
EXt = 0 ∀t

and

cov(Xt+r, Xt) = E [{Y cos(θ(t+ r)) + Z sin(θ(t+ r))} {Y cos(θt) + Z sin(θt)}]
= cos(θ(t+ r)) cos(θt) + sin(θ(t+ r)) sin(θt)

= cos(θr).

The latter equation follows from one of the trigonometric identities. We have, on
the one hand,

ei(u−v) = cos(u− v) + i sin(u− v),

and, on the other hand,

ei(u−v) = eiu e−iv =
(

cos(u) + i sin(u)
)(

cos(v) − i sin(v)
)

= cos(u) cos(v) + sin(u) sin(v) + i
(

sin(u) cos(v) − cos(u) sin(v)
)
.

Therefore, the autocovariances are also shift-invariant which means that the process
(Xt)t∈Z is weakly stationary.

3) Let X0, ε1, ε2, . . . be independent, X0 ∼ N(0, σ2
X), and εt ∼ N(0, σ2

ε) ∀t ∈ N.
We obtain a so-called autoregressive process (Xt)t∈N0 by defining recursively

Xt := α Xt−1 + εt ∀t ∈ N,

where α is a real constant, |α| < 1.

Question: Is it possible to choose σ2
X such that the process (Xt)t∈N0 is stationary?
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Since
X1 = α X0 + ε1 ∼ N(0, α2 σ2

X + σ2
ε)

a necessary condition for any kind of stationarity is that var(X0) = σ2
X = var(X1) =

α2σ2
X + σ2

ε , i.e. σ2
X = σ2

ε/(1− α2).

Suppose that σ2
X = σ2

ε/(1− α2). We have that

Xt = εt + α Xt−1 = . . . = εt + α εt−1 + . . . + αt−1 ε1 + αt X0.

Since (X0, X1, . . . , Xt)
T = Mt (X0, ε1, . . . , εt)

T , for some (t+1)×(t+1)-matrixMt we
see that (X0, X1, . . . , Xt)

T has a multivariate normal distribution, and so (Xt)t∈N0

is a zero mean Gaussian process. We obtain, as above, that

var(X0) = var(X1) = . . . = var(Xt) ∀t ∈ N.

Furthermore, for k ∈ N, we obtain from independence of Xt, εt+1, . . . εt+k that

cov(Xt+k, Xt) = cov
(
εt+k + αεt+k−1 + · · ·+ αk−1εt+1 + αkXt, Xt

)
= αk σ2

X .

Hence, (Xt)t∈N0 is a weakly stationary process. Moreover, as a Gaussian process, it
is also strictly stationary.

The following lemma contains a few elementary properties of the autocovariance function
of a stationary process.

Lemma 1.2.3. Let γ be the autocovariance function of a real-valued stationary process
(Xt)t∈Z. Then

(i) γ(0) ≥ 0,

(ii) |γ(r)| ≤ γ(0) ∀r ∈ Z,

(iii) γ(r) = γ(−r) ∀r ∈ Z.

Proof. (i) is a statement of the obvious fact that

γ(0) = var(Xt) ≥ 0.

(ii) is an immediate consequence of the Cauchy-Schwarz (Cauchy-Bunyakovsky-Schwarz)
inequality,

|γ(r)| = | cov(Xt+r, Xt)| ≤
√

var(Xt+r)
√

var(Xt) = γ(0).

Finally, (iii) follows from

γ(r) = cov(Xt+r, Xt) = cov(Xt, Xt+r) = γ(−r).
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Remark 1.2.4. If (Xt)t∈Z is a complex-valued process and E[|Xt|2] <∞ ∀t, then

cov(Xt+r, Xt) := E
[
(Xt+r − EXt+r) (Xt − EXt)

]
,

where z denotes the complex conjugate of a complex number z. Since, for a complex-
valued random variable Y , |EY | ≤ E|Y |1, an analogue of the Cauchy-Schwarz inequality
holds true: ∣∣E[Yt+rY t]

∣∣ ≤ E
[
|Yt+rY t|

]
≤
√
E[|Yt+r|2]

√
E[|Yt|2].

Next we intend to find a characterization of autocovariance functions.

Definition. A real-valued function on the integers, κ : Z → R, is said to be non-
negative definite (positive semidefinite) if

n∑
i,j=1

ai κ(ti − tj) aj ≥ 0 ∀n ∈ N, ∀a1, . . . , an ∈ R, ∀t1, . . . , tn ∈ Z.

Theorem 1.2.5. Let γ : Z→ R be a real-valued function. Then the following statements
are equivalent.

(i) γ is the autocovariance function of a real-valued stationary process (Xt)t∈Z,

(ii) γ is an even and non-negative definite function.

Proof. [(i) =⇒ (ii)] Assume that γ is the autocovariance function of a real-valued
stationary process X = (Xt)t∈Z. Then

γ(k) = cov(Xk, X0) = cov(X0, Xk) = γ(−k),

i.e. γ is an even function. Moreover, we have, for arbitrary n ∈ N, a1, . . . , an ∈ R,
t1, . . . , tn ∈ Z,

n∑
i,j=1

ai γ(ti − tj) aj =
n∑

i,j=1

ai cov
(
Xti , Xtj

)
aj

=
n∑

i,j=1

cov
(
aiXti , ajXtj

)
= var

( n∑
i=1

aiXti

)
≥ 0,

i.e., γ is non-negative definite.
1 Suppose that E|Y | <∞. Then

|EY |2 = EY · EY = E
[
Y · EY

]
= Re

(
E
[
Y · EY

])
= E

[
Re
(
Y · EY

)︸ ︷︷ ︸
≤ |Y |·|EY |

]
≤ E

[
|Y | · |EY |

]
= E|Y | · |EY |,

which implies that
∣∣EY ∣∣ ≤ E|Y |.
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[(ii) =⇒ (i)] Let γ be an arbitrary even and non-negative definite function. For
each m,n ∈ Z, m ≤ n, we consider the matrix

Γm,n :=

 γ(m−m) . . . γ(m− n)
... . . . ...

γ(n−m) . . . γ(n− n)

 .

Since γ is an even function it follows that Γm,n is a symmetric matrix. Moreover, Γm,n
is a non-negative definite matrix. Actually, let c = (cm, . . . , cn)T ∈ Rn−m+1 be arbitrary.
Then cTΓm,nc =

∑n
i,j=m ciγ(i− j)cj ≥ 0. Hence, Γm,n has the properties of a covariance

matrix. We define
Pm,n := Nn−m+1(0n−m+1,Γm,n),

where 0k = (0, . . . , 0)T denotes a vector of length k consisting of zeroes. It follows that
the family of distributions (Pm,n)m≤n satisfies the consistency condition of Kolmogorov’s
existence theorem. Therefore, there exists a stochastic process X = (Xt)t∈Z on a suitable
probability space (Ω,F , P ) such that

PXm,...,Xn = Pm,n.

It follows that the process (Xt)t∈Z is both weakly and strictly stationary and that

cov(Xt+k, Xt) = γ(k) ∀k ∈ Z,

as required.

Exercises

Ex. 1.2.1 Suppose that (εt)t∈Z is a sequence of i.i.d. random variables, Eε0 = 0,
Eε2

0 =: σ2
ε <∞, and

Xt := εt + β εt−1.

Is the process (Xt)t∈Z (weakly) stationary?

Ex. 1.2.2 Let (βk)k∈Z be a sequence of real numbers with
∑∞

k=−∞ β
2
k < ∞. The

function γ : Z→ R is defined by γ(k) =
∑∞

j=−∞ βj+kβj.

Is γ an autocovariance function?
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1.3 Hilbert spaces

First of all, the contents of this section seems to be completely out of place in a course
on time series. But why do we pay attention to such an abstract subject as a Hilbert
space? In what follows we will be faced with the following questions.

(i) As a simple class of models for time series, we consider so-called linear processes.
Given an underlying process (εt)t∈Z, we consider a process X = (Xt)t∈Z, where

Xt =
∞∑
k=0

βkεt−k. (1.3.1)

This raises the following questions.

– Does the infinite sum on the right-hand side of (1.3.1) converge? And if so, in
which sense?

– What is the covariance structure of (Xt)t∈Z?
Of course, cov(

∑m
j=0 βjεs−j,

∑m
k=0 βkεt−k) can be easily computed since we can

take out the finite sums. But what about cov(
∑∞

j=0 βjεs−j,
∑∞

k=0 βkεt−k) where
infinite sums are involved?

Answers to these questions can be easily deduced in the general context of Hilbert
spaces.

(ii) Suppose that we observe realizations x1, . . . , xn of random variables X1, . . . , Xn,
where (Xt)t∈N is a stationary process. How can we best predict future values,
e.g. Xn+1?
We will see that a best linear predictor is given by the orthogonal projection ofXn+1

onto the linear space spanned by X1, . . . , Xn. This can be reformulated as a projec-
tion in an appropriate Hilbert space and its characterization is most conveniently
derived in such an abstract context.

Definition. Let H be a complex (real) vector space which is closed under the operations
of vector addition (if x, y ∈ H then x + y ∈ H) and complex (real) scalar multiplication
(if x ∈ H and α ∈ C or α ∈ R then αx ∈ H).

For a complex vector space H, a mapping 〈·, ·〉 : H×H → C is called inner product
(scalar product) if

(i) 〈x, x〉 ≥ 0 ∀x ∈ H
〈x, x〉 = 0 ⇔ x = 0 (0 denotes the zero element of H.),

(ii) 〈x, y〉 = 〈y, x〉 (The bar denotes complex conjugation.),

(iii) 〈αx, y〉 = α 〈x, y〉 ∀x, y ∈ H, ∀α ∈ C,

(iv) 〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉 ∀x, y, z ∈ H.

The complex number 〈x, y〉 is called the inner product of x and y. A vector space H
equipped with an inner product is called inner-product space (scalar space).

Note that it follows from (ii) and (iii) that 〈x, αy〉 = 〈αy, x〉 = α 〈y, x〉 = α 〈y, x〉 = α 〈x, y〉.
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Remark 1.3.1. A real vector space H is an inner product space if for all x, y ∈ H there
exists a real number 〈x, y〉 such that suitably adapted versions of (i) to (iv) are satisfied.
(Of course, (ii) obviously reduces to 〈x, y〉 = 〈y, x〉 and (iii) has to be satisfied for all
real α.)

Examples

1) Real Euclidean space Rd

〈x, y〉 =
d∑
i=1

xi yi

2) Complex Euclidean space Cd

〈x, y〉 =
d∑
i=1

xi ȳi

Definition. Let H be an inner-product space, x ∈ H. The norm of x is defined to be

‖x‖ :=
√
〈x, x〉.

Actually, in order to justify the term norm we still have to prove that ‖ · ‖ satisfies all
axioms of a norm. In particular, validity of the triangle inequality has to be verified.
Before we turn to this point, we state a few auxiliary results.

Lemma 1.3.2. (Cauchy-Bunyakovsky-Schwarz inequality)
Let H be an inner-product space. Then

(i) |〈x, y〉| ≤ ‖x‖ ‖y‖ ∀x, y ∈ H,

(ii) |〈x, y〉| = ‖x‖ ‖y‖ if and only if ‖y‖2 x = 〈x, y〉 y.

Proof. (i) Let x, y ∈ H be arbitrary. Using the axioms of an inner product we obtain
that

0 ≤ 〈‖y‖2 x − 〈x, y〉 y, ‖y‖2 x − 〈x, y〉 y〉
= ‖x‖2 ‖y‖4 + 〈x, y〉 〈x, y〉 ‖y‖2 − ‖y‖2 〈x, y〉 〈x, y〉 − 〈x, y〉 ‖y‖2 〈y, x〉
= ‖y‖2

{
‖x‖2 ‖y‖2 − |〈x, y〉|2

}
.

Now we distinguish between two cases.
Case 1: If ‖y‖ 6= 0, then the term in curly braces is non-negative which yields that
assertion (i) holds true.
Case 2: If ‖y‖ = 0, then y = 0 which implies that 〈x, y〉 = 0. In this case, the term in
curly braces is equal to 0.
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(ii) (=⇒)
If |〈x, y〉| = ‖x‖ ‖y‖, then {‖x‖2 ‖y‖2 − |〈x, y〉|2} = 0, which implies that

〈‖y‖2 x − 〈x, y〉 y, ‖y‖2 x − 〈x, y〉 y〉 = 0

and, therefore, ‖y‖2 x = 〈x, y〉 y.
(⇐=)
If ‖y‖2 x = 〈x, y〉 y, then

‖y‖2
{
‖x‖2 ‖y‖2 − |〈x, y〉|2

}
= 0.

Case 1: If ‖y‖ = 0, then |〈x, y〉| = 0 = ‖x‖ ‖y‖.
Case 2: If ‖y‖ 6= 0, then |〈x, y〉| = ‖x‖ ‖y‖.

Now we are in a position to verify that ‖ · ‖ shares all axioms of a norm.

Lemma 1.3.3. Let H be an inner-product space and let ‖x‖ =
√
〈x, x〉. Then

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

(ii) ‖αx‖ = |α| ‖x‖ ∀x ∈ H,∀α ∈ C,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ H.

Proof. (i) is obvious. (ii) follows from ‖αx‖2 = 〈αx, α x〉 = α ᾱ 〈x, x〉 = |α|2 ‖x‖2.
Finally, we have

‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + 〈x, y〉 + 〈y, x〉 + ‖y‖2

= ‖x‖2 + ‖y‖2 + 2Re(〈x, y〉)︸ ︷︷ ︸
≤ 2 |〈x,y〉|≤ 2 ‖x‖ ‖y‖

≤ (‖x‖ + ‖y‖)2 .

The following lemma provides an important property, the so-called continuity of the
inner product. This allows us, among others, to compute autocovariances of a linear
process (Xt)t∈Z, where Xt =

∑∞
k=−∞ βk εt−k.

Lemma 1.3.4. Let (xn)n∈N and (yn)n∈N be sequences of elements of an inner-product
space H with ‖xn − x‖ −→

n→∞
0 and ‖yn − y‖ −→

n→∞
0, for some x, y ∈ H. Then

(i) ‖xn‖ −→
n→∞

‖x‖,

(ii) 〈xn, yn〉 −→
n→∞

〈x, y〉. (“continuity of the inner product”)
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Proof. (i) We obtain from the triangle inequality

‖xn‖ = ‖x + (xn − x)‖ ≤ ‖x‖ + ‖xn − x‖

as well as
‖x‖ = ‖xn + (x− xn)‖ ≤ ‖xn‖ + ‖xn − x‖.

Therefore, ∣∣‖xn‖ − ‖x‖∣∣ ≤ ‖xn − x‖ −→
n→∞

0.

(ii) It follows from linearity of the inner product and by the Cauchy-Schwarz inequality
that

|〈xn, yn〉 − 〈x, y〉| = |〈xn, yn − y〉 + 〈xn − x, y〉|
≤ ‖xn‖︸︷︷︸

bounded

‖yn − y‖ + ‖xn − x‖ ‖y‖ −→
n→∞

0.

In the next section of these lecture notes, we consider linear processes (Xt)t∈Z, whereXt =∑∞
k=−∞ βkεt−k. The following definitions and results will be used to deduce convergence

of the infinite series.

Definition. A sequence (xn)n∈N of elements of the inner-product space H is said to be
a Cauchy sequence if

‖xn − xm‖ −→ 0 as m,n −→∞,

that is, for every ε > 0, there exists some N(ε) ∈ N such that

‖xn − xm‖ ≤ ε ∀m,n ≥ N(ε).

Definition. A Hilbert space H is an inner-product space which is complete, that is,
an inner-product space in which every Cauchy sequence (xn)n∈N converges in norm to
some element x ∈ H (‖xn − x‖ →n→∞ 0).

Example H = Rd

Let (xn)n∈N be a Cauchy sequence in Rd, i.e. ‖xn − xm‖ −→ 0 as m,n −→ ∞. Since
‖xn − xm‖2 =

∑d
i=1(xni − xmi)2 we have that

|xni − xmi| −→ 0 as m,n −→∞,

i.e. (xni)n∈N is a Cauchy sequence in R. By completeness of R, there exists some x0i ∈ R
such that

xni −→
n→∞

x0i.

This yields, for x = (x01, . . . , x0d)
T ,

‖xn − x‖ −→
n→∞

0.
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The space L2(Ω,F , P )
Let (Ω,F , P ) be a probability space. We define

L2(Ω,F , P ) := {X : X is a real-valued random variable on (Ω,F , P ),∫
Ω

X2(ω) dP (ω) <∞}.

L2(Ω,F , P ) is a real vector space. In particular, if X, Y ∈ L2(Ω,F , P ) and α ∈ R, then
X + Y ∈ L2(Ω,F , P ) and αX ∈ L2(Ω,F , P ). Moreover, the axioms of a vector space
(commutativity, associativity, ...) are fulfilled. We are going to define an inner product as

〈X, Y 〉 := E[X Y ] =

∫
Ω

X(ω)Y (ω) dP (ω).

(Since E[|XY |] ≤ (EX2 + EY 2)/2 < ∞ the inner product of X and Y is well-defined
and finite.) Moreover, for X, Y, Z ∈ L2(Ω,F , P ) and α ∈ R,

〈X,X〉 ≥ 0,

〈X, Y 〉 = 〈Y,X〉,
〈αX, Y 〉 = α 〈X, Y 〉,

〈X + Y, Z〉 = 〈X,Z〉 + 〈Y, Z〉.

However, if 〈X,X〉 = 0, then it does not necessarily follow that X(ω) = 0 for all ω ∈ Ω.
Only P (X 6= 0) = 0 follows in general. In view of this, we have to consider equivalence
classes and we say that random variables X and Y are equivalent if P (X 6= Y ) = 0.
This relation partitions L2(Ω,F , P ) into equivalence classes, and the space L2(Ω,F , P )
has to be defined as the collection of these classes with an inner product defined as above.
With this agreement, we actually have that

〈X,X〉 = 0 if and only if X = 0,

where 0 is the class of those random variables such that P (X 6= 0) = 0.
To simplify notation, we will continue to use the symbols X, Y, . . . for elements of

L2(Ω,F , P ). But we should keep in mind that we actually have to deal with classes of
random variables. Next we will show that L2(Ω,F , P ) is complete which means that this
space is actually a Hilbert space.

Theorem 1.3.5. Let (Ω,F , P ) be a probability space. Then L2(Ω,F , P ) is complete.

Proof. Let (Xn)n∈N be an arbitrary Cauchy sequence in L2(Ω,F , P ). We have to show
that there exists some X ∈ L2(Ω,F , P ) such that

‖Xn − X‖ −→
n→∞

0.

(i) (Identification of a prospective limit)
Since (Xn)n∈N is a Cauchy sequence we can find a strictly increasing subsequence (nk)k∈N
of N such that

‖Xn − Xm‖ ≤ 2−k ∀n,m ≥ nk,
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which implies in particular that

‖Xnk+1
− Xnk‖ ≤ 2−k ∀k ∈ N.

With n0 = 0 and Xn0 = 0, we obtain that

E

[
∞∑
j=1

|Xnj − Xnj−1
|

]
=

∞∑
j=1

E|Xnj − Xnj−1
| (by monotone convergence)

≤
∞∑
j=1

‖Xnj − Xnj−1
‖ (by Cauchy-Schwarz)

≤ ‖Xn1‖ +
∞∑
j=2

‖Xnj − Xnj−1
‖︸ ︷︷ ︸

≤2−(j−1)

< ∞.

Therefore, the random variable
∑∞

j=1 |Xnj −Xnj−1
| is finite with probability 1, and

Xnk =
k∑
j=1

(Xnj −Xnj−1
) −→
k→∞

∞∑
j=1

(Xnj −Xnj−1
)

holds true with probability 1. We define

X(ω) :=

{
limk→∞Xnk(ω) if

∑∞
j=1 |Xnj −Xnj−1

| <∞
0 otherwise .

(ii) (Convergence of the full sequence)
Using the fact that |Xn −X|2 = lim infk→∞ |Xn −Xnk |2 holds true with probability one
we obtain by Fatou’s lemma that∫

Ω

|Xn −X|2 dP =

∫
Ω

lim inf
k→∞

|Xn −Xnk |2 dP ≤ lim inf
k→∞

∫
Ω

|Xn −Xnk |2 dP.

The right-hand side of this display can be made arbitrarily small by choosing n large
enough. This shows that

∫
|Xn −X|2 dP −→

n→∞
0.

(iii) (X ∈ L2(Ω,F , P ))
We obtain, again by Fatou’s lemma, that∫

Ω

X2 dP =

∫
Ω

lim inf
k→∞

X2
nk
dP

≤ lim inf
k→∞

∫
Ω

X2
nk
dP

≤ lim inf
k→∞

(
k∑
j=1

‖Xnj −Xnj−1
‖

)2

< ∞.
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Exercise

Ex. 1.3.1 Let (εt)t∈Z be a sequence of i.i.d. random variables on (Ω,F , P ) and (βk)k∈Z
be a sequence of real numbers. Assume that Eεt = 0, σ2

ε := Eε2
t < ∞, and∑∞

k=−∞ β
2
k <∞.

(i) Show that
(
Xt,m

)
m∈N defined by

Xt,m :=
m∑

k=−m

βkεt−k

is a Cauchy sequence in L2(Ω,F , P ).

(ii) Let Xt be the L2-limit of
(
Xt,m

)
m∈N.

Compute cov(Xt+k, Xt).

(iii) Let π : Z→ Z be a bijective function. Then, for each t ∈ Z,
(
βπ(k)εt−π(k)

)
k∈Z

is a rearrangement of the sequence
(
βkεt−k

)
t∈Z.

a) Show that
(
X̃t,m

)
m∈N defined by

X̃t,m :=
m∑

k=−m

βπ(k)εt−π(k)

is also a Cauchy sequence in L2(Ω,F , P ).
b) Show that ∥∥Xt,m − X̃t,m

∥∥ −→
m→∞

0

and conclude that
P
(
Xt = X̃t

)
= 1,

where X̃t denotes the L2-limit of
(
X̃t,m

)
m∈N.
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Projections in Hilbert spaces
I what follows we consider orthogonal projections in a Hilbert space and derive an eas-
ily applicable characterization of it. This sounds again rather abstract but we will see
that such a general result is quite useful when “best” predictors of future values of a
process have to be specified. (The word “best” is in quotation marks since we still have
to specify what we mean by it.) Suppose that X1, X2 and Y are squared integrable real-
valued random variables on (Ω,F , P ). We observe realizations x1 and x2 of X1 and X2,
respectively, and we may wish to approximate the value of Y by using a linear combi-
nation Ŷ = φ1X1 + φ2X2 of X1 and X2, which minimizes the mean squared error of
prediction (MSEP),

S(φ1, φ2) = E
[
|Y − φ1X1 − φ2X2|2

]
= ‖Y − φ1X1 − φ2X2‖2,

where ‖ · ‖ denotes the norm in L2(Ω,F , P ). Suppose, for simplicity, that X1 and X2 are
not collinear, i.e., neither one of X1, X2 is a multiple of the other. This means that the
Cauchy-Schwarz inequality is strict, i.e. E|X1X2| <

√
E[X2

1 ]
√
E[X2

2 ]; see Lemma 1.3.2.
We have that

S(φ1, φ2) = E
[
Y 2
]

+ φ2
1E
[
X2

1

]
+ φ2

2E
[
X2

2

]
+ 2φ1φ2E

[
X1X2

]
− 2φ1E

[
Y X1

]
− 2φ2E

[
Y X2

]
= E

[
Y 2
]

+ (φ1, φ2)M
( φ1

φ2

)
− 2E

[
(Y X1, Y X2)

( φ1

φ2

)]
,

where
M =

(
E
[
X2

1

]
E
[
X1X2

]
E
[
X1X2

]
E
[
X2

2

] )
.

Since det(M) = E
[
X2

1

]
E
[
X2

2

]
−
(
E
[
X1X2

])2
> 0 we conclude that the matrix M is

regular. Therefore we obtain that

S(φ1, φ2) ≥ E
[
Y 2
]

+
{
λmin(M)︸ ︷︷ ︸

> 0

∥∥∥( φ1

φ2

)∥∥∥ − 2
∥∥∥( E[Y X1]

E[Y X2]

)∥∥∥} · ∥∥∥( φ1

φ2

)∥∥∥ −→
‖φ‖→∞

∞

which means that we can restrict our search for a minimizer
(
φ10
φ20

)
of S, if it exists at

all, to a sufficiently large compact subset C :=
{
φ ∈ R2 : ‖φ‖ ≤ c

}
of R2. The

function S : R2 → R is continuous which implies that its infimum on C is attained. As
a necessary condition for a minimum, the partial derivatives of S must be zero. It holds
that ∂

∂φ1
S(φ1, φ2) = ∂

∂φ2
S(φ1, φ2) = 0 if and only if(

E
[
X2

1

]
E
[
X1X2

]
E
[
X1X2

]
E
[
X2

2

] )
︸ ︷︷ ︸

=M

(
φ1

φ2

)
=

(
E
[
Y X1

]
E
[
Y X2

] ) ,
i.e., the values of φ10 and φ20 we are seeking are solutions to the so-called normal equation.
Since the matrix M is regular,(

φ10

φ20

)
= M−1

(
E
[
Y X1

]
E
[
Y X2

] )
is the sought solution and the best linear predictor is given by

Ŷ = φ10X1 + φ20X2.



29

It can be conjectured from these computations that the computation of best predictors
may get quite cumbersome in more involved situations. For example, it is not clear what
happens if the matrix M were singular. Therefore, we use again the abstract context of
Hilbert spaces to derive a general characterization which will be easily applicable. We
begin with a definition.

Definition. A linear subspaceM of a Hilbert space H is said to be a closed subspace
ifM contains all of its limit points, i.e., if xn ∈M ∀n ∈ N and ‖xn − x‖ −→

n→∞
0 for some

x ∈ H, then x ∈M.

Theorem 1.3.6. IfM is a closed subspace of the (real or complex) Hilbert space H and
x ∈ H, then

(i) there is a unique element x̂ ∈M such that

‖x − x̂‖ = inf
y∈M
‖x − y‖,

(x̂ is the projection of x ontoM, denoted PMx.)

(ii) x̂ ∈M and ‖x− x̂‖ = infy∈M ‖x− y‖
if and only if

x̂ ∈M and 〈x− x̂, y〉 = 0 ∀y ∈M.

To summarize, the above theorem ensures that a projection always exists and is unique.
Moreover, part (ii) provides a criterion which can be used to determine this projection
almost effortlessly, even in complex situations. This will be illustrated by the example
given after the proof of this theorem.

Proof of Theorem 1.3.6. (i) Let d := infy∈M ‖x − y‖. Then there exists a sequence
(yn)n∈N of elements ofM such that ‖x − yn‖ −→

n→∞
d. We show that (yn)n∈N is a Cauchy

sequence. To this end, we use the so-called parallelogram law:

2 ‖a‖2 + 2 ‖b‖2 = ‖a+ b‖2 + ‖a− b‖2 ∀a, b ∈ H. (1.3.2)

Indeed, we have

‖a+ b‖2 + ‖a− b‖2 = ‖a‖2 + ‖b‖2 + 〈a, b〉+ 〈b, a〉 + ‖a‖2 + ‖b‖2 − 〈a, b〉 − 〈b, a〉
= 2 ‖a‖2 + 2 ‖b‖2.

We obtain from (1.3.2)

‖ym − yn‖2 = ‖(ym − x) − (yn − x)‖2

= 2 ‖ym − x‖2 + 2 ‖yn − x‖2 − ‖(ym + yn) − 2x‖2

= 2 ‖ym − x‖2 + 2 ‖yn − x‖2 − 4 ‖ (ym + yn)/2︸ ︷︷ ︸
∈M

−x‖2

≤ 2 ‖ym − x‖2 + 2 ‖yn − x‖2 − 4d2 −→
m,n→∞

0.
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Hence, (yn)n∈N is a Cauchy sequence and there exists an x̂ ∈ H such that

‖yn − x̂‖ −→
n→∞

0.

SinceM is closed, we conclude that x̂ ∈M. By continuity of the inner product (see (ii)
of Lemma 1.3.4) we obtain that

‖x − x̂‖2 = 〈x− x̂, x− x̂〉
= lim

n→∞
〈x− yn, x− yn〉

= lim
n→∞

‖x − yn‖2 = d2.

To establish uniqueness, suppose that x̃ ∈M is an arbitrary projection. Then

‖x − x̃‖ = ‖x − x̂‖ = d

and, again by the parallelogram law (1.3.2),

‖ (x̂+ x̃)/2︸ ︷︷ ︸
∈M

−x‖2 + ‖(x̂− x)/2 − (x̃− x)/2‖2︸ ︷︷ ︸
= ‖x̂−x̃‖2/4

=
1

2
‖x̂− x‖2 +

1

2
‖x̃− x‖2 = d2.

If x̃ 6= x̂, then ‖x̂ − x̃‖ > 0, and so ‖(x̂ + x̃)/2 − x‖2 < d2, which contradicts our
assumption that both x̂ and x̃ are projections of x ontoM. Hence x̃ = x̂.
(ii) (=⇒)
Suppose that x̂ ∈ M and ‖x − x̂‖ = infy∈M ‖x − y‖. Suppose further that there exists
some y ∈M such that

〈x− x̂, y〉 6= 0.

We will show that there exists some x̃ ∈ M which is closer to x than x̂. As a possible
candidate, we take x̃ = x̂ + αy, where α ∈ C. (In case of a real Hilbert space, α ∈ R.)
SinceM is a linear space we also have that x̃ ∈M. Then

‖x − x̃‖2 = ‖x − x̂ − αy‖2 = 〈(x − x̂) − αy, (x − x̂) − αy〉
= ‖x − x̂‖2 + |α|2 ‖y‖2 − α〈y, x− x̂〉 − α〈y, x− x̂〉.

Now we specify α as α = ε〈x− x̂, y〉, where ε ∈ R. With this choice,

‖x − x̃‖2 = ‖x − x̂‖2 + ε |〈x− x̂, y〉|2
{
ε‖y‖2 − 2

}
< ‖x − x̂‖2

holds for sufficiently small ε > 0. This is a contradiction to the assumption that x̂ is the
projection.
(⇐=)
Suppose that x̂ ∈M and 〈x− x̂, y〉 = 0 ∀y ∈M. Let x̃ ∈M be arbitrary. Then

‖x − x̃‖2 = 〈x − x̂ + x̂ − x̃, x − x̂ + x̂ − x̃〉
= ‖x − x̂‖2 + ‖x̂ − x̃‖2 + 〈x − x̂, x̂ − x̃〉︸ ︷︷ ︸

= 0

+ 〈x̂ − x̃, x − x̂〉︸ ︷︷ ︸
= 0

.

This implies that
‖x − x̂‖ = inf

y∈M
‖x− y‖.
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Application: Best linear prediction of a stationary process
Let X = (Xt)t∈N be a (weakly) stationary real-valued process on (Ω,F , P ) and let γX
be the autocovariance function of this process. To simplify matters, we assume that
EXt = 0. Suppose that realizations x1, . . . , xn (our data) of X1, . . . , Xn are observed.
We want to find the best linear predictor of Xn+1,

X̂n+1 =
n∑
j=1

φj0Xn+1−j,

where

E
[(
Xn+1 − X̂n+1

)2]
= S(φ10, . . . , φn0) := inf

φ1,...,φn
E
[(
Xn+1 −

n∑
j=1

φjXn+1−j

)2]
,

that is, X̂n+1 minimizes the mean squared error of prediction.
To determine X̂n+1, we could use basic calculus as above and set the partial derivatives

of the functional S equal to zero. If, in addition, the analogue of the matrix M in the
above example is regular, then there actually exists a unique solution. On the other hand,
we could also employ the results of Theorem 1.3.6. This theorem tells us that a unique
solution exists in any case, no matter if the counterpart of the matrix M is regular or
not. Moreover, it will be shown below that this solution is easily obtained using part (ii)
of this theorem.

LetH = L2(Ω,F , P ) andM = {
∑n

j=1 αjXn+1−j : α1, . . . , αn ∈ R}. It is clear thatM
is a closed linear subspace of H. Since

E
[(
Xn+1 −

n∑
j=1

φjXn+1−j

)2]
=
∥∥∥Xn+1 −

n∑
j=1

φjXn+1−j

∥∥∥2

it follows that the sought best predictor is just the orthogonal projection of Xn+1 onto
the subspace M. Therefore we see without hesitation, that the best linear predictor
exists (i.e. the corresponding infimum is actually attained) and is unique. Part (ii) of
Theorem 1.3.6 helps us to find coefficients φ10, . . . , φn0 such that X̂n+1 =

∑n
j=1 φj0Xn+1−j.

Since 〈Xn+1− X̂n+1, X〉 has to be zero for all X ∈M these coefficients have to solve the
following system of equations:

〈Xn+1 −
n∑
j=1

φj0Xn+1−j, Xk〉 = 0 ∀k = n, n− 1, . . . , 1.

This is fulfilled if and only if 〈Xn+1, Xn〉
...

〈Xn+1, X1〉


︸ ︷︷ ︸

=: γ

=

 〈Xn+1−1, Xn〉 . . . 〈Xn+1−n, Xn〉
... . . . ...

〈Xn+1−1, X1〉 . . . 〈Xn+1−n, X1〉


︸ ︷︷ ︸

=: Γn

 φ10
...
φn0


︸ ︷︷ ︸

=: Φn

.

As already mentioned, Theorem 1.3.6 guarantees that there exists at least one solution, no
matter whether or not the matrix Γn is regular. If Γn is singular, then there exist infinitely
many solutions. However, Theorem 1.3.6 guarantees that every solution provides the same
(uniquely defined) predictor X̂n+1.
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1.4 Linear processes

In this section, we consider so-called linear processes. Their simple structure allows us to
derive their properties without much effort. Even a counterpart to the Lindeberg-Lévy
central limit theorem can be easily derived. Moreover, it will be shown in the next section
that certain processes with a more involved structure can be represented as such a linear
process. We begin with a few definitions.

Definition. The process ε = (εt)t∈Z is said to be white noise if

Eεt = 0 ∀t, cov(εt+h, εt) =

{
σ2
ε if h = 0

0 if h 6= 0
.

Notation: (εt)t∈Z ∼WN(0, σ2
ε).

If (εt)t∈Z is a sequence of independent and identically distributed random variables such
that Eεt = 0 and var(εt) = σ2

ε , then we use the notation

(εt)t∈Z ∼ IID(0, σ2
ε).

Definition. Let (εt)t∈Z be a real-valued process on (Ω,F , P ). Then the process
X = (Xt)t∈Z defined by

Xt =
∞∑

k=−∞

βkεt−k

is said to be a linear process. In this context, the εt are called innovations.

Special cases:

• Xt =
∑q

k=0 βkεt−k
Then (Xt)t∈Z is an MA(q) process (moving average process of order q).

• Xt =
∑∞

k=0 βkεt−k
Then (Xt)t∈Z is an MA(∞) process. (causal linear process)

Remark 1.4.1. Regarding the sequence of innovations, there are different definitions
of linear processes in the literature. For example, Brockwell and Davis (“Time Series:
Theory and Methods”) suppose that (εt)t∈Z ∼ WN(0, σ2

ε) whereas Kreiß and Neuhaus
(“Einführung in die Zeitreihenanalyse”) assume that (εt)t∈Z ∼ IID(0, σ2

ε). In what follows,
we adapt our assumption on the innovation process to the respective purpose.

Note that the definition of a linear process involves an infinite series and it is not clear
whether or not this series converges. The following proposition provides sufficient condi-
tions for their convergence.
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Proposition 1.4.2. Let (εt)t∈Z be a sequence of real-valued random variables on (Ω,F , P )
and (βk)k∈Z be an absolutely convergent series, i.e.

∑∞
k=−∞ |βk| <∞.

(i) If supt
{
E|εt|

}
<∞, then the series

Xt =
∞∑

k=−∞

βkεt−k

converges absolutely with probability 1.

(ii) If supt
{
E[ε2

t ]
}
<∞, then the series converges in mean square to the same limit Xt,

i.e.,

Xt,m :=
m∑

k=−m

βkεt−k
L2

−→ Xt.

Proof. (i) The monotone convergence theorem yields that

E
[ ∞∑
k=−∞

|βkεt−k|
]

= lim
m→∞

E
[ m∑
k=−m

|βk| |εt−k|
]

= lim
m→∞

m∑
k=−m

|βk|E|εt−k|

≤
(

lim
m→∞

m∑
k=−m

|βk|
)

sup
t

{
E|εt|

}
< ∞.

Therefore,

P
( ∞∑
k=−∞

|βkεt−k| <∞
)

= 1,

that is, the series
∑∞

k=−∞ βkεt−k converges absolutely with probability 1. We denote the
limit by Xt.
(ii) Let Xt,m :=

∑m
k=−m βkεt−k. Then, for m < n,

‖Xt,n − Xt,m‖2 =
〈 ∑
m<|j|≤n

βjεt−j,
∑

m<|k|≤n

βkεt−k

〉
=

∑
m<|j|≤n

∑
m<|k|≤n

βjβkE[εt−jεt−k]

≤
( ∑
m<|j|≤n

|βj|
)2

︸ ︷︷ ︸
→ 0 as m,n→∞

sup
t

{
E[ε2

t ]
}
.

Therefore,
‖Xt,n − Xt,m‖ −→ 0 as m,n→∞,

i.e., (Xt,m)m∈N is a Cauchy sequence in L2(Ω,F , P ). It follows from Theorem 1.3.5
(completeness of L2(Ω,F , P )) that there exists some X̃t ∈ L2(Ω,F , P ) such that

‖Xt,m − X̃t‖ −→
m→∞

0.
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It follows from (i) that Xt,m
a.s.−→ Xt as m→∞. Therefore, we obtain by Fatou’s lemma

that

E
[
|X̃t − Xt|2

]
= E

[
lim inf
m→∞

|X̃t − Xt,m|2
]

≤ lim inf
m→∞

E
[
|X̃t − Xt,m|2

]
= 0,

which implies that
P
(
X̃t = Xt

)
= 1.

Stationarity of linear processes

In the following we investigate issues of stationarity. But why is this important? We
have already learned that stationarity means that the statistical properties of a process
generating a time series do not change over time. It does not mean that the series does
not change over time, just that the way it changes does not itself change over time.
As we have seen, future values of stationary processes can be predicted, as the way
they change is predictable. Furthermore, besides the goal of predicting future values,
stationarity also means that targets of a statistical analysis, as for example the mean
of the random variables or the autocovariance structure, do not change over time. This
means, the more values of the process we observe, the more information about such a
fixed object we collect. This also makes a meaningful asymptotic analysis of statistical
procedures possible. Typically, we can prove consistency of (sequences of) statistical
estimators, that is, such a sequence of estimators converges to the target quantity as the
size of the sample tends to infinity. Next we show that a linear process inherits properties
of stationarity from the underlying innovation process.

Proposition 1.4.3. Let (εt)t∈Z be a real-valued process on (Ω,F , P ), Xt =∑∞
k=−∞ βkεt−k, where

∑∞
k=−∞ |βk| <∞.

(i) If (εt)t∈Z is strictly stationary and E|ε0| < ∞, then (Xt)t∈Z defined by Xt =∑∞
k=−∞ βkεt−k is also strictly stationary.

(ii) Suppose that (εt)t∈Z is weakly stationary with autocovariance function γε. Then
(Xt)t∈Z defined by Xt =

∑∞
k=−∞ βkεt−k is also weakly stationary and

EXt = Eε0

( ∞∑
k=−∞

βk

)
,

γX(h) = cov(Xt+h, Xt) =
∞∑

j,k=−∞

βjβkγε(h− j + k).
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Proof. (i) To prove strict stationarity of the process (Xt)t∈Z, we have to show that

PXt1 ,...,Xtk = PXt1+t,...,Xtk+t ∀t1, . . . , tk, t ∈ Z, ∀k ∈ N.

Let t1, . . . , tk, t ∈ Z, k ∈ N be arbitrary. To simplify notation, we assume that
t1 ≤ . . . ≤ tk. It is quite easy to show strict stationarity for a linear process with finite
memory. We consider the truncated variables Xt,m =

∑m
k=−m βkεt−k. We have that

(
Xt1,m, . . . , Xtk,m

)T
=
( m∑
j=−m

βjεt1−j, . . . ,

m∑
j=−m

βjεtk−j

)T
= g(εt1−m, . . . , εtk+m),

for some function g : Rtk−t1+1+2m → Rk. We can represent
(
Xt1+t,m, . . . , Xtk+t,m

)T in an
analogous manner,(

Xt1+t,m, . . . , Xtk+t,m

)T
= g(εt1+t−m, . . . , εtk+t+m),

Since (εt)t∈Z is strictly stationary, we have

P εt1−m,...,εtk+m = P εt1+t−m,...,εtk+t+m ,

which implies that

PXt1,m,...,Xtk,m = P g(εt1−m,...,εtk+m) = P g(εt1+t−m,...,εtt+m) = PXt1+t,m,...,Xtk+t,m . (1.4.1)

This means that the truncated variables Xt,m form a strictly stationary process.
To obtain stationarity of the process of interest, we make use of the convergence

results stated in Proposition 1.4.2. According to statement (i) of this proposition, we
have

Xs,m
a.s.−→ Xs ∀s ∈ Z, as m→∞,

which yields (
Xt1,m, . . . , Xtk,m

)T a.s.−→
(
Xt1 , . . . , Xtk

)T
as well as (

Xt1+t,m, . . . , Xtk+t,m

)T a.s.−→
(
Xt1+t, . . . , Xtk+t

)T
.

It is well-known that almost sure convergence of a sequence of random variables im-
plies its convergence in distribution. Since this is equivalent to weak convergence of the
corresponding laws we conclude that

PXt1,m,...,Xtk,m =⇒ PXt1 ,...,Xtk

and
PXt1+t,m,...,Xtk+t,m =⇒ PXt1+t,...,Xtk+t .

Now it follows from (1.4.1) and uniqueness of the weak limit that

PXt1 ,...,Xtk = PXt1+t,...,Xtk+t .

(ii) While the expected value of Xt,m is easily computed, the justification for the ex-
pected value of Xt requires more care. By weak stationarity of (εt)t∈Z,

Eε2
t = Eε2

0 < ∞ ∀t ∈ Z.
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Therefore, we obtain by the second statement of Proposition 1.4.2 that

E |Xt,m − Xt|2 −→
m→∞

0.

Since E|Xt,m −Xt| ≤
√
E(Xt,m −Xt)2 we see that

EXt = lim
m→∞

EXt,m = lim
m→∞

E
[ m∑
k=−m

βkεt−k

]
= Eε0

(
lim
m→∞

m∑
k=−m

βk

)
= Eε0

( ∞∑
k=−∞

βk

)
.

Before we derive the second order properties of the process (Xt)t∈Z, note that linearity
of the inner product applies to finite sums. Since ‖Xt,m − Xt‖ −→

m→∞
0 we can use the

continuity of the inner product (see (ii) of Lemma 1.3.4) and we obtain that

E [Xt+hXt] = 〈Xt+h, Xt〉
= lim

m→∞
〈Xt+h,m, Xt,m〉

= lim
m→∞

〈
m∑

j=−m

βjεt+h−j,
m∑

k=−m

βkεt−k〉

= lim
m→∞

m∑
j,k=−m

βjβk 〈εt+h−j, εt−k〉︸ ︷︷ ︸
γε(h−j+k) +

(
Eε0

)2
=

∞∑
j,k=−∞

βjβkγε(h− j + k) +
(
Eε0

)2
( ∞∑
k=−∞

βk

)2

.

This implies that

γX(h) =
∞∑

j,k=−∞

βjβkγε(h− j + k).

Exercises

Ex. 1.4.1 Suppose that Y and Z are uncorrelated random variables with EY = EZ =
0 and EY 2 = EZ2 = 1. For t ∈ N, let Xt = Y cos(θt) + Z sin(θt), where θ ∈ R.

Show that X̂3 = 2 cos(θ)X2 −X1 is the best linear predictor of X3 given X1, X2.

Hint: E[XsXt] = cos(θ(s− t)) and cos(2θ) = (cos(θ))2 − (sin(θ))2.

Ex. 1.4.2 Let (εt)t∈Z ∼WN(0, σ2
ε) and Xt =

∑∞
k=0 α

kεt−k, for some α ∈ R, |α| < 1.

Show that X̂n+1 := αXn is the best linear predictor of Xn+1 given X1, . . . , Xn.
Hint: Argue that Xn+1 − αXn = εn+1 and use (ii) of Lemma 1.3.4.
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A central limit theorem for linear processes

In what follows we derive a central limit theorem for linear processes. Because of their
particular structure, we can build on a well-known CLT for sequences of independent and
identically distributed random variables. As a reminder, we quote a version of a CLT
which is usually attributed to the Finnish mathematician Jarl Waldemar Lindeberg and
the French mathematician Paul Pierre Lévy.

Theorem 1.4.4. (Lindeberg-Lévy central limit theorem)
Suppose that (Xt)t∈N is a sequence of i.i.d. random variables such that EXt = 0 and
var(Xt) =: σ2 ∈ [0,∞). Then

1√
n

n∑
t=1

Xt
d−→ Y ∼ N(0, σ2).

We use this well-known result to prove the following central limit theorem for linear
processes.

Theorem 1.4.5. Let (εt)t∈Z ∼ IID(0, σ2
ε). Suppose that Xt =

∑∞
k=−∞ βkεt−k, where

(βk)k∈Z is a sequence of real numbers such that
∑∞

k=−∞ |βk| <∞. Then

1√
n

n∑
t=1

Xt
d−→ Z ∼ N(0, v),

where

v = σ2
ε

( ∞∑
k=−∞

βk

)2

.

This theorem will be proved in two steps. First we prove such a result for a simpler case
where the random variables Xt are replaced by their truncated versions Xt,m. This allows
us to derive the desired result mainly by a simple re-arrangement of the terms in certain
double sums.

Lemma 1.4.6. Let (εt)t∈Z ∼ IID(0, σ2
ε), Xt,m =

∑m
k=−m βkεt−k. Then

1√
n

n∑
t=1

Xt,m
d−→ Zm ∼ N(0, vm),

where

vm = σ2
ε

( m∑
k=−m

βk

)2

.
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Proof. First of all, we change the order of summation,

1√
n

n∑
t=1

Xt,m =
1√
n

n∑
t=1

m∑
k=−m

βkεt−k

=
1√
n

n+m∑
s=1−m

εs
∑

k : |k|≤m, 1≤s+k≤n

βk.

Now we split up

1√
n

n∑
t=1

Xt,m =
1√
n

n∑
s=1

εs

( m∑
k=−m

βk

)
− 1√

n

n∑
s=1

εs

( ∑
k : |k|≤m, s+k 6∈{1,...,n}

βk

)
+

1√
n

∑
s∈{1−m,...,0}∪{n+1,...,n+m}

εs
∑

k : |k|≤m, 1≤s+k≤n

βk

=: Tn,1 + Tn,2 + Tn,3,

say. It follows from the Lindeberg-Lévy central limit theorem (Theorem 1.4.4) that

Tn,1
d−→ Zm. (1.4.2)

The terms Tn,2 and Tn,3 both consist of a bounded number of summands with bounded
expectation. (To see this for Tn,2, note that #

{
k : |k| ≤ m, s + k 6∈ {1, . . . , n}

}
= 0 if

s ∈ {m+ 1, . . . , n−m}.) Therefore,

E|Tn,2 + Tn,3| = O(1/
√
n),

which implies that
Tn,2 + Tn,3

P−→ 0. (1.4.3)

(1.4.2) and (1.4.3) yield the assertion.

Proof of Theorem 1.4.5. The proof of this result will be split into three steps. We show
that

a) 1√
n

∑n
t=1 Xt can be well approximated by 1√

n

∑n
t=1Xt,m,

b) by Lemma 1.4.6, 1√
n

∑n
t=1 Xt,m converges to a random variable with a N(0, vm)

distribution,

c) N(0, vm) =⇒ N(0, v), as m→∞.

We begin with justifying the first approximation. Let X̃t,m := Xt −Xt,m. Note that

cov
(
X̃s,m, X̃0,m

)
= cov

( ∑
k : |k|>m

βkεs−k,
∑

j : |j|>m

βjε−j

)
=

∑
k,j : |k|,|j|>m

βkβj 〈εs−k, ε−j〉︸ ︷︷ ︸
= 0 if j 6=k−s

= σ2
ε

∑
k : |k|,|k−s|>m

βkβk−s.
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Therefore we obtain that

E
[( 1√

n

n∑
t=1

Xt −
1√
n

n∑
t=1

Xt,m

)2]
=

1

n
var
( n∑
t=1

X̃t,m

)
=

1

n

n∑
s,t=1

cov
(
X̃s,m, X̃t,m

)
=

n−1∑
s=−(n−1)

n− |s|
n︸ ︷︷ ︸
≤ 1

cov
(
X̃s,m, X̃0,m

)︸ ︷︷ ︸
=σ2

ε

∑
k : |k|,|k−s|>m βkβk−s

≤ σ2
ε

( ∑
k : |k|>m

|βk|
)2

=: Cm ∀n ∈ N.

Furthermore,
∑∞

k=−∞ |βk| <∞ implies that

Cm −→
m→∞

0.

Note that a) to c) contain results with different modes of convergence: While a) is an L2-
approximation, b) states convergence in distribution for sequences of random variables,
and c) is related to weak convergence of probability measures. Furthermore, approxima-
tions a) and c) require that m→∞ whereas b) holds for fixed m and is based on n→∞.
To bring together these results, we employ the concept of characteristic functions.

Let ϕS denote the characteristic function of a generic random variable S. According to
Lévy’s continuity theorem, convergence in distribution of a sequence of random variables
is equivalent to pointwise convergence of their characteristic functions. Therefore, it
suffices to show that

ϕn−1/2
∑n
t=1Xt

(u) −→
n→∞

ϕZ(u) ∀u ∈ R. (1.4.4)

Let u ∈ R and ε > 0 be arbitrary. We split up:∣∣ϕn−1/2
∑n
t=1Xt

(u) − ϕZ(u)
∣∣ ≤ ∣∣ϕn−1/2

∑n
t=1Xt

(u) − ϕn−1/2
∑n
t=1Xt,m

(u)
∣∣

+
∣∣ϕn−1/2

∑n
t=1Xt,m

(u) − ϕZm(u)
∣∣

+
∣∣ϕZm(u) − ϕZ(u)

∣∣
=: T1,m,n + T2,m,n + T3,m,

say. Since |eix − eiy| ≤ |x− y| ∀x, y ∈ R we obtain

T1,m,n ≤ E
∣∣eiu(n−1/2

∑n
t=1Xt) − eiu(n−1/2

∑n
t=1Xt,m)

∣∣
≤ u E

∣∣∣n−1/2

n∑
t=1

Xt − n−1/2

n∑
t=1

Xt,m

∣∣∣
≤ u

√
Cm ∀n ∈ N.

From Lemma 1.4.6 we conclude that

T2,m,n −→
n→∞

0 ∀m ∈ N.

Finally, we obtain from vm −→m→∞ v that

T3,m =
∣∣e−u2vm/2 − e−u

2v/2
∣∣ −→
m→∞

0.
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For the ε chosen above, we can find some m0 = m0(ε) such that

T1,m0,n + T3,m0 ≤ ε/2 ∀n ∈ N.

Moreover, there exists some n0 = n0(ε,m0) such that

T2,m0,n ≤ ε/2 ∀n ≥ n0.

The latter two estimates yield that∣∣ϕn−1/2
∑n
t=1Xt

(u) − ϕZ(u)
∣∣ ≤ ε ∀n ≥ n0,

which proves (1.4.4). This completes the proof.

Exercise

Ex. 1.4.3 Let (εt)t∈Z ∼ IID(0, σ2
ε) and let X0 be an arbitrary random variable. The

stochastic process (Xt)t∈N0 is defined recursively by

Xt = αXt−1 + εt ∀t ∈ N,

where |α| < 1.

(i) Show that 1√
n

∑n
t=1(Xt − X̃t)

P−→ 0, where X̃t =
∑∞

k=0 α
kεt−k.

(ii) Does Zn = 1√
n

∑n
t=1Xt converge in distribution to a normally distributed

random variable Z? If so, what is the variance of Z?
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Nonparametric estimation of the mean and the autocovariance
function

Suppose that (Xt)t∈Z is a weakly stationary (real-valued) process with mean µ and au-
tocovariance function γ. Assume that realizations x1, . . . , xn of X1, . . . , Xn are observed.
If nothing is known about the time series, besides that it is (weakly) stationary, then
natural estimators for the parameters µ and γ(k) are

µ̂n = X̄n =
1

n

n∑
t=1

Xt

and

γ̂n(k) :=
1

n

n−|k|∑
t=1

(
Xt+|k| − X̄n

)(
Xt − X̄n

)
. (|k| ≤ n− 1)

For |k| ≥ n, our sample does not provide information about γ(k) and we simply set
γ̂n(k) = 0. These estimators are called nonparametric because they are not based on
a model described by a finite-dimensional parameter. Their advantage is that they work
for (almost) every stationary time series. In what follows we investigate the statistical
properties of these estimators.

We begin with the estimator µ̂n of the common mean µ of the Xt. This estimator,
or more exactly, the sequence (µ̂n)n∈N is consistent under appropriate conditions. For
example, if

Xt = µ +
∞∑

k=−∞

βkεt−k,

where (εt)t∈Z ∼ IID(0, σ2
ε) and

∑∞
k=−∞ |βk| <∞, then it follows from Theorem 1.4.5 that

√
n (µ̂n − µ) =

1√
n

n∑
t=1

∞∑
k=−∞

βkεt−k
d−→ Z ∼ N(0, v), as n→∞,

where v = σ2
ε

(∑∞
k=−∞ βk

)2. The statistical relevance of this result is that the sample
mean is an asymptotically consistent estimator of µ, with precision of the order 1/

√
n.

This result may be used in a preciser way to derive an asymptotic confidence interval
for µ. If v > 0, then

µ̂n − µ√
v/n

d−→ Z0 ∼ N(0, 1). (1.4.5)

Let, for α ∈ (0, 1), Φ−1(1 − α/2) denote the (1 − α/2)-quantile of a standard normal
distribution, i.e., for Z0 ∼ N(0, 1), P

(
Z0 ≤ Φ−1(1− α/2)

)
= 1− α/2. Then

Cµ :=
[
µ̂n −

√
v/nΦ−1(1− α/2), µ̂n +

√
v/nΦ−1(1− α/2)

]
is a confidence interval for µ with an asymptotic coverage probability of 1 − α. Indeed,
it follows from (1.4.5) that

P
(
µ ∈ Cµ

)
= P

(
|µ̂n − µ| ≤

√
v/nΦ−1(1− α/2)

)
= P

( µ̂n − µ√
v/n

≤ Φ−1(1− α/2)
)

︸ ︷︷ ︸
−→
n→∞

1−α/2

− P
( µ̂n − µ√

v/n
< −Φ−1(1− α/2)

)
︸ ︷︷ ︸

−→
n→∞

α/2

−→
n→∞

1 − α. (1.4.6)
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Of course, this result is of limited value since prior knowledge of the parameter v is
hardly available in practice. We will see later how v can be estimated. For the time
being, suppose that (v̂n)n∈N is any consistent sequence of estimators of v, i.e.

v̂n
P−→ v as n→∞.

Here, “ P−→” denotes convergence in probability which means that, for all ε > 0,
P
(
|v̂n − v| > ε

)
−→
n→∞

0. We conclude from (1.4.5) that2

µ̂n − µ√
v̂n/n

=

√
v√
v̂n︸︷︷︸

P→ 1

µ̂n − µ√
v/n︸ ︷︷ ︸
d→Z0

d−→ Z0 ∼ N(0, 1)

Therefore,

Ĉµ :=
[
µ̂n −

√
v̂n/nΦ−1(1− α/2), µ̂n +

√
v̂n/nΦ−1(1− α/2)

]
is a meaningful asymptotic (1− α)-confidence interval for µ.

2 Here we use the result that, for two sequences (Xn)n∈N and (Yn)n∈N of real-valued random variables,
Xn

d→ X and Yn
P→ 1 together imply that Xn · Yn

d→ X.
To see this, we first show that Xn(Yn − 1)

P→ 0. Let ε > 0 be arbitrary. Since Xn
d→ X we have that

P (Xn ≤ u) −→
n→∞

P (X ≤ u) for all continuity points u of the mapping x 7→ P (X ≤ x). Since the set of
discontinuity points u of x 7→ P (X ≤ x) is countable we find some M = M(ε) <∞ such that −M and
M are continuity points and

P (X ≤ −M or X > M) ≤ ε/3,

which implies that

P (|Xn| > M) ≤ P (Xn ≤ −M or Xn > M) ≤ (2/3)ε ∀n ≥ N1

and sufficiently large N1. Since Yn
P→ 1 we obtain, for arbitrary K > 0,

P
(
|Xn(Yn − 1)| > K

)
≤ P

(
|Xn| > M

)
+ P

(
|Yn − 1| > K/M

)
≤ ε

for n sufficiently large. Hence, Xn(Yn − 1)
P→ 0.

Now we obtain
Xn · Yn = Xn︸︷︷︸

d→X

+ Xn(Yn − 1)︸ ︷︷ ︸
P→ 0

d→ X.
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Now we turn to the problem of estimating the autocovariance function γ. As an
estimator of γ(k), we consider

γ̂n(k) :=

{
1
n

∑n−|k|
t=1

(
Xt+|k| − X̄n

)(
Xt − X̄n

)
if |k| ≤ n− 1,

0 if |k| ≥ n.

Note that there seem to be alternatives to the choice of the factor 1/n in the definition
of γ̂n(k). In the case of independent and identically distributed random variables, it
is well-known that 1

n−1

∑n
t=1(Xt − X̄n)2 is an unbiased estimator of γ(0) = var(X1).

Moreover, it also seems to make sense to divide by the number n − |k| of summands in
the definition of γ̂n(k). However, the following lemma provides a strong argument in favor
of the above choice: The factor 1/n ensures that the function γ̂n : Z→ R has the desirable
property of being the autocovariance function of an appropriate stationary process. We
will therefore stick to the above definition of this estimator. To see why this holds true,
recall from Theorem 1.2.5 the fact that a function κ : Z → R is the autocovariance
function of a stationary process if and only if κ is an even and non-negative definite
function.

Lemma 1.4.7. The function γ̂n : Z→ R is even and non-negative definite.

Proof. It is obvious that γ̂n(k) = γ̂n(−k) ∀k ∈ Z, that is, γ̂n is an even function.
To check the property of non-negative definiteness, let t1, . . . , tk ∈ Z, a1, . . . , ak ∈ R,

and k ∈ N be arbitrary. We have to show that
k∑

i,j=1

ai γ̂n(ti − tj) aj ≥ 0. (1.4.7)

To simplify notation, we assume, w.l.o.g., that t1 ≤ t2 ≤ . . . ≤ tk. Note that (1.4.7) can
be rewritten as

aTΓa ≥ 0,

where

Γ =

 γ̂n(t1 − t1) . . . γ̂n(t1 − tk)
... . . . ...

γ̂n(tk − t1) . . . γ̂n(tk − tk)

 , a =

 a1
...
ak

 .

However, the matrix Γ can be represented as

Γ = MTM,

where

M =
1√
n


X1 − X̄n 0t2−t1 0tk−t1

... X1 − X̄n

Xn − X̄n
... . . . X1 − X̄n

Xn − X̄n
...

0tk−t1 0tk−t2 Xn − X̄n

 .

Now we can see that
k∑

i,j=1

ai γ̂n(ti − tj) aj = aTΓa = aTMTMa = ‖Ma‖2 ≥ 0,

that is, the function γ̂n is non-negative definite.
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It may seem tempting to replace the factor 1/n in the definition of γ̂n(k) by 1/(n− |k|),
because there are n−|k| terms in the sum. While with our advocated choice of the factor
1/n the function γ̂n is guaranteed to be non-negative definite, this is not true in general
when we use the alternative factors 1/(n − |k|). To see this, we consider the following
counterexample. Suppose that (Xt)t∈Z is a sequence of i.i.d. random variables such that
P (Xt = 1) = P (Xt = −1) = P (Xt = 0) = 1/3. Let n ≥ 3. Then X1 = 1, Xn = −1, and
X2 = . . . = Xn−1 = 0 hold with a probability of (1/3)n. We obtain, for

γ̃n(k) =

{
1

n−|k|
∑n−|k|

t=1

(
Xt+|k| − X̄n

)(
Xt − X̄n

)
if |k| ≤ n− 1,

0 if |k| ≥ n,

that

Γ̃n =


γ̃n(0) γ̃n(−1) . . . γ̃n(2− n) γ̃n(1− n)

γ̃n(1)
. . . . . . γ̃n(2− n)

... . . . . . . . . . ...

γ̃n(n− 2)
. . . . . . γ̃n(−1)

γ̃n(n− 1) γ̃n(n− 2) . . . γ̃n(1) γ̃n(0)

 =



2
n

0 . . . 0 −1

0
. . . . . . 0

... . . . . . . . . . ...

0
. . . . . . 0

−1 0 . . . 0 2
n

 .

Let c =
(
1, 0, . . . , 0︸ ︷︷ ︸

n−2 times

, 1
)T . Then

cT Γ̃nc =
4

n
− 2 < 0,

i.e., the matrix Γ̃n is not non-negative definite. Therefore, the function k 7→ γ̃n(k) cannot
be the autocovariance function of a stationary process.

In contrast to the case of the mean, an analysis of the asymptotic behavior of our
estimator γ̂n of the autocovariance function requires more effort. We begin with the bias
of γ̂n(k).

Lemma 1.4.8. Suppose that (Xt)t∈Z is a weakly stationary process with autocovariance
function γ, where

∑∞
k=−∞ |γ(k)| <∞.

Then, for fixed k ∈ Z,
Eγ̂n(k) = γ(k) + O

(
n−1
)
.
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Proof of Lemma 1.4.8. Let µ = EXt. Then

Eγ̂n(k) =
1

n

n−|k|∑
t=1

E
[(
Xt+|k| − µ+ µ− X̄n

)(
Xt − µ+ µ− X̄n

)]
=

1

n

n−|k|∑
t=1

E
[(
Xt+|k| − µ

)(
Xt − µ

)]
− 1

n

n−|k|∑
t=1

{
E
[(
Xt+|k| − µ

)(
X̄n − µ

)]
+ E

[(
Xt − µ

)(
X̄n − µ

)]}
+
n− |k|
n

E
[(
X̄n − µ

)2
]

=
n− |k|
n

γ(k)

− 1

n2

n−|k|∑
t=1

n∑
l=1

{
γ(t+ |k| − l) + γ(t− l)

}
+
n− |k|
n3

n∑
s,t=1

γ(s− t).

Since
∑∞

k=−∞ |γ(k)| <∞ we obtain that

Eγ̂n(k) = γ(k) + O
(
n−1
)
.

If γ is the autocovariance function of a stationary process (Xt)t∈Z, where Xt = µ +∑∞
k=−∞ βkεt−k, (εt)t∈Z ∼ WN(0, σ2

ε), and
∑∞

k=−∞ |βk| < ∞, then
∑∞

k=−∞ |γ(k)| < ∞.
Indeed, by Proposition 1.4.2, the autocovariance function of a linear process is given by

γ(h) =
∞∑

j,k=−∞

βjβk cov(εh−j, ε−k).

Since cov(εh−j, εk) = σ2
ε if k = j − h and zero otherwise, this reduces to γ(h) =

σ2
ε

∑∞
j=−∞ βjβj−h. Therefore,

∞∑
h=−∞

∣∣γ(h)
∣∣ ≤ σ2

ε

∑
j,h

∣∣βj∣∣∣∣βj−h∣∣
= σ2

ε

( ∞∑
j=−∞

∣∣βj∣∣)2

< ∞.

In order to show that the quadratic risk of γ̂n(k) tends to 0 as n → ∞, we still have to
estimate the variance of this estimator. To this end, we represent γ̂n(k) as a quadratic
form and make use of the following lemma.
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Lemma 1.4.9. Suppose that Y1, . . . , Yn are real-valued random variables on (Ω,F , P )
such that EYt = 0 and EY 4

t <∞ for all t. Furthermore, let M be a symmetric (n× n)-
matrix and Y = (Y1, . . . , Yn)T .
Then

var
(
Y TMY

)
=

n∑
s,t,u,v=1

MstMuv cum(Ys, Yt, Yu, Yv) + 2 tr
(
MΣMΣ

)
,

where

cum(Ys, Yt, Yu, Yv) := E
[
YsYtYuYv

]
−E

[
YsYt

]
E
[
YuYv

]
−E

[
YsYu

]
E
[
YtYv

]
−E

[
YsYv

]
E
[
YtYu

]
denotes the joint cumulant of Ys, Yt, Yu, and Yv, tr(A) =

∑n
i=1Aii the trace of an

(n× n)-matrix A, and Σ = Cov(Y ) the covariance matrix of the random vector Y .

Proof. Using Y TMY =
∑n

s,t=1MstYsYt we obtain

var
(
Y TMY

)
= E

[
Y TMY Y TMY

]
− E

[
Y TMY

]
E
[
Y TMY

]
=

n∑
s,t,u,v=1

MstMuv

(
E
[
YsYtYuYv

]
− E

[
YsYt

]
E
[
YuYv

])
=

n∑
s,t,u,v=1

MstMuv cum(Ys, Yt, Yu, Yv)

+
n∑
t=1

n∑
s,u,v=1

Mst︸︷︷︸
=Mts

E
[
YsYu

]︸ ︷︷ ︸
= Σsu

Muv E
[
YvYt

]︸ ︷︷ ︸
= Σvt

+
n∑
t=1

n∑
s,u,v=1

Mst︸︷︷︸
=Mts

E
[
YsYv

]︸ ︷︷ ︸
= Σsv

Muv︸︷︷︸
=Mvu

E
[
YuYt

]︸ ︷︷ ︸
= Σut

=
n∑

s,t,u,v=1

MstMuv cum(Ys, Yt, Yu, Yv)

+ 2
n∑
t=1

(
MΣMΣ)tt︸ ︷︷ ︸

= tr(MΣMΣ)

.
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Before we use Lemma 1.4.9 to derive an upper estimate for the variance of γ̂n(k), we state
a few useful properties of cumulants which show in particular that a typical assumption
on sums of cumulants will be satisfied under weak conditions. Note that the following
elementary properties follow directly from the definition of cumulants. Let Y1, . . . , Y5 be
real-valued random variables with finite fourth moments and let α ∈ R. Then
(i) cum(Y1, Y2, Y3, Y4) = cum(Yπ(1), Yπ(2), Yπ(3), Yπ(4)), for any permutation

π : {1, . . . , 4} → {1, . . . , 4},

(ii) cum(Y1 + Y2, Y3, Y4, Y5) = cum(Y1, Y3, Y4, Y5) + cum(Y2, Y3, Y4, Y5),

(iii) cum(αY1, Y2, Y3, Y4) = α cum(Y1, Y2, Y3, Y4).

Exercise

Ex. 1.4.4 Suppose that (εt)t∈Z ∼ IID(0, σ2) and Eε4
t <∞ ∀t ∈ Z. Show that

(i) cum
(
εs, εt, εu, εv

)
=

{
E[ε4

0]− 3σ4 if s = t = u = v,
0 otherwise .

(ii) Let Xt = β0εt + · · · + βqεt−q. Show that, for arbitrary s ∈ Z,
∞∑

t,u,v=−∞

∣∣ cum
(
Xs, Xt, Xu, Xv

)∣∣ ≤ ∣∣E[ε4
0

]
− 3σ4

∣∣ ( q∑
k=0

|βk|

)4

< ∞.

Lemma 1.4.10. Let (Xt)t∈Z be a centered Gaussian process, i.e., EXt = 0 ∀t ∈ Z. Then
cum

(
Xs, Xt, Xu, Xv

)
= 0 ∀s, t, u, v ∈ Z.

Proof. Let Z1, . . . , Z4 ∼ N(0, 1) be independent. Since E[Z4
i ] = 3 = 3(E[Z2

i ])2 we obtain
by (i) of Exercise 1.7 that

cum
(
Zi, Zj, Zk, Zl

)
= 0 ∀i, j, k, l ∈ {1, . . . , 4}.

Let now s, t, u, v ∈ Z be arbitrary. Since (Xt)t∈Z is Gaussian, the vector X =
(Xs, Xt, Xu, Xv)

T has a multivariate normal distribution, X ∼ N4(04,Σ), for some sym-
metric and non-negative definite matrix Σ. LetM := Σ1/2 be the square root of Σ. Then
the vector X has the same distributions as MZ, where Z = (Z1, Z2, Z3, Z4)T , and it
follows that

cum
(
Xs, Xt, Xu, Xv

)
= cum

(∑
i

M1iZi,
∑
j

M2jZj,
∑
k

M3kZk,
∑
l

M4lZl
)

=
4∑

i,j,k,l=1

M1iM2jM3kM4l cum
(
Zi, Zj, Zk, Zl

)︸ ︷︷ ︸
=0

= 0.
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Now we are in a position to show that the variance of γ̂n(k) converges to zero as the sample
size n tends to infinity. This yields, in conjunction with Lemma 1.4.8 that the squared
error risk of γ̂n(k) tends to zero which in turn means that the sequence of estimators
(γ̂n(k))n∈N is consistent.

Lemma 1.4.11. Suppose that (Xt)t∈Z is a strictly stationary process with mean µ and
autocovariance function γ. We assume that

∑∞
k=−∞ |γ(k)| < ∞, E[X4

0 ] < ∞, and∑∞
t,u,v=−∞

∣∣ cum
(
X0 − µ,Xt − µ,Xu − µ,Xv − µ

)∣∣ <∞. Then

E
[(
γ̂n(k) − γ(k)

)2]
= O

(
n−1
)
.

Proof. In order to employ Lemma 1.4.9, we represent γ̂n(k) as a quadratic form:

γ̂n(k) =
1

n

n−|k|∑
t=1

(
Xt+|k| − µ+ µ− X̄n

)(
Xt − µ+ µ− X̄n

)
=

1

n

n−|k|∑
t=1

(
Xt+|k| − µ

)(
Xt − µ

)
− 1

n

n−|k|∑
t=1

[(
Xt − µ

)(
X̄n − µ

)
+
(
Xt+|k| − µ

)(
X̄n − µ

)]
+
n− |k|
n

(
X̄n − µ

)2

= Y TMY,

where Y = (X1−µ, . . . , Xn−µ)T andM being an appropriate symmetric (n×n)-matrix.
The entries of M are such that, for k 6= 0,

Mst =

{
1

2n
+ O( 1

n2 ) if |s− t| = k,
O( 1

n2 ) if |s− t| 6= k

and, for k = 0,

Mst =

{
1
n

+ O( 1
n2 ) if s = t,

O( 1
n2 ) if s 6= t

.

In either case, we obtain from Lemma 1.4.9

var
(
γ̂n(k)

)
=

n∑
s,t,u,v=1

MstMuv cum
(
Xs − µ,Xt − µ,Xu − µ,Xv − µ

)
+ 2

n∑
s=1

n∑
t,u,v=1

MstΣtuMuvΣvs

≤ max
s,t
{|Mst|}︸ ︷︷ ︸

=O(n−1)

max
u,v
{|Muv|}︸ ︷︷ ︸

=O(n−1)

n∑
s=1

n∑
t,u,v=1

∣∣ cum
(
Xs − µ,Xt − µ,Xu − µ,Xv − µ

)∣∣
︸ ︷︷ ︸

=O(1)

+ max
u,v
{|Muv|}︸ ︷︷ ︸

=O(n−1)

max
s,t

{∑
u,v

|Σtu| |Σvs|
}

︸ ︷︷ ︸
=O(1)

n∑
s,t=1

|Mst|︸ ︷︷ ︸
=O(1)

= O
(
n−1
)
.
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1.5 ARMA processes

In this section we introduce an important class of processes (Xt)t∈Z which are defined in
terms of linear difference equations with coefficients that are constant over time.

Definition. Let (εt)t∈Z ∼WN(0, σ2). The process (Xt)t∈Z is said to be an autoregres-
sive moving average process of order p, q (ARMA(p, q) process) if for every t ∈ Z

Xt − α1Xt−1 − · · · − αpXt−p = εt + β1εt−1 + · · · + βqεt−q. (1.5.1)

We say that (Xt)t∈Z is an ARMA(p, q) process with mean µ if (Xt − µ)t∈Z is an
ARMA(p, q) process.

Note that we do not require by definition that an ARMA process be stationary. As we
will see below, the existence of a stationary solution to the systems of ARMA equations
follows under some extra condition on the coefficients. Under such conditions, requiring
stationarity is one way of making this solution unique.

The class of ARMA processes includes the following special cases.

• (Moving-average process)
If p = 0, then the system of model equations (1.5.1) reduces to

Xt = εt + β1εt−1 + · · · + βqεt−q ∀t ∈ Z. (1.5.2)

The process (Xt)t∈Z is said to be a moving-average process of order q (or MA(q)
process). If (εt)t∈Z ∼WN(0, σ2), then it follows from Proposition 1.4.3 that (Xt)t∈Z
is a stationary process and we obtain (defining β0 = 1)

EXt = Eε0

( q∑
k=0

βk

)
= 0

and

cov(Xt+h, Xt) =

{
σ2
∑q−|h|

j=0 βjβj+|h| if |h| ≤ q,

0 if |h| < q.

• (Autoregressive process)
If q = 0, then we obtain the following system of model equations:

Xt = α1Xt−1 + · · · + αpXt−p + εt ∀t ∈ Z. (1.5.3)

Such a process is called autoregressive process of order p (or AR(p) process).
Note that, in contrast to the case of moving-average processes, the random vari-
ables Xt are not explicitly given. The question whether or not there is a stationary
solution (Xt)t∈Z to the system of equations (1.5.3) will be discussed in what follows.

The imposition of the above additional structure leads to a class of models, the autore-
gressive moving average or ARMA processes, which are described by a finite number
of parameters. Nevertheless, this class is quite flexible in matching a given autocovariance
function. Indeed, for any autocovariance function γ such that limk→∞ γ(k) = 0, and for
any integer p > 0, it is possible to find an autoregressive process (Xt)t∈Z of order p with
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autocovariance function γX such that γX(h) = γ(h), for h = 0, . . . , p. Another nice fea-
ture of these ARMA processes is that they can be represented as linear processes which
makes an immediate application of tools, which are originally derived in the context of
linear processes, possible.

As some sort of warm-up, we consider first the case of an autoregressive process of order 1.
Suppose that (εt)t∈Z ∼WN(0, σ2), where σ2 > 0. The system of model equations is

Xt = α1Xt−1 + εt ∀t ∈ Z. (1.5.4)

Iterating (1.5.4) we obtain that

Xt = εt + α1Xt−1

= εt + α1εt−1 + α2
1Xt−2

= . . .

= εt + α1εt−1 + · · · + αk1εt−k + αk+1
1 Xt−k−1,

which leads us to a guess of a solution. Indeed, if |α1| < 1, then we obtain from Propo-
sition 1.4.2 that the series

∑∞
k=0 α

k
1εt−k is both mean square convergent and absolutely

convergent with probability one. Furthermore, (X̃t)t∈Z with X̃t =
∑∞

k=0 α
k
1εt−k is by

Proposition 1.4.3 a stationary process and we obtain that

X̃t =
∞∑
k=0

αk1εt−k = εt + α1

∞∑
t=0

αk1εt−1−k = α1X̃t−1 + εt

holds for all t ∈ Z. Therefore, (X̃t)t∈Z is a stationary and causal (since only εs with
s ≤ t are involved in the definition of X̃t) solution to (1.5.4). The issues of stationarity
of an AR(1) process are summarized in the following proposition.

Proposition 1.5.1. Let (εt)t∈Z ∼WN(0, σ2) and α1 ∈ R with |α1| < 1.

(i) A stationary solution to (1.5.4) is given by (X̃t)t∈Z, where

X̃t =
∞∑
k=0

αk1 εt−k. (1.5.5)

(ii) a) (X̃t)t∈Z is the unique weakly stationary solution which satisfies (1.5.4) for all
t ∈ Z.

b) Let (Xt)t∈N0 (N0 = N∪ {0}) be an arbitrary process which satisfies (1.5.4) for
all t ∈ N. Then

Xt − X̃t = αt1
(
X0 − X̃0

)
and ∣∣Xt − X̃t

∣∣ a.s.−→ 0 as t→∞.

If (Xt)t∈N0 is weakly stationary, then

E
[(
Xt − X̃t

)2
]
≤ 2α2t

1

(
EX2

0 + EX̃2
0

)
.
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Proof. After the preceding discussion, it only remains to prove part (ii).

a) Let (Xt)t∈Z be an arbitrary solution to (1.5.4). Then

Xt − X̃t = α1

(
Xt−1 − X̃t−1

)
= . . . = αk1

(
Xt−k − X̃t−k

)
holds for all k ∈ N. Since both (Xt)t∈Z and (X̃t)t∈Z are stationary processes we
obtain hat

E
∣∣Xt − X̃t

∣∣ ≤ ∣∣α1

∣∣k E[∣∣Xt−k
∣∣ +

∣∣X̃t−k
∣∣]

≤
∣∣α1

∣∣k {√E
[
X2
t−k
]

+

√
E
[
X̃2
t−k
]}
−→
k→∞

0.

This means that E|Xt − X̃t| = 0, which implies that

P
(
Xt 6= X̃t

)
= 0.

b) Let (Xt)t∈N0 be an arbitrary process which satisfies (1.5.4) for all t ∈ N. Then we
conclude as above that

Xt − X̃t = αt1
(
X0 − X̃0

) a.s.−→ 0 as t→∞.

If in addition (Xt)t∈N0 is weakly stationary, then

E
(
Xt − X̃t

)2 ≤ 2α2t
1

(
EX2

0 + EX̃2
0

)
.

Remark 1.5.2. For a one-sided AR(1) process (Xt)t∈N0 it is only required that (1.5.4)
is satisfied for all t ≥ 1. In this case, a stationary solution to (1.5.4) may not be unique.
Indeed, suppose that the underlying probability space allows the construction of two inde-
pendent processes (εt)t∈Z ∼WN(0, σ2) and (ε′t)t∈Z ∼WN(0, σ2). Let

ε̄t :=

{
εt if t ≥ 1,
ε′t if t ≤ 0.

Then

X̃t =
∞∑
k=0

αk1εt−k

and

X̄t =
∞∑
k=0

αk1 ε̄t−k

are both solutions to (1.5.4) for all t ∈ N. However, unless σ2 = 0, these processes are
not equal.
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Before we investigate autoregressive processes of order p ≥ 1 we stick to p = 1 and take
a brief look at the case of |α1| ≥ 1.

The case of |α1| > 1
Suppose that (εt)t∈Z ∼ WN(0, σ2), where σ2 > 0. We seek again a stationary solution
to the system of equations (1.5.4), for t ∈ Z. Since σ2 > 0 it is obvious that the series∑∞

k=0 α
k
1εt−k does not converge in mean square. On the other hand, the following system

of equations is equivalent to (1.5.4):

Xt−1 = (1/α1)Xt − (1/α1)εt ∀t ∈ Z. (1.5.6)

To guess a solution to (1.5.5) we iterate this equation and obtain

Xt = −(1/α1)εt+1 + (1/α1)Xt+1

= −(1/α1)εt+1 − (1/α1)2εt+2 + (1/α1)2Xt+2

= . . .

= −
∞∑
k=1

(1/α1)kεt+k. (1.5.7)

It follows from Proposition 1.4.2 that the series
∑∞

k=1(1/α1)kεt+k converges both in mean
square and with probability one. Furthermore, (Xt)t∈Z with Xt = −

∑∞
k=1(1/α1)kεt+k is

by Proposition 1.4.3 a stationary process. This process satisfies (1.5.6) and, therefore,
(1.5.4) as well.

The case of α1 = ±1
In this case, a stationary solution to (1.5.4) does not exist. Suppose again that
(εt)t∈Z ∼WN(0, σ2), where σ2 > 0. If, for example, α1 = 1, then any stationary so-
lution (Xt)t∈Z has to fulfill

Xt = εt + Xt−1 = . . . = εt + · · · + εt−(k−1) + Xt−k ∀k ∈ N.

Now we have var(Xt) = var(Xt−k) <∞ but

var
(
εt + · · · + εt−(k−1)

)
= k σ2 −→

k→∞
∞,

which leads to a contradiction.

We would like to note that the stationary solution (1.5.7) is frequently regarded as un-
natural. When autoregressive processes are employed to model real-world phenomena
such as the evolution of stock prices, the εt usually describe the effect of external shocks
which influence the further evolution of the stock price. Since such shocks are usually
unforeseeable it does not make sense to include εs for any s > t in the definition of Xt.
It is customary therefore when modelling stationary time series to restrict attention to
AR(1) processes with |α1| < 1 for which the unique stationary solution has the represen-
tation (1.5.5) in terms of (εs)s≤t. This also applies to autoregressive processes of higher
order which will be investigated below.
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Exercises

Ex. 1.5.1 Suppose that (εt)t∈Z ∼ WN(0, σ2), where σ2 > 0. Show that there is no
stationary solution (Xt)t∈Z to (1.5.4) if α1 = −1.

Ex. 1.5.2 Suppose that (εt)t∈Z ∼ WN(0, σ2), where σ2 > 0 and that α1 ∈ R such
that |α1| > 1.
Show that the (non-causal) solution (1.5.7) also satisfies the AR(1) equations

Xt = (1/α1)Xt−1 + ε̃t ∀t ∈ Z,

for a suitably chosen process (ε̃t)t∈Z.
Show that (ε̃t)t∈Z is a white noise and determine var(ε̃t).
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Now we turn to autoregressive processes of higher order. Assume again that
(εt)t∈Z ∼WN(0, σ2). The system of model equations is given by (1.5.3). Again we would
like to know if (1.5.3) has a causal stationary solution. Suppose for the time being that
(X̃t)t∈Z is such a solution. We obtain by a repeated iteration that the following equation
has to be satisfied for all t ∈ Z.

X̃t = εt + α1X̃t−1 + · · · + αpX̃t−p

= εt + α1

(
εt−1 + α1 X̃t−2︸︷︷︸

= εt−2+···

+ · · · + αpX̃t−p−1

)
+ α2 X̃t−2︸︷︷︸

= εt−2+···

+α3X̃t−3 + · · · + αpX̃t−p

= . . .

= εt +
∞∑
k=1

( k∑
r=1

∑
(k1,...,kr) : k1+···+kr=k

αk1 · · ·αkr
)
εt−k. (1.5.8)

At this point we want to find a condition on the coefficients α1, . . . , αp which ensures that
the series on the right-hand side of (1.5.8) actually converges. After that we will check
that the corresponding process solves (1.5.3). Suppose that

|α1| + · · · + |αp| < 1. (1.5.9)

Then

1 +
∞∑
k=1

k∑
r=1

∑
(k1,...,kr) : k1+···+kr=k

|αk1| · · · |αkr | = 1 +
∞∑
r=1

∑
k≥r

∑
(k1,...,kr) : k1+···+kr=k

|αk1| · · · |αkr |

=
∞∑
r=0

(
|α1| + · · · + |αp|

)r
=

1

1− |α1| − · · · − |αp|
< ∞.

Therefore, it follows from Proposition 1.4.2 that the series on the right-hand side of (1.5.8)
converges absolutely with probability one. This allows us in particular to alter the order
of summation and we obtain that

X̃t = εt +
∞∑
k=1

( ∑
r≤k, k1+···+kr=k

αk1 · · ·αkr
)
εt−k

= εt +

p∑
k1=1

αk1

(
εt−k1 +

∑
k>k1

( ∑
r≤k, k2+···+kr=k−k1

αk2 · · ·αkr
)
ε(t−k1)−k2−···−kr

)
︸ ︷︷ ︸

= X̃t−k1

.

This shows that (X̃t)t∈Z solves (1.5.3). We can also write this solution in a more compact
form. Let β0 = 1 and, for k ∈ N,

βk =
∑

r≤k, k1+···+kr=k

αk1 · · ·αkr . (1.5.10)

Then

X̃t =
∞∑
k=0

βkεt−k.

Since
∑∞

k=0 |βk| < 1 +
∑∞

k=1

∑
r≤k, k1+···+kr=k |αk1 | · · · |αkr | < ∞ it is clear that the con-

ditions of Propositions 1.4.2 and 1.4.3 are fulfilled. The process (X̃t)t∈Z is therefore
stationary. We will see in the following that condition (1.5.9) is stronger than necessary.
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In the following we intend to relax condition (1.5.9) which guarantees that the system
of linear difference equations (1.5.3) has a causal stationary solution

∑∞
k=0 βkεt−k with∑∞

k=0 |βk| < ∞. (The latter condition ensures that the infinite series converges both in
mean square and absolutely with probability one.) Recall that, for a given sequence of
innovations (εt)t∈Z ∼WN(0, σ2), the following equations have to be solved simultaneously
for all t ∈ Z.

Xt − α1Xt−1 − · · · − αpXt−p = εt (1.5.11a)

and

Xt =
∞∑
k=0

βkεt−k (1.5.11b)

To avoid this somewhat bulky notation, we introduce the so-called backward shift
operator B as

BXt = Xt−1.

Powers of the operator are defined in the obvious way, i.e. B0Xt = Xt and BkXt = Xt−k,
k ≥ 1. We can rewrite (1.5.11a) and (1.5.11b) in a more compact way,

α(B)Xt = εt (1.5.12a)

and
Xt = β(B)εt, (1.5.12b)

where α(B) = B0 − α1B
1 − · · · − αpBp and β(B) =

∑∞
k=0 βkB

k. Plugging in equation
(1.5.12b) into (1.5.12a) we obtain that

α(B)β(B)εt = εt. (1.5.13)

This is actually fulfilled if a comparison of coefficients yields that

α(B)β(B) = B0 (1.5.14)

and, of course, if the infinite series on the left-hand side of (1.5.13) converges absolutely.
The latter requirement if fulfilled if

∑∞
k=0 |βk| <∞, what we keep in mind in what follows.

For given α1, . . . , αp, it remains to solve (1.5.14). But this could be equally well done
by solving an equation with polynomials with real arguments. (1.5.14) is equivalent to

α(z)β(z) = 1 ∀z ∈ I, (1.5.15)

where I ⊆ R is some non-empty interval, α(z) = 1−α1z
1−· · ·−αpzp, β(z) =

∑∞
k=0 βkz

k.
Coefficients (βk)k∈N which solve (1.5.15) are candidates for a possible solution to (1.5.14).
Moreover, it will turn out that

∑∞
k=0 |βk| < ∞ follows if the polynomial α has all of its

zeroes outside the unit circle. The following lemma provides a sufficient and necessary
condition for the existence of a solution to (1.5.15).

Lemma 1.5.3. Let α(z) = 1−α1z
1−· · ·−αpzp, where α1, . . . , αp ∈ R. Then there exist

(βk)k∈N such that
∑∞

k=0 |βk| <∞ and

α(z)
∞∑
k=0

βkz
k = 1 ∀z ∈ C with |z| ≤ 1

if and only if
α(z) 6= 0 ∀z ∈ C with |z| ≤ 1.

In this case, the coefficients β0, β1, . . . are real.
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Proof. (⇐=) Suppose that

α(z) 6= 0 ∀z ∈ C with |z| ≤ 1.

The polynomial α can be written as

α(z) =
(
1 − z/c1

)
· · ·
(
1 − z/cp

)
,

where c1, . . . , cp are the zeroes of α, according to their multiplicities. Since 1/(1− z/c) =∑∞
k=0(z/c)k holds for all z ∈ C with |z/c| < 1 we obtain, for these values of z,

1

α(z)
=

1

1− z/c1

· · · 1

1− z/cp

=
( ∞∑
k1=0

c−k11 zk1
)
· · ·
( ∞∑
kp=0

c−kpp zkp
)
, (1.5.16)

where all series on the right-hand side converge absolutely. In order to obtain that
α(z)β(z) = 1 we choose (βk)k∈N0 such that

∞∑
k=0

βkz
k =

( ∞∑
k1=0

c−k11 zk1
)
· · ·
( ∞∑
kp=0

c−kpp zkp
)
.

A comparison of coefficients reveals that this is achieved by the choice βk =∑
k1,...,kp≥0: k1+···+kp=k c

−k1
1 · · · c−kpp . Furthermore, since the power series on the right-

hand side converge absolutely for z = 1 we obtain
∑∞

k=0 |c
−k
i | < ∞ and therefore∑∞

k=0 |βk| ≤
(∑∞

k1=0 |c
−k1
1 |

)
· · ·
(∑∞

kp=0 |c
−kp
p |

)
<∞.

To see that the coefficients β0, β1, . . . are real, write βk = βRk + iβIk , where βRk , βIk ∈ R.
Then

α(z)
( ∞∑
k=0

βIkz
k
)

= =
(
α(z)

∞∑
k=0

βkz
k

︸ ︷︷ ︸
= 1

)
= 0 ∀z ∈ C, |z| ≤ 1

which implies that
∑∞

k=0 β
I
kz

k = 0 ∀z ∈ C, |z| ≤ 1, and, hence, βIk = 0 ∀k ≥ 0.

(=⇒) This direction is trivial. Indeed, if α(z)
∑∞

k=0 βkz
k = 1 for all z ∈ C, |z| ≤ 1,

then it is clear that α(z) 6= 0 for all z ∈ C, |z| ≤ 1.

It is an immediate corollary of Proposition 1.4.2 that operators such as ψ(B) =∑∞
j=−∞ ψjB

j with
∑∞

j=−∞ |ψj| < ∞, when applied to a stationary process (Zt)t∈Z, are
not only meaningful but also inherit the algebraic properties of power series. In particu-
lar, if

∑∞
j=−∞ |αj| < ∞,

∑∞
j=−∞ |βj| < ∞, α(B) =

∑∞
j=−∞ αjB

j, β(B) =
∑∞

j=−∞ βjB
j,

and ψ(B) =
∑∞

j=−∞ ψjB
j, where

ψj =
∞∑

k=−∞

αkβj−k =
∞∑

k=−∞

βkαj−k,

then α(B)β(B)Zt is well-defined and

α(B)β(B)Zt = β(B)α(B)Zt = ψ(B)Zt.

Therefore, the following theorem is mainly a direct consequence of the previous
Lemma 1.5.3.
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Theorem 1.5.4. Let (εt)t∈Z be a stationary process and suppose that

α(z) = 1 − α1z
1 − · · · − αpz

p 6= 0 ∀z ∈ C, |z| ≤ 1. (1.5.17)

(i) The system of equations

Xt = α1Xt−1 + · · · + αpXt−p + εt ∀t ∈ Z (1.5.18)

has a stationary solution (X̃t)t∈Z, where X̃t =
∑∞

k=0 βkεt−k, βk =∑
k1,...,kp≥0: k1+···+kp=k c

−k1
1 · · · c−kpp , and c1, . . . , cp are the zeroes of α.

(ii) If (Xt)t∈Z is an arbitrary stationary solution to (1.5.18), then

P
(
Xt = X̃t

)
= 1.

Proof. (i) It follows from Lemma 1.5.3 that
∑∞

k=0 |βk| < ∞. Therefore,
∑∞

k=0 βkεt−k
converges both in mean square and absolutely with probability one which means that X̃t is
well-defined. According to Proposition 1.4.3, (X̃t)t∈Z inherits the property of stationarity
from the underlying innovation process (εt)t∈Z. Furthermore, α(z)β(z) = 1 ∀|z| ≤ 1 is
equivalent to α(B)β(B) = B0. Hence,

α(B)X̃t = α(B)β(B)︸ ︷︷ ︸
=B0

εt = εt,

i.e., (X̃t)t∈Z solves (1.5.18).

(ii) We have that
(
α(B)X̃t

)
t∈Z and

(
α(B)Xt

)
t∈Z are both stationary processes. There-

fore
(
β(B)α(B)X̃t

)
t∈Z and

(
β(B)α(B)Xt

)
t∈Z are also stationary and it follows from

α(B)X̃t = εt = α(B)Xt that

β(B)α(B)X̃t︸ ︷︷ ︸
= X̃t

= β(B)εt = β(B)α(B)Xt︸ ︷︷ ︸
=Xt

P − a.s.

Hence, Xt and X̃t are equal with probability one.

To conclude these considerations, we want to clarify how the regularity conditions (1.5.9)
and (1.5.17) are related to each other.
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Remark 1.5.5. (i) If |α1| + · · · + |αp| < 1, then α(z) 6= 0 for all z ∈ C with |z| ≤ 1.
The converse statement is not true in general.

(ii) If α1, . . . , αp are non-negative, then (1.5.9) and (1.5.17) are equivalent.

Proof. (i) Suppose that |α1|+ · · ·+ |αp| < 1 and z ∈ C, |z| ≤ 1. Then∣∣α1z
1 + · · · + αpz

p
∣∣ < 1,

which implies that
α(z) = 1 − α1z

1 − · · · − αpz
p 6= 0.

To disprove the converse, we consider a simple counterexample (p = 2). Let c1 and c2 be
the zeroes of the autoregressive polynomial. Then

α(z) =
(

1− z

c1

) (
1− z

c2

)
= 1 −

( 1

c1

+
1

c2

)
︸ ︷︷ ︸

=α1

z +
1

c1 c2

z2.

For c1, c2 ∈ R with 1 < ci < 2, we obtain that |α1| > 1 but (1.5.17) is satisfied
(ii) The second statement is trivial.

In the following we show how flexible the class of autoregressive processes is in matching a
given structure of the autocovariances. We show in particular that, for any autocovariance
function γ such that γ(0) > 0 and γ(k)−→k→∞ 0, we can find a causal stationary AR(p)
process with autocovariance function γX such that γX(k) = γ(k) for k = 0, . . . , p. To
this end, we establish first an important relation between the parameters of an AR(p)
process and the autocovariances.

Suppose that (Xt)t∈Z is a zero-mean stationary and causal autoregressive process of or-
der p obeying

Xt = α1Xt−1 + · · · + αpXt−p + εt ∀t ∈ Z,

where (εt)t∈Z ∼WN(0, σ2) and α(z) = 1−α1z
1− · · ·−αpzp 6= 0 for all z ∈ C, |z| ≤ 1. It

follows from the uniqueness of the stationary solution stated in Theorem 1.5.4 that Xt =∑∞
k=0 βkεt−k, where the sequence of coefficients (βk)k∈N0 is determined by

∑∞
k=0 βkz

k =
1/α(z), |z| ≤ 1. We have in particular β0 = 1 and

∑∞
k=0 |βk| < ∞. It follows from

continuity of the inner product (see Lemma 1.3.4) that

E[εtX0] = lim
m→∞

E
[
εt
( m∑
k=0

βkε−k
)]

=

{
0 if t > 0,
σ2 if t = 0.

Let γ be the autocovariance function of the process (Xt)t∈Z. For t = 0, 1, . . . , p, we obtain
the following equations which are called Yule-Walker equations:

γ(t) = E
[
XtX0

]
= E

[( p∑
k=1

αkXt−k + εt
)
X0

]
=

p∑
k=1

αkγ(t− k) + E[εtX0].
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The Yule-Walker equations can be condensed in matrix/vector notation as γ(1)
...

γ(p)


︸ ︷︷ ︸

=:γp

=

 γ(1− 1) . . . γ(1− p)
... . . . ...

γ(p− 1) . . . γ(p− p)


︸ ︷︷ ︸

=:Γp

 α1
...
αp


︸ ︷︷ ︸

=:α

(1.5.19)

and
γ(0) = γTp α + σ2. (1.5.20)

These equations can be used to determine γ(0), . . . , γ(p) from σ2 and α1, . . . , αp. On the
other hand, if we replace the autocovariances γ(j), j = 0, . . . , p, appearing in (1.5.19)
and (1.5.20) by the corresponding sample autocovariances γ̂(j), we obtain a set of equa-
tions for the so-called Yule-Walker estimators α̂1, . . . , α̂p and σ̂2 of α1, . . . , αp and
σ2, respectively. And finally, as shown below, these equations may also be used to find,
for a given set of autocovariances γ(0), . . . , γ(p), parameters α1, . . . , αp and σ2 for an
AR(p) process with these autocovariances. To this end, we state first a result that guar-
antees that the matrix Γp =

(
γ(i − j)

)
i,j=1,...,p

is regular which means that, for given
γ(0), . . . , γ(p), (1.5.19) has always a solution.

Lemma 1.5.6. Let γ be the autocovariance function of a weakly stationary, real-valued
process (Xt)t∈Z.
If γ(0) > 0 and γ(k)−→k→∞ 0, then the covariance matrix Γn =

(
γ(i − j)

)
i,j=1,...,n

is
regular for all n ∈ N.

Proof. We prove this result by contradiction. Let X̃t := Xt − EXt. It is clear that
Γ1 =

(
γ(0)

)
is regular. Assume that Γn is regular and Γn+1 singular. Then since EX̃t = 0

there exists a = (a1, . . . , an+1)T 6= 0n+1 such that

0 = aTΓn+1a = aTE


 X̃1

...
X̃n+1

(X̃1 · · · X̃n

) a = E


aT

 X̃1
...

X̃n+1




2
 ,

which implies that
∑n+1

i=1 aiX̃i = 0 holds P -almost surely. Moreover, we have that
an+1 6= 0 since otherwise Γn would be singular. Hence,

X̃n+1 =
n∑
i=1

(−ai/an+1)︸ ︷︷ ︸
=: di

X̃i P − a.s.,

which means in particular that E
[(
X̃n+1 −

∑n
i=1 diX̃i

)2]
= 0. By stationarity we then

have E
[(
X̃n+k+1 −

∑n
i=1 diX̃i+k

)2]
= 0, i.e.

X̃n+k+1 =
n∑
i=1

diX̃i+k P − a.s., for all k ∈ N.

Consequently, for all m ≥ n+ 1, there exist constants d(m)
1 , . . . , d

(m)
n such that

X̃m =
n∑
i=1

d
(m)
i X̃i P − a.s.
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We have

γ(0) = var(X̄m) = var
( n∑
i=1

d
(m)
i X̃i

)

= (d
(m)
1 , . . . , d(m)

n )Γn

 d
(m)
1
...

d
(m)
n


≥ λmin(Γn)

n∑
i=1

(d
(m)
i )2,

where λmin(Γn) denotes the smallest eigenvalue of Γn. Since Γn is regular and, as a
covariance matrix, non-negative definite, it follows that λmin(Γn) is strictly positive. This
shows that, for each fixed i, d(m)

i is a bounded function of m. On the other hand,

0 < γ(0) = cov
(
X̃m,

n∑
i=1

d
(m)
i X̃i

)
≤

n∑
i=1

|d(m)
i ||γ(m− i)| −→

m→∞
0.

This is a contradiction and our assumption that Γn is singular must be wrong. This
completes the proof.

Corollary 1.5.7. Let (Xt)t∈Z be a stationary and causal AR(p) process,

Xt = α1Xt−1 + · · · + αpXt−p + εt ∀t ∈ Z,

where (εt)t∈Z ∼WN(0, σ2) with σ2 > 0, α(z) 6= 0 for all |z| ≤ 1.
Then the autocovariance function γX of this process fulfills γX(0) > 0 and

∑∞
k=0 |γX(k)| <

∞, which implies that γX(k)−→k→∞ 0. Therefore, the corresponding covariance matrices
Γn are regular for all n ∈ N.

Now we are in a position to prove that an arbitrary autocovariance function can be
approximated by the autocovariance function of a suitable autoregressive process.

Theorem 1.5.8. Suppose that γ is the autocovariance function of a stationary (real-
valued) process such that γ(0) > 0 and γ(k)−→k→∞ 0.
Then there exists a causal stationary AR(p) process (Xt)t∈Z with autocovariance func-
tion γX such that γX(k) = γ(k) for all k = 0, 1, . . . , p.

Proof. We show that there exists a causal stationary process (Xt)t∈Z such that

Xt = α1Xt−1 + · · · + αpXt−p + εt ∀t ∈ Z,

where (εt)t∈Z ∼WN(0, σ2) and cov(Xt+k, Xt) = γ(k), k = 0, 1, . . . , p.
If there exists such a process at all, then it follows from the Yule-Walker equations (1.5.19)
and (1.5.20) that (

α1, . . . , αp
)T

= Γ−1
p γp
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and
σ2 = γ(0) − γTp α,

where Γp =
(
γ(i−j)

)p
i,j=1

, γp = (γ(1), . . . , γ(p))T , and α = (α1, . . . , αp)
T . It only remains

to show that

α(z) = 1 − α1z
1 − · · · − αpz

p 6= 0 ∀z ∈ C, |z| ≤ 1. (1.5.21)

We prove this by contradiction and assume that the autoregressive polynomial α has a
zero inside the unit circle, i.e.

α(z) =
(
1 − z/c

)
ξ(z),

for some c ∈ C, |c| ≤ 1. Then the polynomial ξ has the form ξ(z) = 1 −
∑p−1

j=1 bjz
j, for

some b1, . . . , bp−1 ∈ C.
Let

(
Y1, . . . , Yp+1

)T ∼ N
(
0p+1,Γp+1

)
. We define Zj := ξ(B)Yj and

ρ :=
〈Zp+1, Zp〉
‖Zp+1‖ ‖Zp‖

.

Note that the random variable Zj is not necessarily real-valued, it could also be complex-
valued. We define the polynomial

γ(B) :=
(
B0 − ρB

)
ξ(B),

which can also be written as

γ(B) = B0 −
p∑
j=1

α̃jB
j,

for some α̃1, . . . , α̃p ∈ C. We have

E
∣∣Yp+1 −

p∑
j=1

α̃jYp+1−j
∣∣2 = E

∣∣(B0 − ρB
)
ξ(B)Yp+1

∣∣2
= E

∣∣(B0 − ρB
)
Zp+1

∣∣2
= E

∣∣Zp+1 − ρZp
∣∣2 (1.5.22)

and

E
∣∣Yp+1 −

p∑
j=1

αjYp+1−j
∣∣2 = E

∣∣(B0 − (1/c)B
)
ξ(B)Yp+1

∣∣2
= E

∣∣Zp+1 − (1/c)Zp
∣∣2. (1.5.23)

It follows from the projection theorem (Theorem 1.3.6) that
∑p

j=1 αjYp+1−j is the pro-
jection of Yp+1 onto the subspace M = {

∑p
i=1 ciYp+1−i : c1, . . . , cp ∈ C}. Therefore the

left-hand side of (1.5.23) is smaller than or equal to the left-hand side of (1.5.22). On
the other hand, it follows again from the projection theorem that ρZp is the projection
of Zp+1 onto {cZp : c ∈ C}. Therefore, the right-hand side of (1.5.22) is smaller than or
equal to the right-hand side of (1.5.23). Hence we conclude that

E
∣∣Zp+1 − ρZp

∣∣2 = E
∣∣Zp+1 − (1/c)Zp

∣∣2,
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which means that (1/c)Zp is also a projection of Zp+1 onto {cZp : c ∈ C}. Since the
projection is unique we conclude that

0 = E
∣∣ρZp − (1/c)Zp

∣∣2 =
(
ρ − (1/c)

)2 ‖Zp‖2︸ ︷︷ ︸
6=0

,

i.e. ρ = 1/c. It follows from the Cauchy-Schwarz inequality that |ρ| ≤ 1. However, if
|ρ| = 1 then a simple computation reveals that

Zp+1 = ρZp P − a.s.

Since ξ(B) = B0 −
∑p−1

i=1 bjB
j we conclude that

0 = Zp+1 − ρZp = Yp+1 −
p−1∑
j=1

bjYp+1−j − ρξ(B)Yp P − a.s.

This, however, contradicts the regularity of Γp+1, which in turn follows from Lemma 1.5.9.
Therefore, our assumption that α has a zero inside the unit circle was wrong and the
proof is complete.

Exercise

Ex. 1.5.3 Suppose that (Xt)t∈Z is a causal stationary AR(2) process obeying

Xt = α1Xt−1 + α2Xt−2 + εt,

where (εt)t∈Z ∼WN(0, σ2), σ2 > 0, and α(z) = 1−α1z−α2z
2 6= 0 ∀z ∈ C, |z| ≤ 1.

Compute the autocorrelations ρ(1) and ρ(2), where ρ(k) = γ(k)/γ(0) and γ(k) =
cov(Xt+k, Xt).
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A central limit theorem for sums of martingale differences

In the following we consider two popular methods of estimating the parameters of an
autoregressive process, the least squares method and the method of moments, which is
based on a sample version of the Yule-Walker equations. We will also investigate the
asymptotic behavior of the least squares estimator when the sample size n tends to infin-
ity. It will be shown that this estimator, properly normalized, is asymptotically normally
distributed. Such a result can be used to construct confidence sets for the unknown
parameters, where a prescribed coverage probability is asymptotically guaranteed. As a
prerequisite to such a result, we derive a suitable central limit theorem. It will turn out
that we are faced with sums of dependent random variables which have the particular
structure of martingale differences. Next we state and prove an appropriate extension of
the Lindeberg-Feller central limit theorem to martingales.

Recall that the characteristic function ϕ of a standard normal distribution with zero
mean and variance σ2 is given by ϕ(t) = e−t

2σ2/2 ∀t ∈ R. In our proof of the central limit
theorem, we make use of the following lemma which shows that the characteristic function
of an arbitrary random variable X with EX = 0 and var(X) = σ2 can be approximated,
for small values of σ2, by the characteristic function of a normal distribution with the
same first two moments. Recall that the characteristic function ϕ of a standard normal
distribution with zero mean and variances σ2 is given by ϕ(t) = e−t

2σ2/2 ∀t ∈ R.

Lemma 1.5.9. Let X be a real-valued random variable such that EX = 0 and E
[
X2
]

=
σ2 <∞. Then

ϕX(t) := EeitX = e−t
2σ2/2 + r(t),

where, for all ε > 0,

∣∣r(t)∣∣ ≤ ε
|t|3 σ2

2
+ t2E

[
X2

1
(
|X| > ε

)]
+
t4 σ4

8
∀t ∈ R.

Proof. Since E
[
X2
]
< ∞, the characteristic function ϕX is two times continuously dif-

ferentiable and

ϕ′X(t) = E
[
iX eitX

]
, ϕ′′X(t) = E

[
(iX)2 eitX

]
.

Therefore, we obtain by a Taylor series expansion

∣∣ϕX(t) − e−t
2σ2/2

∣∣ =
∣∣∣ϕX(0)︸ ︷︷ ︸

=1

+ t ϕ′X(0)︸ ︷︷ ︸
=0

+
t2

2
ϕ′′X(0)︸ ︷︷ ︸
=−σ2

+
t2

2

[
ϕ′′X(ξ)− ϕ′′X(0)

]
− e−t

2σ2/2
∣∣∣

≤
∣∣∣(1 − t2σ2

2

)
− e−t

2σ2/2
∣∣∣ +

t2

2

∣∣∣ϕ′′X(ξ) − ϕ′′X(0)
∣∣∣,

for some ξ between 0 and t. We have, again by a Taylor series expansion, that e−u =
1− u+ u2

2
e−η, for all u ≥ 0 and suitable η ∈ (0, u). This implies that∣∣∣(1 − t2σ2

2

)
− e−t

2σ2/2
∣∣∣ ≤ t4σ4

8
.
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Furthermore,∣∣∣ϕ′′X(ξ) − ϕ′′X(0)
∣∣∣ =

∣∣∣E[(iX)2
(
eiξX − ei0X

)]∣∣∣
≤ E

[
X2

∣∣eiξX − ei0X
∣∣ 1(|X| ≤ ε

)︸ ︷︷ ︸
≤ε|ξ|≤ε|t|

]
+ E

[
X2

∣∣eiξX − ei0X
∣∣︸ ︷︷ ︸

≤2

1
(
|X| > ε

)]
≤ ε |t|E

[
X2
]

+ 2E
[
X2

1
(
|X| > ε

)]
,

which completes the proof.

It will turn out that our proof of the central limit theorem for sums of martingale
differences is rather complex. Therefore, we first take a look at the simpler proof of the
classical central limit theorem for independent, but not necessarily identically distributed
random variables, which is named after the Finnish mathematician Jarl Waldemar Lin-
deberg and the Croatian-American mathematician William Feller.

Theorem 1.5.10. For n ∈ N, let Xn,1, . . . , Xn,kn be independent random variables on
respective probability spaces

(
Ωn,Fn, Pn

)
. Suppose that

(i) EXn,k = 0 ∀k = 1, . . . , kn,

(ii) for σ2
n,k = E

[
X2
n,k

]
,

σ2
n :=

kn∑
k=1

σ2
n,k −→

n→∞
σ2 ∈ [0,∞),

(iii) for all ε > 0,

Ln(ε) :=
kn∑
k=1

E
[
X2
n,k1

(
|Xn,k| > ε

)]
−→
n→∞

0.

Then
Sn := Xn,1 + · · ·+Xn,kn

d−→ Y ∼ N(0, σ2).

Remark 1.5.11. Condition (iii) is the so-called Lindeberg condition. Since, for arbi-
trarily small ε > 0,

σ2
n,k = E

[
X2
n,k

]
≤ ε2 + E

[
X2
n,k1

(
|Xn,k| > ε

)]
≤ ε2 + Ln(ε)

we conclude that
max

1≤k≤kn

{
σ2
n,k

}
−→
n→∞

0. (1.5.24)

In other words, the Lindeberg condition guarantees that the contribution of any individual
random variable Xn,k (1 ≤ k ≤ kn) to the variance σ2

n of the sum is arbitrarily small, for
sufficiently large values of n.
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Proof of Theorem 1.5.10. It follows from Lévy’s continuity theorem, named after the
French mathematician Paul Lévy, that convergence in distribution of a sequence of ran-
dom variables is equivalent to pointwise convergence of the corresponding characteristic
functions. Let ϕS denote the characteristic function of a generic random variable S. We
have to show that

ϕSn(t) −→
n→∞

ϕY (t) = e−t
2σ2/2 ∀t ∈ R. (1.5.25)

Since σ2
n −→
n→∞

σ2 it suffices to show that∣∣ϕSn(t) − e−t
2σ2
n/2
∣∣ −→
n→∞

0.

We know from Lemma 1.5.9 that the characteristic function of a zero mean random vari-
able X can be well approximated by the characteristic function of a normal distribution,
provided the variance of X is small. According to (1.5.24), the Lindeberg condition en-
sures that the variances σ2

n,k of the individual random variables Xn,k are arbitrarily small,
for large values of n. To bring the smallness of ϕXn,k(t)− e

−t2σ2
n,k/2 into play, we split up

ϕSn(t) − e−t
2σ2
n/2

= E
[ kn∏
k=1

ϕXn,k(t) −
kn∏
k=1

e−t
2σ2
n,k/2

]
=

kn∑
k=1

[ k−1∏
j=1

ϕXn,j(t)
(
ϕXn,k(t) − e−t

2σ2
n,k/2

) kn∏
j=k+1

e−t
2σ2
n,j/2

]
(1.5.26)

Since
∣∣∏k−1

j=1 ϕXn,j(t)
∣∣ ≤ 1 and

∣∣∏kn
j=k+1 e

−t2σ2
n,j/2

∣∣ ≤ 1 we obtain by Lemma 1.5.9 that

∣∣ϕSn(t) − e−t
2σ2
n/2
∣∣ ≤ kn∑

k=1

∣∣∣ϕXn,k(t) − e−t
2σ2
n,k/2

∣∣∣
≤

kn∑
k=1

{
ε
|t|3σ2

n,k

2
+ t2E

[
X2
n,k1

(
|Xn,k| > ε

)]
+

t4σ4
n,k

8

}
≤ ε

|t|3σ2
n

2
+ t2 Ln(ε) + max

1≤j≤kn

{
σ2
n,j

} t4σ2
n

8

=: Rn,1(ε) + Rn,2(ε) + Rn,3, (1.5.27)

say. Let δ > 0 be arbitrary. Since σ2
n −→
n→∞

σ2 < ∞ we have that supn∈N
{
σ2
n

}
< ∞ and

therefore ∣∣Rn,1(ε)
∣∣ ≤ δ/3 ∀n ∈ N (1.5.28a)

if ε = ε(δ) is sufficiently small. It follows from the Lindeberg condition (iii) that∣∣Rn,2(ε)
∣∣ ≤ δ/3 ∀n ≥ N1, (1.5.28b)

for sufficiently large N1. We obtain from (1.5.24) that∣∣Rn,3

∣∣ ≤ δ/3 ∀n ≥ N2, (1.5.28c)

also for sufficiently large N2. Finally, it follows from (1.5.27) and (1.5.28a) to (1.5.28c)
that ∣∣ϕSn(t) − e−t

2σ2
n/2
∣∣ ≤ δ ∀n ≥ max

{
N1, N2

}
,

which completes the proof.
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Now we generalize the classical Lindeberg-Feller central limit theorem to the case of sums
of martingale differences.

Theorem 1.5.12. For n ∈ N, let Xn,1, . . . , Xn,kn be random variables on respective
probability spaces (Ωn,Fn, Pn). Let F (n)

k be σ-algebras (k = 0, 1, . . . , kn) such that

σ
(
Xn,1, . . . , Xn,k

)
⊆ F (n)

k ⊆ F (n)
k+1 ⊆ Fn.

Moreover, suppose that

(i) E
(
Xn,k

∣∣F (n)
k−1

)
= 0 Pn − a.s. ∀k = 1, . . . , kn,

(ii) for σ2
n,k := E

(
X2
n,k

∣∣F (n)
k−1

)
,

σ2
n :=

kn∑
k=1

σ2
n,k

P−→ σ2 <∞ (as n→∞),

(iii) for all ε > 0,

Ln(ε) :=
kn∑
k=1

E
(
X2
n,k 1

(∣∣Xn,k| > ε
)∣∣∣F (n)

k−1

)
P−→ 0.

Then
Sn := Xn,1 + · · · + Xn,kn

d−→ Z ∼ N(0, σ2).

Proof. We start out with some preparatory considerations. It follows from the condi-
tional Lindeberg condition (iii) that

σ2
n,k ≤ ε2 + E

(
X2
n,k 1

(∣∣Xn,k

∣∣ > ε
)∣∣F (n)

k−1

)
≤ ε2 + Ln(ε),

which implies that
max

1≤k≤kn

{
σ2
n,k

} P−→ 0. (1.5.29)

In order to make the transition from the not necessarily normally distributed random
variables Xn,1, . . . , Xn,kn to the Gaussian case we apply Lemma 1.5.9 to the conditional
distributions of the Xn,k and obtain the following estimate:

kn∑
k=1

∣∣∣E(eitXn,k − e−t
2σ2
n,k/2

∣∣∣F (n)
k−1

)∣∣∣
≤

kn∑
k=1

{
ε
|t|3 σ2

n,k

2
+ t2E

(
X2
n,k 1

(∣∣Xn,k| > ε
)∣∣∣F (n)

k−1

)
+
t4

8
max

1≤j≤kn

{
σ2
n,j

}
σ2
n,k

}
,

where ε > 0 is arbitrary. Using this we obtain from the conditional Lindeberg condition
(iii) and (1.5.29) that

kn∑
k=1

∣∣∣E(eitXn,k − e−t
2σ2
n,k/2

∣∣∣F (n)
k−1

)∣∣∣ P−→ 0.



67

Therefore, there exists a null sequence (εn)n∈N such that

P

(
kn∑
k=1

∣∣∣E(eitXn,k − e−t
2σ2
n,k/2

∣∣∣F (n)
k−1

)∣∣∣ > εn

)
≤ εn. (1.5.30)

Now we begin with the main part of the proof. We show that the characteristic func-
tion ϕSn of Sn converges to that of a normal distribution with zero mean and variance σ2.
Since the behavior of Sn is closely connected with the sum of the conditional variances
we split up∣∣ϕSn(t) − e−t

2σ2/2
∣∣ ≤ ∣∣EeitSn − Ee−t

2σ2
n/2
∣∣ +

∣∣E[e−t2σ2
n/2 − e−t2σ2/2

]∣∣. (1.5.31)

Since σ2
n

P−→ σ2 as n→∞ we obtain that∣∣E[e−t2σ2
n/2 − e−t2σ2/2

]∣∣ −→
n→∞

0. (1.5.32)

To estimate the first term on the right-hand side of (1.5.31), it is tempting to adapt an
approach often used for proving a central limit theorem for sums of independent random
variables. Here is a natural attempt:

E
[
eitSn − e−t

2σ2
n/2
]

= E
[ kn∏
k=1

eitXn,k −
kn∏
k=1

e−t
2σ2
n,k/2

]
=

kn∑
k=1

E
[
eit(Xn,1+···+Xn,k−1)

(
eitXn,k − e−t

2σ2
n,k/2

)
e−t

2(σ2
n,k+1+···+σ2

n,kn
)/2
]

=
kn∑
k=1

E
[
E
(
eit(Xn,1+···+Xn,k−1)

(
eitXn,k − e−t

2σ2
n,k/2

)
e−t

2(σ2
n,k+1+···+σ2

n,kn
)/2
∣∣∣F (n)

k−1

)]
=

kn∑
k=1

E
[
eit(Xn,1+···+Xn,k−1) E

((
eitXn,k − e−t

2σ2
n,k/2

)
e−t

2(σ2
n,k+1+···+σ2

n,kn
)/2
∣∣∣F (n)

k−1

)]
.

Now it seems that we have achieved what we want: The term eit(Xn,1+···+Xn,k−1) is
bounded in absolute value by 1. The term e−t

2(σ2
n,k+1+···+σ2

n,kn
)/2 is also bounded

by 1, and (1.5.30) provides a useful estimate for the sum of the remaining terms,∑kn
k=1

∣∣E(eitXn,k − e−t
2σ2
n,k/2

∣∣F (n)
k−1

)∣∣. Nevertheless, we are at a dead end here since the
term e−t

2(σ2
n,k+1+···+σ2

n,kn
)/2 cannot be taken out of the conditional expectation. To get out

of this deadlock we could multiply eitSn − e−t2σ2
n/2 by et2σ2

n/2, which leads to

E
[(
eitSn − e−t

2σ2
n/2
)
et

2σ2
n/2
]

= . . . =
kn∑
k=1

E
[
eit(Xn,1+···+Xn,k−1) E

((
eitXn,k − e−t

2σ2
n,k/2

)
et

2(σ2
n,1+···+σ2

n,k)/2
∣∣∣F (n)

k−1

)]
.

Now it follows from σ2
n,j = E

(
X2
n,j

∣∣F (n)
j−1

)
that et

2(σ2
n,1+···+σ2

n,k)/2 is F (n)
k−1-measurable.

Therefore, the term et
2(σ2

n,1+···+σ2
n,k)/2 can be taken out of the conditional expectation

and we can hope to make progress. There is, however, one more obstacle: Although
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we have et
2(σ2

n,1+···+σ2
n,k)/2 ≤ et

2σ2
n/2

P−→ et
2σ2/2, we cannot find an upper bound for the

expectation of et
2(σ2

n,1+···+σ2
n,k)/2. Therefore, we use a typical truncation argument and

define

X̃n,k :=

{
Xn,k if σ2

n,1 + · · ·+ σ2
n,k ≤ 2σ2 and

∑k
j=1

∣∣E(eitXn,j − e−t2σ2
n,j/2

∣∣F (n)
j−1

)∣∣ ≤ εn,

0 otherwise

and, accordingly,

σ̃2
n,k := E

(
X̃2
n,k

∣∣F (n)
k−1

)
= E

(
X2
n,k 1

(
σ2
n,1 + · · ·+ σ2

n,k ≤ 2σ2 and
k∑
j=1

∣∣E(eitXn,j − e−t2σ2
n,j/2

∣∣F (n)
j−1

)∣∣ ≤ εn

)∣∣∣F (n)
k−1

)
= 1(. . .) E

(
X2
n,k

∣∣F (n)
k−1

)
=

{
σ2
n,k if σ2

n,1 + · · ·+ σ2
n,k ≤ 2σ2 and

∑k
j=1

∣∣E(eitXn,j − e−t2σ2
n,j/2

∣∣F (n)
j−1

)∣∣ ≤ εn,

0 otherwise

Note that we still have

E
(
X̃n,k

∣∣F (n)
k−1

)
= E

(
Xn,k1(. . .)

∣∣F (n)
k−1

)
= 1(. . .)E

(
Xn,k

∣∣F (n)
k−1

)
= 0 P − a.s.

It follows from the above definitions that

σ̃2
n := σ̃2

n,1 + · · · + σ̃2
n,kn ≤ 2σ2 (1.5.33)

and
kn∑
k=1

∣∣∣E(eitX̃n,k − e−t2σ̃2
n,k/2

∣∣F (n)
k−1

)∣∣∣ ≤ εn. (1.5.34)

We obtain from (1.5.30) and P
(
σ2
n > 2σ2

)
−→
n→∞

0 that

P
(
Xn,k 6= X̃n,k for at least one k ≤ kn

)
−→
n→∞

0. (1.5.35)

We define
S̃n := X̃n,1 + · · · + X̃n,kn , σ̃2

n := σ̃2
n,1 + · · · + σ̃2

n,kn .

Now we are prepared to derive the missing upper estimate for the first term on the
right-hand side of (1.5.31). We have∣∣∣EeitSn − Ee−t

2σ2
n/2
∣∣∣

≤
∣∣∣EeitSn − EeitS̃n

∣∣∣ +
∣∣∣EeitS̃n − Ee−t

2σ̃2
n/2
∣∣∣ +

∣∣∣Ee−t2σ̃2
n/2 − Ee−t

2σ2
n/2
∣∣∣

=: Tn,1 + Tn,2 + Tn,3, (1.5.36)

say. It follows immediately from (1.5.35) that

Tn,1 ≤ 2P
(
Sn 6= S̃n

)
−→
n→∞

0 (1.5.37)

as well as
Tn,3 ≤ P

(
σ2
n 6= σ̃2

n

)
−→
n→∞

0. (1.5.38)
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It remains to derive an upper estimate for Tn,2. Using that

eitS̃n − e−t
2σ̃2
n/2 =

kn∏
k=1

eitX̃n,k −
kn∏
k=1

e−t
2σ̃2
n,k/2

=
kn∑
k=1

eit(X̃n,1+···+X̃n,k−1)
(
eitX̃n,k − e−t

2σ̃2
n,k/2

)
e−t

2(σ̃2
n,k+1+···+σ̃2

n,kn
)/2

we have∣∣∣E[(eitS̃n − e−t
2σ̃2
n/2
)
et

2σ̃2
n/2
]∣∣∣

≤
∣∣∣ kn∑
k=1

E
[
E
(
eit(X̃n,1+···+X̃n,k−1)︸ ︷︷ ︸

|...|≤1

(
eitX̃n,k − e−t

2σ̃2
n,k/2

)
et

2(σ̃2
n,1+···+σ̃2

n,k)/2︸ ︷︷ ︸
≤et2σ2 by (1.5.33)

∣∣F (n)
k−1

)]∣∣∣
≤ et

2σ2

E
[ n∑
k=1

∣∣E(eitX̃n,k − e−t
2σ̃2
n,k/2

∣∣F (n)
k−1

)∣∣
︸ ︷︷ ︸

≤εn by (1.5.34)

]

≤ et
2σ2

εn.

Therefore, we obtain that

Tn,2 =
∣∣∣E[eitS̃n − e−t

2σ̃2
n/2
]∣∣∣

=
∣∣∣E[e−t2σ̃2

n/2
(
eitS̃n − e−t

2σ̃2
n/2
)
et

2σ̃2
n/2
]∣∣∣

≤
∣∣∣e−t2σ2/2E

[(
eitS̃n − e−t

2σ̃2
n/2
)
et

2σ̃2
n/2
]︸ ︷︷ ︸

−→
n→∞

0

∣∣∣
+
∣∣∣E[ (e−t2σ̃2

n/2 − e−t
2σ2/2

)︸ ︷︷ ︸
P−→ 0

(
eitS̃n − e−t

2σ̃2
n/2
)︸ ︷︷ ︸

|...| ≤ 2

et
2σ̃2
n/2︸ ︷︷ ︸

≤ et2σ2

]∣∣∣
−→
n→∞

0. (1.5.39)

(1.5.36) to (1.5.39) yield that the first term on the right-hand side of (1.5.31) tends to
zero, which completes the proof.
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Exercise

Ex. 1.5.4 Let (εt)t∈Z ∼ IID(0, σ2), σ2 > 0, and Xt =
∑q

k=1 βkεt−k ((β1, . . . , βq)
T 6=

0q). Consider the following linear regression model with dependent explanatory
variables:

Yt = αXt + εt, t = 1, . . . , n

and let α̃n ∈ arg minα∈R
∑n

t=1

(
Yt−αXt

)2 be the least squares estimator of α, based
on (X1, Y1), . . . , (Xn, Yn).

(i) Show that

1

n

n∑
t=1

εt−kεt−l
a.s.−→ E[ε−kε−l] as n→∞ (k, l = 1, . . . , q)

and conclude that

1

n

n∑
t=1

X2
t

P−→ EX2
0 > 0 as n→∞.

(ii) Show that α̃n =
(∑n

t=1 X
2
t

)−1∑n
t=1 XtYt if

∑n
t=1 X

2
t > 0.

(iii) Show that
1√
n

n∑
t=1

Xtεt
d−→ Z0 ∼ N(0, v0)

and determine v0.
(Hint: Choose F (n)

t = σ(ε1−q, . . . , εt) and use Theorem 1.5.12.)

(iv) Show that
√
n
(
α̃n − α

) d−→ Z ∼ N(0, v)

and determine v.
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Parameter estimation for autoregressive processes

Let (Xt)t∈Z be a stationary autoregressive process satisfying

Xt = α1Xt−1 + · · · + αpXt−p + εt ∀t ∈ Z,

where (εt)t∈Z ∼ WN(0, σ2) and α(z) = 1 − α1z
1 − · · · − αpzp 6= 0 ∀z ∈ C, |z| ≤ 1. We

assume that realizations x1, . . . , xn of the random variables X1, . . . , Xn are observed. Our
aim is to find estimators of the coefficient vector α = (α1, . . . , αp)

T and the white noise
variance σ2. We will briefly consider two popular methods, the least squares method and
the method of moments which is based on a sample version of the Yule-Walker equations.

1) The least squares estimator

Based on X1, . . . , Xn, the least squares estimator of the vector α is given by

α̃n =
(
α̃n,1, . . . , α̃n,p

)T ∈ arg min
α∈Rp

n∑
t=p+1

(
Xt −

p∑
k=1

αkXt−k

)2

.

To simplify our presentation we prefer to use matrix/vector notation, i.e.

α̃n ∈ arg min
α

∥∥Y − Xα
∥∥2
, (1.5.40)

where

X =

 Xp+1−1 . . . Xp+1−p
... . . . ...

Xn−1 . . . Xn−p

 , Y =

 Xp+1
...
Xn

 ,

and ‖ · · · ‖ denotes the Euclidean norm on Rn−d. Recall that the projection theorem
(Theorem 1.3.6) guarantees that a solution to the optimization problem (1.5.40) exists.
Indeed, M := {Xb : b ∈ Rp} is a closed subspace of H = Rn−p and Xα̃n is therefore
the unique orthogonal projection of Y onto M. Part (ii) of Theorem 1.3.6 helps us to
identify a solution. Any solution α̃n has to satisfy

〈Y −Xα̃n, Xb〉︸ ︷︷ ︸
= bTXT (Y−Xα̃n)

= 0 ∀b ∈ Rp,

which is is equivalent to
XTY = XTXα̃n.

Hence, α̃n is a solution to the so-called normal equation. If XTX is regular, then

α̃n =
(
XTX

)−1
XTY

is the unique solution. Otherwise, there exist infinitely many solutions, although Xα̃n is
the same for all solutions α̃n.
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2) The Yule-Walker estimator

The Yule-Walker estimator is based on the relation between the parameters α1, . . . , αp
and σ2, and the covariances γ0, . . . , γp. This connection is expressed by the Yule-Walker
equations (1.5.19) and (1.5.20). If we replace the autocovariances by their corresponding
sample versions,

γ̂n(k) =
1

n

n−|k|∑
t=1

(Xt+|k| − X̄n)(Xt − X̄n),

we obtain the equations
γ̂(p)
n = Γ̂n,p α̂n (1.5.41)

and
γ̂n(0) = γ̂Tp α̂n + σ̂2

n, (1.5.42)

where γ̂(p)
n =

(
γ̂n(1), . . . , γ̂n(p)

)T , Γ̂n,p =
(
γ̂n(i − j)

)p
i,j=1

. α̂n =
(
α̂n,1, . . . , α̂n,p

)T and σ̂2
n

are the Yule-Walker estimators of α and σ2, respectively. Recall that the choice of
the factor of 1/n in the definition of γ̂n(k) ensures that γ̂n : Z → R is an even and
non-negative definite function; see Lemma 1.4.7. Theorem ?? yields then that γ̂n is the
autocovariance function of an appropriate stationary process. If γ̂n(0) > 0, it follows
from Lemma 1.5.9 that the matrix Γ̂n,p is regular. Therefore, equation (1.5.41) has a
unique solution. Furthermore, Theorem 1.5.8 shows that there exists a stationary AR(p)
process (Yt)t∈Z obeying

Yt = α̂n,1Yt−1 + · · · + α̂n,pYt−p + Zt,

where (Zt)t∈Z ∼ WN(0, σ̂2
n) and cov(Yt+k, Yt) = γ̂n(k), for k = 0, . . . , p. The case of

γ̂n(0) = 0 is of minor interest since we know that γ̂n(0) converges to γ(0) as n→∞ and
γ(0) means that Xt = 0 with probability one. Nonetheless, we mention that α̂n = 0Tp
and σ̂2

n = 0 is a trivial solution to (1.5.41) and (1.5.42) in the latter case.

It is easy to see that
(
α̂n
)
n∈N and

(
σ̂2
n

)
n∈N are consistent sequences of estimators

of α and σ2, respectively. Indeed, under the conditions of Lemma 1.4.11 we have that

E
[(
γ̂n(k) − γ(k)

)2] −→
n→∞

0,

which implies
γ̂n(k)

P−→ γ(k) ∀k ∈ Z.

Therefore, γ̂(p)
n

P−→ γp and, if Γp is regular, Γ̂−1
n,p

P−→ Γ−1
p . This implies that

α̂n = Γ̂−1
n,p γ̂

(p)
n

P−→ Γ−1
p γp = α

and
σ̂2
n = γ̂n(0) − α̂Tn γ̂

(p)
n

P−→ γ(0) − αTγp = σ2.
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In the following, we investigate the asymptotic behavior of the least squares esti-
mator α̃n, as the sample size n tends to infinity. We suppose that (Xt)t∈Z is a strictly
stationary AR(p) process,

Xt = α1Xt−1 + · · · + αpXt−p + εt ∀t ∈ Z,

where α(z) = 1−α1z
1−· · ·−αpzp 6= 0 ∀z ∈ C, |z| ≤ 1. In view of an application of the

central limit theorem for sums of martingale differences (Theorem 1.5.12) we tighten our
assumption on the sequence of innovations and assume that (εt)t∈Z ∼ IID(0, σ2

ε), σ2
ε > 0.

We further assume that realizations x1, . . . , xn of the random variables X1, . . . , Xn are
observed and we denote the least squares estimator based on these random variables
by α̃n. Since we are interested in an asymptotic result, we use the index n to indicate
the corresponding sample size Recall that α̃n is given by

α̃n ∈ arg min
α∈Rp

∥∥Y − Xα
∥∥2

where

Y =

 Xp+1
...
Xn

 , X =

 Xp+1−1 . . . Xp+1−p
... . . . ...

Xn−1 . . . Xn−p

 .

The next theorem shows that α̃n, properly normalized, is asymptotically normally dis-
tributed. Note that, if XTX is regular, then α̃n = (XTX)−1XTY and

√
n
(
α̃n − α

)
=
√
n
[(
XTX

)−1
XT
(
Xα + ε

)
− α

]
=
( 1

n
XTX

)−1 1√
n
XT ε,

where ε = (εp+1, . . . , εn)T .

Theorem 1.5.13. Suppose that the above conditions are fulfilled. Then,

(i) if γ denotes the autocovarianec function of (Xt)t∈Z,

1

n
XTX

P−→ Γp =

 γ(1− 1) . . . γ(1− p)
... . . . ...

γ(p− 1) . . . γ(p− p)

 ,

(ii) 1√
n
XT ε

d−→ Z0 ∼ N
(
0p, σ

2
ε Γp

)
,

(iii)
√
n
(
α̃n − α

) d−→ Z ∼ N
(
0p, σ

2
ε Γ−1

p

)
.

Proof. (i) We show that( 1

n
XTX

)
i,j

=
1

n

n∑
t=p+1

Xt−iXt−j
P−→
(
Γp
)
i,j

= γ(i− j). (1.5.43)

Recall that (Xt)t∈Z has a representation as a linear process,

Xt =
∞∑
k=0

βkεt−k,
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where
∑∞

k=0 |βk| <∞. Define

Xt,m :=
m∑
k=0

βkεt−k.

It follows from the strong law of large numbers that

1

n

n∑
t=p+1

Xt−i,mXt−j,m
a.s.−→ γ(m)(i− j) := E

[
Xt−i,mXt−j,m

]
. (1.5.44)

Indeed, we have that

1

n

n∑
t=p+1

Xt−i,mXt−j,m

=
1

n

n∑
t=p+1

m∑
k1,k2=0

βk1εt−i−k1 βk2εt−j−k2

=
m∑

k1,k2=0

βk1βk2
1

n

n∑
t=p+1

εt−i−k1εt−j−k2

=
m∑

k1,k2=0

βk1βk2

∆(k1,k2)∑
l=0

1

n

∑
s : p+1≤s(∆(k1,k2)+1)+l≤n

εs(∆(k1,k2)+1)+l−i−k1εs(∆(k1,k2)+1)+l−j−k2︸ ︷︷ ︸
a.s−→E[ε−i−k1ε−j−k2 ]/(∆(k1,k2)+1)

a.s.−→
m∑

k1,k2=0

βk1βk2E[ε−i−k1ε−j−k2 ] = E
[
Xt−i,mXt−j,m

]
,

where ∆(k1, k2) = |i + k1 − j − k2| is chosen such that the summands in the inner sum
on the fourth line of this display are independent. This allows us to apply the strong law
of large numbers which yields almost sure convergence. Furthermore, since

Xt−i,mXt−j,m − Xt−iXt−j

=
(
Xt−i,m − Xt−i

)
(Xt−j,m − Xt−j

)
+ Xt−i(Xt−j,m − Xt−j

)
+
(
Xt−i,m − Xt−i

)
Xt−j

we obtain by ‖Xt,m −Xt‖ −→
m→∞

0 that

E
∣∣Xt−i,mXt−j,m − Xt−iXt−j

∣∣
≤

√
E
(
Xt−i,m − Xt−i

)2
√
E
(
Xt−j,m − Xt−j

)2

+
√
EX2

t−i

√
E
(
Xt−j,m − Xt−j

)2

+

√
E
(
Xt−i,m − Xt−i

)2
√
EX2

t−j

−→
m→∞

0.

Therefore,

sup
n

{
E
∣∣∣ 1
n

n∑
t=p+1

Xt−i,mXt−j,m −
1

n

n∑
t=p+1

Xt−iXt−j

∣∣∣} −→
m→∞

0,
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which implies by Markov’s inequality that, for all n ≥ p+ 1 and arbitrary ε > 0,

P
(∣∣∣ 1
n

n∑
t=p+1

Xt−i,mXt−j,m −
1

n

n∑
t=p+1

Xt−iXt−j

∣∣∣ ≥ ε
)
≤ ε, (1.5.45)

if m is sufficiently large. Finally, again by ‖Xt,m −Xt‖ −→
m→∞

0, it follows from continuity
of the inner product that

γ(m)(i− j) −→
m→∞

γ(i− j). (1.5.46)

From (1.5.44) to (1.5.46) we obtain (1.5.43).

(ii) Let Zn = 1√
n
XT ε. By the Cramer-Wold device, the relation Zn

d−→ Z0 is equivalent
to

cTZn
d−→ cTZ0 ∼ N

(
0, σ2

ε c
TΓpc

)
∀c ∈ Rp. (1.5.47)

Let c ∈ Rp be arbitrary. We have that

cTZn =
n∑

t=p+1

1√
n

( p∑
i=1

ciXt−i

)
εt︸ ︷︷ ︸

=:Zn,t

.

We will show that the triangular array of random variables Zn,t (t = p + 1, . . . , n, n ≥
p + 1) satisfies the conditions of Theorem 1.5.12. Let F (n)

t := σ
(
εt, εt−1, . . .

)
. Since

Xt =
∑∞

k=0 βkεt−k we have that

σ
(
X1, . . . , Xt−1

)
⊆ F (n)

t−1.

This implies that

E
(
Zn,t

∣∣F (n)
t−1

)
= E

( 1√
n

( p∑
i=1

ciXt−i

)
εt

∣∣∣F (n)
t−1

)
=

1√
n

( p∑
i=1

ciXt−i

)
E
(
εt
∣∣F (n)

t−1

)︸ ︷︷ ︸
=Eεt = 0 a.s.

= 0 a.s.

and, analogously,

E
(
Z2
n,t

∣∣F (n)
t−1

)
=

1

n

( p∑
i=1

ciXt−i

)2

E
(
ε2
t

∣∣F (n)
t−1

)︸ ︷︷ ︸
=E[ε2t ] =σ2

ε a.s.

=
1

n

( p∑
i=1

ciXt−i

)2

σ2
ε a.s.

The latter equation implies in conjunction with (i) that

n∑
t=p+1

E
(
Z2
n,t

∣∣F (n)
t−1

)
=

σ2
ε

n
cTXTXc

P−→ σ2
ε c

TΓpc.

It remains to check the (conditional) Lindeberg condition, that is, for all ε > 0,

Ln(ε) =
n∑

t=p+1

E
(
Z2
n,t1(|Zn,t| > ε)

∣∣∣F (n)
t−1

)
P−→ 0. (1.5.48)
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We will actually show that E
[
Ln(ε)

]
−→
n→∞

0, which yields (1.5.48) by Markov’s inequality.
We have that

E
(
Z2
n,t1(|Zn,t| > ε)

∣∣F (n)
t−1

)
=

1

n

(
c1Xt−1 + · · · + cpXt−p

)2
E
(
ε2
t1

( |c1Xt−1 + · · ·+ cpXt−p| |εt|√
n

> ε
)∣∣∣F (n)

t−1

)
.

Therefore, by strict stationarity and dominated convergence,

E
[
Ln(ε)

]
=

n− p
n

E
[(
c1Xp + · · ·+ cpX1

)2
ε2
p+1 1

(
|c1Xp+· · ·+cpX1| |εp+1| >

√
n ε
)]
−→
n→∞

0.

Indeed, a dominating integrable random variable exists since

E
[(
c1Xp + · · · + cpX1

)2
ε2
p+1

]
= E

[
E
((
c1Xp + · · · + cpX1

)2
ε2
p+1

∣∣∣F (n)
p

)]
= E

[(
c1Xp + · · · + cpX1

)2
E
(
ε2
p+1

∣∣F (n)
p

)︸ ︷︷ ︸
=σ2

ε a.s.

]
= σ2

ε E
[(
c1Xp + · · · + cpX1

)2
]
< ∞.

To summarize, the conditions of Theorem 1.5.12 are fulfilled by the triangular array
of random variables Zn,t (t = p+1, . . . , n, n ≥ p+1) and we obtain that (1.5.47) holds true.

(iii) We split up

√
n
(
α̃n − α

)
= Γ−1

p

1√
n
XT ε +

{√
n(α̃n − α) − Γ−1

p

1√
n
XT ε

}
= Γ−1

p

1√
n
XT ε

+
[( 1

n
XTX

)−1

− Γ−1
p

] 1√
n
XT ε 1

(
XTX regular

)
+
[√

n(α̃n − α) − Γ−1
p

1√
n
XT ε

]
1
(
XTX singular

)
= Γ−1

p Zn + Rn,1 + Rn,2,

say. It follows from (ii) that

Γ−1
p Zn

d−→ Z ∼ N
(
0p, σ

2
εΓ
−1
p

)
.

From
∥∥(n−1XTX)−1 − Γ−1

p

∥∥1(XTX regular
) P−→ 0 and n−1/2XT ε

d−→ Z0 we conclude∥∥Rn,1

∥∥ P−→ 0.

Finally, it follows from P
(
XTX singular

)
−→
n→∞

0 that

∥∥Rn,2

∥∥ P−→ 0.

This completes the proof of (iii).
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Based on the asymptotic result for the least squares estimator α̃n, we can also show
asymptotic normality of the Yule-Walker estimator α̂n. Suppose that the conditions
of Theorem 1.5.13 are fulfilled. We have in particular that (εt)t∈Z ∼ IID(0, σ2

ε), where
σ2
ε > 0. This implies that EXt = 0 which allows us to use the following estimator of γ(k):

γ̂n(k) =
1

n

n−|k|∑
t=1

Xt+|k|Xt,

i.e., there is no need to center by X̄n. The least squares estimator has the explicit form

α̃n = Γ̃−1
n,p γ̃

(p)
n , (1.5.49)

where

Γ̃n,p =
1

n
XTX =

(( 1

n

n∑
t=p+1

Xt−iXt−j

))
i,j=1,...,p

,

γ̃(p)
n =

1

n
XTY =

( 1

n

n∑
t=p+1

Xt−1Xt, . . . ,
1

n

n∑
t=p+1

Xt−pXt

)T
,

provided the matrix Γ̃n,p is regular. We have a (very) similar representation of the Yule-
Walker estimator:

α̂n = Γ̂−1
n,p γ̂

(p)
n , (1.5.50)

where

Γ̂n,p =
((
γ̂n(i− j)

))
i,j=1,...,p

=
(( 1

n

n∑
t=max{i,j}+1

Xt−iXt−j

))
i,j=1,...,p

,

γ̂(p)
n =

(
γ̂n(1), . . . , γ̂n(p)

)T
=
( 1

n

n∑
t=2

Xt−1Xt, . . . ,
1

n

n∑
t=p+1

Xt−pXt

)T
,

provided the matrix Γ̂n,p is regular. We will see that the difference between α̂n and α̃n
is of smaller order than the critical 1/

√
n. Such rates for the convergence of sequences

of random variables are most conveniently expressed by the stochastic Landau sym-
bol OP . For a sequence (Yn)n∈N of random variables and a sequence (rn)n∈N of positive
reals we write

Yn = OP

(
rn
)

if (Yn/rn)n∈N is bounded in probability, i.e., for all ε > 0 there exists some M(ε) <∞
such that

P
(
|Yn/rn| > M(ε)

)
≤ ε.

Note that E|Yn| = O
(
rn
)
implies by Markov’s inequality that Yn = OP

(
rn
)
. Hence, it

follows from
E
∣∣γ̂n(k) − γ̃n(k)

∣∣ = O
(
1/n
)

that ∥∥γ̂(p)
n − γ̃(p)

n

∥∥ = OP

(
1/n
)
.

Likewise we obtain that ∥∥Γ̂n,p − Γ̃n,p
∥∥ = OP

(
1/n
)
.
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Since Γ̃n,p
P−→ Γp and Γp is regular we see that Γ̃n,p and Γ̂n,p are also regular with a

probability tending to 1 as n→∞. Let An denote the event that both Γ̃n,p and Γ̂n,p are
regular. We obtain from Γ̂−1

n,p − Γ̃−1
n,p = Γ̂−1

n,p

(
Γ̃n,p − Γ̂n,p

)
Γ̃−1
n,p that∥∥Γ̂−1

n,p − Γ̃−1
n,p

∥∥1An ≤ ∥∥Γ̂−1
n,p

∥∥︸ ︷︷ ︸
=OP (1)

∥∥∥Γ̃n,p − Γ̂n,p

∥∥∥︸ ︷︷ ︸
=OP (1/n)

∥∥Γ̃−1
n,p‖︸ ︷︷ ︸

=OP (1)

1An = OP

(
1/n
)
.

This implies that(
α̂n − α̃n

)
1An =

(
Γ̂−1
n,pγ̂

(p)
n − Γ̃−1

n,pγ̃
(p)
n

)
1An

= Γ̂−1
n,p︸︷︷︸

=OP (1)

(
γ̂(p)
n − γ̃(p)

n

)︸ ︷︷ ︸
=OP (1/n))

1An +
(

Γ̂−1
n,p − Γ̃−1

n,p

)
︸ ︷︷ ︸

=OP (1/n)

γ̃(p)
n︸︷︷︸

=OP (1)

1An

= OP

(
1/n
)

and therefore
√
n
(
α̂n − α

)
=
√
n
(
α̃n − α

)
+ OP

(
1/
√
n
) d−→ Z ∼ N(0, σ2

ε Γ−1
p ).

Exercise

Ex. 1.5.5 Let (Yn)n∈Z and (Zn)n∈Z be sequences of random variables and (rn)n∈N and
(sn)n∈N be sequences of positive real numbers such that

Yn = OP

(
rn
)

and Zn = OP

(
sn
)
.

Show that

(i) Yn + Zn = OP

(
max{rn, sn}

)
,

(ii) YnZn = OP

(
rnsn

)
.
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At the end of this section, we briefly consider the case of autoregressive moving average
(ARMA) processes. We recall the definition: A process (Xt)t∈Z is said to be an autore-
gressive moving average process of order p, q (ARMA(p, q) process) if for every t ∈ Z

Xt − α1Xt−1 − · · · − αpXt−p = εt + β1εt−1 + · · · + βqεt−q. (1.5.51)

Here and in the following we assume that (εt)t∈Z ∼WN(0, σ2). Using the backward shift
operator B we can rewrite (1.5.51) as

α(B)Xt = β(B)εt, ∀t ∈ Z,

where

α(B) = B0 − α1B
1 − · · · − αpB

p,

β(B) = B0 + β1B
1 + · · · + βqB

q.

As already done for the special case of autoregressive processes, we want to find sufficient
conditions for the existence and uniqueness of a stationary solution to (1.5.51). An
immediate answer to these questions is provided by Theorem 1.5.4. We can rewrite
(1.5.51) as

Xt − α1Xt−1 − · · · − αpXt−p = ε̃t ∀t ∈ Z,

where ε̃t := εt + β1εt−1 + · · · + βpεt−q. Since (εt)t∈Z is weakly stationary, the process
(ε̃t)t∈Z is weakly stationary as well. Therefore, it follows from Theorem 1.5.4 that the
condition

α(z) = 1 − α1z
1 − · · · − αpz

p 6= 0 ∀z ∈ C, |z| ≤ 1

implies that there exists a unique stationary solution (X̃t)t∈Z to (1.5.51), where

X̃t =
∞∑
k=0

γ̃kε̃t−k.

The sequence (γ̃k)k∈N0 is determined by the power series expansion of 1/α(z), i.e.

∞∑
k=0

γ̃kz
k =

1

α(z)
∀z ∈ C, |z| ≤ 1;

see also Lemma 1.5.3. Since the coefficients γ̃k are absolutely summable we obtain that

X̃t =
∞∑
k=0

γ̃k
(
εt−k + β1εt−k−1 + · · · + βqεt−k−q

)
=

∞∑
k=0

(
γ̃k + γ̃k−1β1 + · · · + γ̃k−qβq

)︸ ︷︷ ︸
=: γk

εt−k

= β(B) γ̃(B) εt.

(On the second line of this display we set γ̃k = 0, for k < 0.)
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If the polynomials α(·) and β(·) have common roots, then the condition of α(z) 6= 0
∀z ∈ C, |z| ≤ 1 can be (slightly) relaxed:

Theorem 1.5.14. Suppose that the polynomials α(z) = 1−α1z
1−· · ·−αpzp and β(z) =

1 + β1z
1 + · · ·+ βqz

q can be represented as

α(z) = ξ(z)α0(z) and β(z) = ξ(z) β0(z)

and that
α0(z) 6= 0 ∀z ∈ C, |z| ≤ 1.

(i) There exists an absolutely summable sequence (γk)k∈Z such that

γ(z) =
∞∑
k=0

γkz
k =

β0(z)

α0(z)
∀z ∈ C, |z| ≤ 1. (1.5.52)

(ii) If (εt)t∈Z is a weakly stationary process, then there exists a causal stationary solution
(X̃t)t∈Z to (1.5.51) such that

X̃t =
∞∑
k=0

γkεt−k.

If α(z) 6= 0 ∀z ∈ C, |z| ≤ 1, then (X̃t)t∈Z is the unique stationary solution.

Proof. (i) It follows from Lemma 1.5.3 that there exists an absolutely summable se-
quence (γ̃k)k∈N0 such that

γ̃(z) =
∞∑
k=0

γ̃kz
k =

1

α0(z)
∀z ∈ C, |z| ≤ 1.

The polynomial β0(·) can be written as β00 + β01z
1 + · · · + β0lz

l, for some l ≤ q. Let
γk = γ̃kβ00 + γ̃k−1β01 + · · · + γ̃k−qβ0l (γ̃k = 0, for k < 0). Then the sequence (γk)k∈N0 is
also absolutely summable and a comparison of coefficients reveals that

γ(z) =
∞∑
k=0

γkz
k = γ̃(z) β0(z) =

β0(z)

α0(z)
∀z ∈ C, |z| ≤ 1.

(ii) Note that γ̃(B)εt =
∑∞

k=0 γ̃kεt−k converges absolutely with probability one. Since
X̃t =

∑∞
k=0 γkεt−k = β0(B)γ̃(B)εt we obtain that

α0(B)X̃t = α0(B)β0(B)γ̃(B)εt

= β0(B)α0(B)γ̃(B)︸ ︷︷ ︸
=B0

εt = β0(B)εt

and therefore
ξ(B)α0(B)︸ ︷︷ ︸

=α(B)

X̃t = ξ(B)β0(B)︸ ︷︷ ︸
=β(B)

εt.
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Hence, (X̃t)t∈Z is a causal stationary solution to (1.5.51).

Assume now that α(z) 6= 0 ∀z ∈ C, |z| ≤ 1 and that (Xt)t∈Z is an arbitrary stationary
solution to (1.5.51). Then

α(B)X̃t = β(B)εt =: ε̃t

and
α(B)Xt = β(B)εt = ε̃t.

It follows from Theorem 1.5.4(ii), applied to the innovation sequence (ε̃t)t∈Z, that

P
(
Xt = X̃t

)
= 1.

Remark 1.5.15. If at least one of the common zeroes of α(·) and β(·) lies on the unit
circle, then the ARMA equations may have more than one stationary solution.

Example:
Suppose that α(1) = β(1) = 0. Then

α(z) =
(
1 − z

)
α0(z) and β(z) =

(
1 − z

)
β0(z).

Assume in addition that α0(z) 6= 0 ∀z ∈ C, |z| ≤ 1 and that (εt)t∈Z ∼WN(0, σ2). Then,
a causal stationary solution (X̃t)t∈Z to (1.5.51) is given by

X̃t =
∞∑
k=0

γkεt−k,

where γ(z) = β0(z)/α0(z). Let Z be an arbitrary random variable. Then, for Xt :=

X̃t + Z,
α(B)Xt = α(B)X̃t + α0(B)

(
B0 − B1

)
Z︸ ︷︷ ︸

≡ 0

= β(B)εt,

i.e. (Xt)t∈Z is also a solution to (1.5.51). If Z is independent of (X̃t)t∈Z, EZ2 < ∞,
then (Xt)t∈Z is also weakly stationary.

Exercise

Ex. 1.5.6 Let (εt)t∈Z ∼WN(0, σ2) and let (X̃t)t∈Z be a causal stationary solution to

Xt − αXt−1 = εt + βεt−1 ∀t ∈ Z,

where |α| < 1.

Determine the coefficients γk such that X̃t =
∑∞

k=0 γkεk. How do these coefficients
look like if β = −α?
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1.6 GARCH processes

As we have seen so far, ARMA processes are used to model the conditional mean given
the past. However, within this class of models, the conditional variance given the past
is constant. In contrast, financial time series (stock returns etc.) can often be modeled
with white noise processes but with conditional variances that depend on past values of
the process. In particular, it is frequently observed that periods with large conditional
variances (“high volatility”) alternate with periods with small conditional variances (“low
volatility”). In 1982 the American economist and statistician Robert F. Engle intro-
duced so-called ARCH processes, where ARCH is an acronym meaning AutoRegressive
Conditional Heteroskedasticity. Four years later, the Danish economist Tim Bollerslev,
who was at that time a PhD student of Engle, generalized this approach and introduced
GARCH (Generalized ARCH) processes. These models became quite popular in finan-
cial mathematics. In 2003 Robert F. Engle was awarded the (shared) Bank of Sweden
Prize in Economic Sciences in Memory of Alfred Nobel, commonly termed Nobel Prize,
“for methods of analyzing time series with time-varying volatility (ARCH)”.

There are many types of GARCH processes. In this course, we restrain ourselves to
linear GARCH processes which are still the most popular ones and may also be viewed
as the GARCH processes. Here is a possible definition of this class of models:

Definition. A process (Xt)t∈Z on a probability space (Ω,F , P ) is called GARCH pro-
cess of order p and q (GARCH(p,q)) if

Xt = σt εt ∀t ∈ Z (1.6.1a)

and

σ2
t = α + φ1σ

2
t−1 + · · · + φpσ

2
t−p + θ1X

2
t−1 + · · · + θqX

2
t−q ∀t ∈ Z, (1.6.1b)

where α > 0, φ1, . . . , φp, θ1, . . . , θq ≥ 0 and (εt)t∈Z ∼ IID(0, 1).
If the coefficients φ1, . . . , φp all vanish, then (Xt)t∈Z is an ARCH process of order q

(ARCH(q)=GARCH(0,q)).

At this point we can already conjecture why GARCH processes are quite popular in
financial mathematics. Let Pt be the price of a financial asset (such as a stock) at day t.
Then the return Xt of “buying yesterday and selling today” is given by

Xt =
Pt − Pt−1

Pt−1

.

Financial data show that, to a good approximation,

E
(
Xt | “past”

)
= 0.

On the other hand, the market becomes volatile whenever big news comes (e.g. unex-
pected quarter results or a profit warning), and it takes several periods for the market
to fully digest the news. This feature is obviously captured by a GARCH model: The
conditional variance of Xt given the past is equal to σ2

t , which does depend on past
values of both the squared return process (X2

t )t∈Z and the process (σ2
t )t∈Z. Since the

coefficients φ1, . . . , φp, θ1, . . . , θq are non-negative we see from (1.6.1b) that large values
of σ2

t−1, . . . , σ
2
t−p and X2

t−1, . . . , X
2
t−q are followed by a large value of σ2

t . This effect is also
called volatility clustering in financial mathematics.
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As in the case of ARMA processes, the random variables Xt appear both on the
left- and the right-hand sides of the model equations (1.6.1a) and (1.6.1b). Although the
underlying innovation process (εt)t∈Z is assumed to be strictly stationary, it is not obvious
if there exists, for a given process (εt)t∈Z, a stationary solution to these equations. We
will see that a sufficient condition for the existence and uniqueness of a strictly stationary
solution is given by

φ1 + · · ·+ φp + θ1 + · · ·+ θq < 1. (1.6.2)

First we intend to guess a possible solution
(
(X̃t, σ̃t)

)
t∈Z. Let (εt)t∈Z be a given sequence

of innovations and suppose that (1.6.2) is fulfilled. Let, for simplicity of notation, p = q.
(Otherwise, we set φp+1 = . . . = φq := 0 if p < q or θq+1 = . . . = θp := 0 if q < p.) If
there exists a (stationary or non-stationary) solution

(
(Xt, σt)

)
t∈Z at all, then it follows

from (1.6.1a) and (1.6.1b) that

σ2
t = α +

p∑
k=1

(
φkσ

2
t−k + θk X2

t−k︸︷︷︸
= ε2t−kσ

2
t−k

)

= α +

p∑
k=1

(
φk + θkε

2
t−k
)

σ2
t−k︸︷︷︸

=α+
∑p
j=1(φj+θjε2t−k−j)σ

2
t−k−j

= α
{

1 +
(
φ1 + θ1ε

2
t−1

)
+ · · · +

(
φp + θpε

2
t−p
)

+
(
φ1 + θ1ε

2
t−1

)(
φ1 + θ1ε

2
t−1−1

)
+ · · ·

}
.

In view of this, a reasonable guess for a possible solution to (1.6.1a) and (1.6.1b) is given
by

σ̃2
t := α

{
1 +

∞∑
r=1

p∑
k1,...,kr=1

(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−k2−···−kr

)}
(1.6.3a)

and
X̃t := σ̃tεt. (1.6.3b)

The next theorem shows that
(
(X̃t, σ̃t)

)
t∈Z actually solves our system of model equations.

Theorem 1.6.1. Suppose that φ1+· · ·+φp+θ1+· · ·+θq < 1 and that
(
εt
)
t∈Z ∼ IID(0, 1).

Then the system of equations (1.6.1a) and (1.6.1b) has a unique strictly stationary solu-
tion

(
(X̃t, σ̃t)

)
t∈Z which is given by (1.6.3a) and (1.6.3b).

Proof. First of all, we show that the infinite series on the right-hand side of (1.6.3a)
converges with probability 1. Since

E
[(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−k2−···−kr

)]
= E

[
E
((
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−k2−···−kr

)∣∣∣εt−k1−1, εt−k1−2, . . .
)]

= E
[(
φk2 + θk2ε

2
t−k1−k2

)
· · ·
(
φkr + θkrε

2
t−k1−k2−···−kr

)
×

×E
((
φk1 + θk1ε

2
t−k1

)∣∣∣εt−k1−1, εt−k1−2, . . .
)

︸ ︷︷ ︸
=E[φk1+θk1ε

2
t−k1

] =φk1+θk1

]

= . . . =
(
φk1 + θk1

)
· · ·
(
φkr + θkr

)
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we obtain

E

[
1 +

∞∑
r=1

p∑
k1,...,kr=1

(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−k2−···−kr

)]

= 1 +
∞∑
r=1

p∑
k1,...,kr=1

E
[(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−k2−···−kr

)]
= 1 +

∞∑
r=1

p∑
k1,...,kr=1

(
φk1 + θk1

)
· · ·
(
φkr + θkr

)
= 1 +

∞∑
r=1

((
φ1 + θ1

)
+ · · · +

(
φp + θp

))r
=

1

1 − (φ1 + · · ·+ φp + θ1 + · · · θq)
< ∞.

Hence, the infinite series on the right-hand side of (1.6.3a) converges with probability 1.
Next we show strict stationarity of the process

(
(X̃t, σ̃t)

)
t∈Z. To this end, we first

consider the truncated versions,

σ̃2
t,m = α

{
1 +

m∑
r=1

p∑
k1,...,kr=1

(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−k2−···−kr

)}

and
X̃t,m = σ̃t,mεt.

Then σ̃2
t,m = gm

(
εt−1, . . . , εt−mp

)
and X̃t,m = hm

(
εt−1, . . . , εt−mp

)
, for suitable functions

hm : Rmp → [0,∞) and gm : Rmp+1 → R. Since the underlying process (εt)t∈Z is strictly
stationary we obtain that

P (X̃t1,m,σ̃t1,m),...,(X̃tk,m,σ̃tk,m) = P (X̃t+t1,m,σ̃t+t1,m),...,(X̃t+tk,m,σ̃t+tk,m) ∀t, t1, . . . , tk ∈ Z, ∀k ∈ N,

i.e. the finite-dimensional distributions of
(
(X̃t,m, σ̃t,m)

)
t∈Z are shift-invariant. Since

σ̃t,m
a.s.−→ σ̃t and X̃t,m

a.s.−→ X̃t we conclude that the finite-dimensional distributions of the
process

(
(X̃t, σ̃t)

)
t∈Z are shift-invariant as well which means that this process is strictly

stationary.
We can easily see that

(
σ̃2
t

)
t∈Z solves the system of equations (1.6.1b). Indeed, we

have that

α +

p∑
k=1

φkσ̃
2
t−k + θkX̃

2
t−k

= α +

p∑
k=1

(
φk + θkε

2
t−k
)
σ̃2
t−k

= α +

p∑
k=1

(
φk + θkε

2
t−k
)
α
{

1 +
∞∑
r=1

p∑
k1,...,kr=1

(
φk1 + θk1ε

2
t−k−k1

)
· · ·
(
φkr + θkrε

2
t−k−k1−···−kr

)}
= α

{
1 +

∞∑
r=1

p∑
k1,...,kr=1

(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−···−kr

)}
= σ̃2

t .
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Uniqueness of the strictly stationary solution can be most easily seen in the special
case of a GARCH(1,1) process. Let

(
(X̂t, σ̂t)

)
t∈Z be any arbitrary strictly stationary

solution to (1.6.1a) and (1.6.1b). Using the model equation we obtain

σ̃2
t = α +

(
φ1 + θ1ε

2
t−1

)
σ̃2
t−1︸︷︷︸

=α+
(
φ1+θ1εt−2

)
σ̃2
t−2

= . . . = α

{
1 +

(
φ1 + θ1ε

2
t−1

)
+ · · · +

(
φ1 + θ1ε

2
t−1

)
· · ·
(
φ1 + θ1ε

2
t−m
)}

+
(
φ1 + θ1ε

2
t−1

)
· · ·
(
φ1 + θ1ε

2
t−m−1

)
σ̃2
t−m−1

and, analogously,

σ̂2
t = α

{
1 +

(
φ1 + θ1ε

2
t−1

)
+ · · · +

(
φ1 + θ1ε

2
t−1

)
· · ·
(
φ1 + θ1ε

2
t−m
)}

+
(
φ1 + θ1ε

2
t−1

)
· · ·
(
φ1 + θ1ε

2
t−m−1

)
σ̂2
t−m−1.

Therefore,∣∣σ̂2
t − σ̃2

t

∣∣ =
(
φ1 + θ1ε

2
t−1

)
· · ·
(
φ1 + θ1ε

2
t−m−1

)∣∣σ̂2
t−m−1 − σ̃2

t−m−1

∣∣. (1.6.4)

Since
(
φ1 + θ1ε

2
t−1

)
· · ·
(
φ1 + θ1ε

2
t−m−1

) P−→ 0 and since
(
σ̃2
t

)
t∈Z and

(
σ̂2
t

)
t∈Z are both

sequences of identically distributed random variables we conclude that the right-hand
side of (1.6.4) converges in probability to 0 as m→∞. This, however, implies that

P
(
σ̂2
t 6= σ̃2

t

)
= 0

and
P
(
X̂2
t 6= X̃2

t

)
= P

(
σ̂2
t ε

2
t 6= σ̃2

t ε
2
t

)
= 0.

The proof of uniqueness in the general case is similar but the corresponding calcula-
tions are more cumbersome. Applying again the model equations (1.6.1a) and (1.6.1b)
to σ̃2

t we replace successively the terms σ̃2
t−j on the right-hand side and we stop replacing

when some of the factors (φ1 + θ1ε
2
t−m−1)σ̃2

t−m−1, . . . , (φp + θpε
2
t−m−p)σ̃

2
t−m−p pop up. We

obtain, for m ∈ N,

σ̃2
t = α +

p∑
k=1

(
φk + θkε

2
t−k
)

σ̃2
t−k︸︷︷︸

=α+
∑p
j=1(φj+θjε2t−j)σ̃

2
t−k−j

= α

{
1 +

m∑
r=1

∑
(k1,...,kr) : k1+···+kr≤m

(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−···−kr

)}

+

p∑
j=1

m+j∑
r=1

∑
(k1,...,kr) : k1+···+kr=m+j

(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−···−kr

)
σ̃2
t−m−j

and, analogously,

σ̂2
t = α

{
1 +

m∑
r=1

∑
(k1,...,kr) : k1+···+kr≤m

(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−···−kr

)}

+

p∑
j=1

m+j∑
r=1

∑
(k1,...,kr) : k1+···+kr=m+j

(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−···−kr

)
σ̂2
t−m−j.
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This implies that∣∣σ̂2
t − σ̃2

t

∣∣
≤

p∑
j=1

m+j∑
r=1

∑
(k1,...,kr) : k1+···+kr=m+j

(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−···−kr

)∣∣σ̂2
t−m−j − σ̃2

t−m−j
∣∣.

Since
∑p

j=1

∑m+j
r=1

∑
(k1,...,kr) : k1+···+kr=m+j

(
φk1 + θk1ε

2
t−k1

)
· · ·
(
φkr + θkrε

2
t−k1−···−kr

) P−→ 0

as m → ∞ and since
(
σ̃2
t

)
t∈Z and

(
σ̂2
t

)
t∈Z are both sequences of identically distributed

random variables we conclude that the right-hand side of the above display converges in
probability to 0 as m→∞. Therefore we can obtain as above that

P
(
σ̂2
t 6= σ̃2

t

)
= 0

and
P
(
X̂2
t 6= X̃2

t

)
= P

(
σ̂2
t ε

2
t 6= σ̃2

t ε
2
t

)
= 0.

Exercise

Ex. 1.14 Suppose that (εt)t∈Z ∼ IID(0, σ2) and let

σ̃2
t = α

{
1 +

∞∑
k=1

θk ε2
t−1 · · · ε2

t−k

}
,

X̃t = σ̃tεt

be such that
(
(X̃t, σ̃t)

)
t∈Z is the unique strictly stationary solution to

Xt = σtεt, σ2
t = α + θX2

t−1 ∀t ∈ Z,

where θ ∈ [0, 1).

(i) Compute E
[
σ̃2
t ].

(ii) Compute EX̃t, var
(
X̃2
t

)
, and cov(X̃t+k, X̃t) for k ≥ 1.

(iii) Suppose additionally that E
[
ε4
t

]
:= κ <∞ and compute E

[
σ̃4
t ] and E

[
X̃4
t

]
.
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2 Spectral analysis of stationary processes

2.1 Spectral density, spectral distribution function, spectral
measure

We suppose that X = (Xt)t∈Z is a weakly stationary process with autocovariance function
γX , i.e. γX(k) = cov(Xt+k, Xt). For the time being we assume that

∞∑
k=−∞

∣∣γX(k)
∣∣ < ∞.

The function fX : [−π, π] −→ R with

fX(λ) :=
1

2π

∞∑
k=−∞

γX(k)e−ikλ =
1

2π

∞∑
k=−∞

γX(k) cos(kλ)

is called the spectral density of the process X. Because it is periodic with period 2π
it suffices to consider it on an interval of length 2π, which we shall take to be [−π, π].
In the present context the values λ in this interval are often referred to frequencies, for
reasons that become clear in what follows.

Before we proceed, we consider a few examples. We suppose that (εt)t∈Z ∼WN(0, σ2
ε),

i.e., (εt)t∈Z is weakly stationary, Eεt = 0, var(εt) = σ2
ε , and cov(εt+k, εt) = 0 if k 6= 0.

1) White noise

Since γε(0) = σ2
ε and γε(k) = 0 if k 6= 0 we obtain that

fε(λ) =
σ2
ε

2π
∀λ ∈ [−π, π].

2) Linear processes

Suppose that (εt)t∈Z is a stationary process with an absolutely summable autocovariance
function γε and a spectral density fε. Let Xt =

∑∞
k=−∞ βkεt−k, where

∑∞
k=−∞ |βk| <∞.

Then the process (Xt)t∈Z is also stationary and has a spectral density fX , where

fX(λ) =
∣∣∣ ∞∑
k=−∞

βke
−ikλ

∣∣∣2 fε(λ) ∀λ ∈ [−π, π]. (2.1.1)

To see this, note that it follows from Proposition 1.4.3 that (Xt)t∈Z has an absolutely
summable autocovariance function γX , where

γX(h) =
∞∑

j,k=−∞

βjβkγε(h− j + k) ∀h ∈ Z

Hence, (Xt)t∈Z has a spectral density fX which is given by

fX(λ) =
1

2π

∞∑
h=−∞

γX(h) e−ihλ

=
1

2π

∞∑
h=−∞

∞∑
j,k=−∞

βjβkγε(h− j + k) e−ihλ.
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Since
∑

h,j,k |βj||βk||γε(h− j + k)| =
(∑

j |βj|
)2∑

h |γε(h)| <∞ we can change the order
of summation and we obtain that

fX(λ) =
1

2π

∞∑
h=−∞

∞∑
j,k=−∞

βje
−ijλ βke

ikλ γε(h− j + k) e−i(h−j+k)λ

=
∣∣∣ ∞∑
k=−∞

βke
−ikλ

∣∣∣2 ∞∑
h=−∞

γε(h)e−ihλ︸ ︷︷ ︸
= fε(λ)

.

We can use (2.1.1) for deriving the spectral densities of stationary ARMA processes.
Suppose now that (εt)t∈Z ∼WN(0, σ2

ε).

3a) MA(q) processes

Let
Xt = εt + β1εt−1 + · · · + βqεt−q ∀t ∈ Z.

It follows from Example 1) and (2.1.1) that

fX(λ) =
σ2
ε

2π

∣∣1 + β1e
−iλ + · · · + βqe

−iqλ∣∣2 ∀λ ∈ [−π, π].

3b) AR(p) processes

Suppose that α(z) = 1− α1z − · · · − αpzp 6= 0 ∀z ∈ C, |z| ≤ 1. Let (Xt)t∈Z with

Xt =
∞∑
k=0

βkεt−k ∀t ∈ Z

be the unique stationary solution to

Xt = α1Xt−1 + · · · + αpXt−p + εt ∀t ∈ Z.

According to Lemma 1.5.3 and Theorem 1.5.4, the βk are absolutely summable and we
obtain from (2.1.1) that

fX(λ) =
σ2
ε

2π

∣∣∣ ∞∑
k=0

βke
−ikλ

∣∣∣2 ∀λ ∈ [−π, π].

Since
∑∞

k=0 βkz
k = 1/α(z) for all z ∈ C such that |z| ≤ 1 and since |e−iλ| = 1 we can

rewrite fX(λ) as

fX(λ) =
σ2
ε

2π

1∣∣1 − α1e−iλ − · · · − αpe−ipλ
∣∣2 ∀λ ∈ (−π, π].
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Some properties of a spectral density are summarized in the following lemma.

Lemma 2.1.1. Let X = (Xt)t∈Z be a stationary real-valued process with an absolutely
summable autocovariance function γX . Then

(i) fX is uniformly continuous on [−π, π],

(ii) fX(λ) = fX(−λ) ∀λ ∈ [−π, π],

(iii) fX(λ) ≥ 0 ∀λ ∈ [−π, π],

(iv) γX(λ) =
∫ π
−π e

ikλfX(λ) dλ ∀k ∈ Z.

Proof. (i) Let ε > 0 be arbitrary. Then

∣∣fX(λ) − fX(ω)
∣∣ =

∣∣∣ 1

2π

∞∑
k=−∞

γX(k)
{

cos(λk) − cos(ωk)
}∣∣∣

≤ 1

2π

K∑
k=−K

∣∣γX(k)
∣∣ ∣∣ cos(λk) − cos(ωk)

∣∣︸ ︷︷ ︸
≤|k||λ−ω|

+
1

π

∑
k : |k|>K

∣∣γX(k)
∣∣.

The second term on the right-hand side is not greater than ε/2 if K = K(ε) is sufficiently
large. For such a K, the first term is also less than or equal to ε/2 if |λ− ω| ≤ δ = δ(ε).
Hence, ∣∣fX(λ) − fX(ω)

∣∣ ≤ ε ∀λ, ω ∈ [−π, π], |λ− ω| ≤ δ,

i.e., fX is uniformly continuous.
(ii) This is an immediate consequence of γX(k) = γX(−k).
(iii) Let µ := EXt. Then

0 ≤ E
[ 1

2πn

∣∣∣ n∑
t=1

(Xt − µ)e−itλ
∣∣∣2]

=
1

2πn
E
[ n∑
s,t=1

(Xs − µ)(Xt − µ)e−i(s−t)λ
]

=
1

2πn

n∑
s,t=1

γX(s− t) cos
(
(s− t)λ

)
=

1

2π

n−1∑
k=−(n−1)

n− |k|
n

γX(k) cos(kλ)

−→
n→∞

1

2π

∞∑
k=−∞

γX(k) cos(kλ) = fX(λ).

Note that the convergence follows by Lebesgue’s dominated convergence theorem. Hence,
fX is non-negative.
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(iv) We obtain by Fubini’s theorem that∫ π

−π
eikλfX(λ) dλ =

1

2π

∫ π

−π
eikλ

∞∑
l=−∞

γX(l)e−ilλ dλ

=
1

2π

∞∑
l=−∞

γX(l)

∫ π

−π
ei(k−l)λ dλ︸ ︷︷ ︸
=2πδk,l

= γX(k).

Note that we can actually change the order of integration/summation since∫ π

−π

∞∑
l=−∞

∣∣eikλγX(l)e−ilλ
∣∣ dλ ≤ ∫ π

−π

∞∑
l=−∞

∣∣γX(l)
∣∣ dλ = 2π

∞∑
l=−∞

∣∣γX(l)
∣∣ < ∞.

We have seen that absolute summability of the autocovariance function of a stationary
process makes the definition of the spectral density possible. Furthermore, assertion (iv)
of Lemma 2.1.1 shows that there is a one-to-one relation between absolutely summable
autocovariance functions and the corresponding spectral densities. This means that a
spectral density provides a complete description of the (second order) dependence struc-
ture.

As for probability densities, we can also define for spectral densities the correspond-
ing counterparts of a probability distribution function and a probability measure. Sup-
pose that fX is the spectral density of a real-valued stationary process X = (Xt)t∈Z.
Then FX : [−π, π]→ [0,∞) defined by

FX(λ) :=

∫ λ

−π
fX(ω) dω ∀λ ∈ [−π, π]

is the spectral distribution function of X. Furthermore, there exists a measure µX
on B

∣∣
(−π,π]

:=
{
B ∩ (−π, π] : B ∈ B

}
(the trace of B on (−π, π] or trace σ-algebra)

such that
µX((a, b]) = FX(b) − FX(a) ∀a, b ∈ [−π, π], a ≤ b.

µX is said to be the spectral measure of the process X. It follows from Lemma 2.1.1
that

γX(k) =

∫ π

−π
eikλ dFX(λ) =

∫
(−π,π]

eikλ dµX(λ) ∀k ∈ Z. (2.1.2)

FX and µX inherit the property of symmetry about 0 from fX . We have that F (b) −
F (a) = F (−a) − F (−b) for a, b ∈ [−π, π] and µX(B) = µX(−B) for B ∈ B

∣∣
(−π,π]

, B ⊆
(−π, π). To summarize, if a stationary process has absolutely summable autocovariances,
then these autocovariances can be described either by the spectral density, by the spectral
distribution function or by the spectral measure. In what follows we intend to relax the
condition of absolute summability of the autocovariances. It will turn out that there
still exist a distribution function FX and a measure µX such that (2.1.2) is satisfied.
However, without absolute summability, it could be the case that a spectral density does
not exist. It could also happen that the measure µX is not fully symmetric about 0
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if µX({π}) > 0. Of course, (2.1.2) remains true if we redistribute some mass of µX
by setting µ′({−π}) = µ′({π}) := µ({π})/2. Such a restriction of µX to the half-
open interval (−π, π] is actually intended since this guarantees uniqueness of the spectral
measure. Furthermore, if µX had a positive point mass in −π, then a corresponding
spectral distribution function had to fulfill FX(−π) − FX(−π − 0) = µX

(
{−π}

)
> 0

which is unintended since this requires a definition of FX beyond the interval [−π, π].

Exercise

Ex. 2.1.1 Suppose that (εt)t∈Z ∼ WN(0, σ2
ε) and that X = (Xt)t∈Z is the unique

stationary solution to

Xt − α1Xt−1 − · · · − αpXt−p = εt + β1εt−1 + · · · + βqεt−q ∀t ∈ Z,

where α(z) = 1− α1z − · · · − αpzp 6= 0 for all z ∈ C, |z| ≤ 1.

Compute the spectral density of the process (Xt)t∈Z.
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In the following we generalize these results to stationary processes with an autoco-
variance function that is not necessarily absolutely summable. To this end we derive a
few useful results from probability theory.

Theorem 2.1.2. (Helly’s selection theorem)
Let, for any K <∞,

V :=
{
F : R→ [0, K], F is monotonically nondecreasing and right-continuous

}
.

If
(
Fn
)
n∈N is any sequence of functions from V , then there exists a subsequence (nk)k∈N

of N and a function F ∈ V such that

Fnk(x) −→
k→∞

F (x) for all continuity points x of F.

Proof. The proof of this result is split up into four steps.

(i) (Identification of the limit)

Since Q is countable we can enumerate the rational numbers by r1, r2, . . .. Since(
Fn(r1)

)
n∈N is a bounded sequence of real numbers there exists a subsequence

(
n

(1)
k

)
k∈N

of N such that
F
n
(1)
k

(r1) −→
k→∞

G(r1),

for some G(r1) ∈ [0, K]. For the same reason, there exists a further subsequence
(
n

(2)
k

)
k∈N

of
(
n

(1)
k

)
k∈N such that

F
n
(2)
k

(r2) −→
k→∞

G(r2),

for some G(r2) ∈ [0, K]. We proceed in the same way. In the mth step we can choose a
subsequence

(
n

(m)
k

)
k∈N of

(
n

(m−1)
k

)
k∈N such that

F
n
(m)
k

(rm) −→
k→∞

G(rm),

for some G(rm) ∈ [0, K]. We take the “diagonal sequence”
(
nk
)
k∈N, where nk = n

(k)
k

∀k ∈ N. Then
Fnk(r) −→

k→∞
G(r) ∀r ∈ Q.

The function G : Q → R is monotonically nondecreasing and it holds G(r) ∈ [0, K] for
all r ∈ Q.

(ii) (Extension to a function on R)

We define
F (x) := inf

{
G(r) : r ∈ Q, r > x

}
∀x ∈ R.

(We will see in step (iii) below that “r > x” rather than “r ≥ x” is really important since
this ensures that F is right-continuous.)



93

(iii) (Properties of F )

It follows from the definition that F is monotonically nondecreasing and that F (x) ∈
[0, K] ∀x ∈ R.

As for right-continuity, let (xn)n∈N be a sequence of monotonically nonincreasing real
numbers such that xn ↘ x. In order to show that F (xn) −→

n→∞
F (x) actually holds, we

choose an “accompanying sequence” (sn)n∈N, sn ∈ Q such that x ≤ xn < sn and
sn −→

n→∞
x. Then

F (x) ≤ F (xn) ≤ G(sn).

But since G(sn) −→
n→∞

F (x) (At this point we see that the strict inequality sign in F (x) =

inf
{
G(r) : r ∈ Q, r>x

}
is necessary.) we conclude that

F (xn) −→
n→∞

F (x).

Hence, F ∈ V .

(iv) (Convergence of Fnk to F )

Let x be a continuity point of F . We have to show that

Fnk(x) −→
k→∞

F (x). (2.1.3)

To do this, we can only use the fact that Fnk(r) −→
k→∞

G(r) ∀r ∈ Q. Let ε > 0 be arbitrary.
According to the definition of F (x), there exists some r ∈ Q such that x < r and

G(r) ≤ F (x) + ε.

This implies
lim sup
k→∞

Fnk(x) ≤ lim
k→∞

Fnk(r) = G(r) ≤ F (x) + ε. (2.1.4)

On the other hand, by continuity of F in x, there exists some x < x such that

F (x) ≥ F (x) − ε.

Let r ∈ Q ∩ (x, x]. Then

lim inf
k→∞

Fnk(x) ≥ lim
k→∞

Fnk(r) = G(r) ≥ F (x) ≥ F (x) − ε. (2.1.5)

From (2.1.4) and (2.1.5) we obtain that (2.1.3) holds true.
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Helly’s selection theorem in probability theory

When applied to probability distribution functions or probability measures, Helly’s
selection theorem plays an important role in probability theory. Before we state and
prove corresponding results we take a brief look at a typical example which shows what
actually could happen.

For n ∈ N, let µn = N(0, σ2
n) be normal distributions with mean 0 and variance σ2

n > 0
and let Fn be the corresponding distributions functions. Then Fn(x) = Φ(x/σn) ∀x ∈ R,
where Φ denotes the distribution function of a standard normal distribution. If σn −→

n→∞
σ

for some σ ∈ [0,∞], then the full sequence
(
Fn(x)

)
n∈N converges for all x ∈ R, i.e., we

do not have to select an appropriate subsequence
(
nk
)
k∈N as in Theorem 2.1.2. We can

distinguish between the following cases:

a) If σ ∈ (0,∞), then
Fn(x) −→

n→∞
Φ(x/σ) ∀x ∈ R,

which is the distribution function of a normal distribution with mean 0 and vari-
ance σ2.

b) If σ = 0, then

Fn(x) −→
n→∞

F0(x) :=


0, if x < 0,
1/2, if x = 0,
1, if x > 0.

Here we have to be careful since F0 is not a distribution function since it is not
right-continuous in the point x = 0. On the other hand, it also holds that

Fn(x) −→
n→∞

F (x) :=

{
0, if x < 0,
1, if x ≥ 0

for all continuity points x of F.

F is the distribution function of a Dirac measure in the point 0.

c) If σ =∞, then

Fn(x) −→
n→∞

Φ(0) = 1/2 =: F (x) ∀x ∈ R,

which is a distribution function corresponding to the zero measure on (R,B). In
this case, the limit of the probability measures µn is still a measure but not a
probability measure.

What we have seen in this example can be described by the notions of weak and vague
convergence of probability measures. Here is a formal definition of these two modes
of convergence:

Definition. Let
(
µn
)
n∈N be a sequence of probability measures on

(
R,B

)
. Then

(
µn
)
n∈N

is said to

(i) converge weakly to a probability measure µ on
(
R,B

)
(µn =⇒ µ or µn

w−→ µ)
if∫

R
f(x) dµn(x) −→

n→∞

∫
R
f(x) dµ(x) for all continuous and bounded functions f: R→ R.

(ii) converge vaguely to a measure µ on
(
R,B

)
(µn

v−→ µ) if∫
R
f(x) dµn(x) −→

n→∞

∫
R
f(x) dµ(x) for all continuous, compactly supported functions f: R→ R.
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The following lemma provides the relation between convergence of distribution functions
and weak or vague convergence of the corresponding measures.

Lemma 2.1.3. Let
(
Fn
)
n∈N be a sequence of probability distribution functions on R and F

be a distribution function on R (F is monotonically nondecreasing and right-continuous,
but F (x) −→x→−∞ 0 and F (x) −→x→∞ 1 are not necessarily fulfilled). Suppose that

Fn(x) −→
n→∞

F (x) for all continuity points x of F

and let
(
µn
)
n∈N and µ be the corresponding measures on

(
R,B

)
. Then

(i) µ(R) ≤ 1 and µn
v−→ µ.

(ii) If µ(R) = 1, then µn =⇒ µ.

(iii) If additionally ∀ε > 0 ∃Kε <∞ such that

Fn(Kε) − Fn(−Kε) = µn
(
(−Kε, Kε]

)
≥ 1 − ε ∀n ∈ N

(i.e., the sequence
(
µn
)
n∈N is tight), then

µ(R) = 1 and µn =⇒ µ.

Proof. Since F is a monotonically nondecreasing function it follows that it has at most
a countable number of discontinuity points. We denote the set of these points by DF .

(i) Let (xm)m∈N be a sequence of monotonically increasing nonnegative numbers such
that xm, x−m 6∈ DF and xm −→m→∞ ∞. Since the measure µ is continuous from
below we obtain that

µ(R) = lim
m→∞

µ
(
(−xm, xm]

)
= lim

m→∞
F (xm) − F (−xm)

= lim
m→∞

lim
n→∞

Fn(xm) − Fn(−xm)︸ ︷︷ ︸
≤ 1

≤ 1.

As for vague convergence, we have to show that∫
R
f(x) dµn(x) −→

n→∞

∫
R
f(x) dµ(x), (2.1.6)

for all continuous and compactly supported functions f : R → R. Let f be
such a function, i.e., f(x) = 0 for all x 6∈ (−K,K], for some K < ∞ such that
K,−K 6∈ DF . Let ε > 0 be arbitrary. Since f is continuous there exist points
x0, . . . , xM 6∈ DF such that −K = x0 < . . . < xM = K and∣∣f(x) − f(xk)

∣∣ ≤ ε ∀x ∈ (xk−1, xk].
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With this choice of a partition of [−K,K], the integrals in (2.1.6) are well approx-
imated by the corresponding right Riemann sums:

∣∣∣ ∫
R
f(x) dµ(x) −

M∑
k=1

f(xk)µ
(
(xk−1, xk]

)∣∣∣
=

∣∣∣ ∫
(−K,K]

f(x) dµ(x) −
M∑
k=1

f(xk)

∫
(xk−1,xk]

dµ(x)
∣∣∣

≤
M∑
k=1

∫
(xk−1,xk]

∣∣f(x) − f(xk)
∣∣︸ ︷︷ ︸

≤ ε

dµ(x)

≤ ε

M∑
k=1

µ
(
(xk−1, xk]

)
≤ ε (2.1.7)

and, analogously,

∣∣∣ ∫
R
f(x) dµn(x) −

M∑
k=1

f(xk)µn
(
(xk−1, xk]

)∣∣∣
≤

M∑
k=1

∫
(xk−1,xk]

∣∣f(x) − f(xk)
∣∣︸ ︷︷ ︸

≤ ε

dµn(x)

≤ ε
M∑
k=1

µn
(
(xk−1, xk]

)
= ε

(
Fn(K) − Fn(−K)

)
≤ ε ∀n ∈ N. (2.1.8)

Finally, from Fn(xk) −→
n→∞

F (xk) for k = 0, . . . ,M we obtain

µn
(
(xk−1, xk]

)
= Fn(xk) − Fn(xk−1) −→

n→∞
F (xk) − F (xk−1) = µ

(
(xk−1, xk]

)
.

Therefore,

∣∣∣ M∑
k=1

f(xk)µn
(
(xk−1, xk]

)
−

M∑
k=1

f(xk)µ
(
(xk−1, xk]

)∣∣∣
≤ sup

{
|f(x)| : x ∈ [−K,K]

} M∑
k=1

∣∣µn((xk−1, xk]
)
− µ

(
(xk−1, xk]

∣∣
= sup

{
|f(x)| : x ∈ [−K,K]

} M∑
k=1

∣∣(Fn(xk)− Fn(xk−1)
)
−
(
F (xk)− F (xk−1)

)∣∣
≤ ε ∀n ≥ N, (2.1.9)

if N is sufficiently large. It follows from (2.1.7) to (2.1.9)∣∣∣ ∫
R
f(x) dµn(x) −

∫
R
f(x) dµ(x)

∣∣∣ ≤ 3ε ∀n ≥ N,

which implies that (2.1.6) holds true, i.e., µn
v−→ µ.
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(ii) If additionally µ(R) = 1, then we can even show weak convergence of (µn)n∈N
to µ. Let f: R → R be an any bounded and continuous function and let
ε > 0 be arbitrary. Furthermore, let K < ∞ be such that −K,K 6∈ DF and
µ
(
(−K,K]

)
≥ 1− ε. Since

µn
(
(−∞,−K] ∪ (K,∞)

)
= Fn(−K) +

(
1 − Fn(K)

)
−→
n→∞

F (−K) +
(
1 − F (K)

)
= 1 − µ

(
(−K,K]

)
≤ ε

we obtain that

µn
(
(−∞,−K] ∪ (K,∞)

)
≤ 2ε ∀n ≥ N1,

if N1 is sufficiently large. This implies∫
(−∞,−K]∪(K,∞)

f(x) dµn(x) +

∫
(−∞,−K]∪(K,∞)

f(x) dµ(x)

≤ sup
{
|f(x)| : x ∈ R

} (
µn
(
(−∞,−K] ∪ (K,∞)

)
+ µ

(
(−∞,−K] ∪ (K,∞)

))
≤ 3 ε sup

{
|f(x)| : x ∈ R

}
∀n ≥ N1. (2.1.10)

Moreover, we can show as above that∣∣∣ ∫
(−K,K]

f(x) dµn(x) −
∫

(−K,K]

f(x) dµ(x)
∣∣∣ ≤ ε ∀n ≥ N2, (2.1.11)

if N2 is sufficiently large. We conclude from (2.1.10) and (2.1.11) that∫
R
f(x) dµn(x) −→

n→∞

∫
R
f(x) dµ(x),

i.e. µn =⇒ µ holds true.

(iii) Let ε > 0 be arbitrary. We choose K < ∞ such that −K,K 6∈ DF and
µn
(
(−K,K]

)
≥ 1− ε ∀n ∈ N. Since

µn
(
(−K,K]

)
= Fn(K) − Fn(−K)

−→
n→∞

F (K) − F (−K) = µ
(
(−K,K]

)
we obtain that

µ
(
(−K,K]

)
≥ 1 − ε.

This implies that µ(R) = 1 and we obtain from (ii) that µn =⇒ µ.

The following theorem states the remarkable fact that the autocovariances of any
weakly stationary process can be expressed by integrals with a finite measure µ as the
integrator. This does not require absolute summability of the autocovariances.
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Theorem 2.1.4. (Herglotz’ theorem)
A function γ : Z −→ R is the autocovariance function of a real-valued stationary process

if and only if
there exists a finite measure µ on

(
(−π, π],B|(−π,π]

)
such that µ(B) = µ(−B) for all

B ∈ B|(−π,π], B ⊆ (−π, π) and

γ(k) =

∫
(−π,π]

eikλ dµ(λ) ∀k ∈ Z.

Proof. First of all, recall that it follows from Theorem ?? that γ : Z −→ R is the
autocovariance function of a weakly stationary real-valued process

if and only if
γ is an even, real-valued and non-negative definite function, i.e.

n∑
j,k=1

ajγ(tj − tk)ak ≥ 0 ∀t1, . . . , tn ∈ Z, ∀a1, . . . , an ∈ R, ∀n ∈ N. (2.1.12)

(⇐=)

Suppose that µ is a finite measure on B
∣∣
(−π,π]

such that µ(B) = µ(−B) for allB ∈ B
∣∣
(−π,π]

,
B ⊆ (−π, π) and

γ(k) =

∫
(−π,π]

eikλ dµ(λ) ∀k ∈ Z.

It follows from the symmetry of µ that
∫

(−π,π)
sin(kλ) dµ(λ) = 0 holds for all k ∈ Z, which

implies that

γ(k) =

∫
(−π,π)

cos(kλ) dµ(λ) + i

∫
(−π,π)

sin(kλ) dµ(λ)︸ ︷︷ ︸
= 0

+ eikπ︸︷︷︸
∈{1,−1}

µ
(
{π}

)
.

Hence, γ is a real-valued function. Furthermore, is also follows from the symmetry of µ
that

∫
(−π,π)

cos(kλ) dµ(λ) =
∫

(−π,π)
cos(−kλ) dµ(λ), which implies that

γ(k) =

∫
(−π,π)

cos(kλ) dµ(λ) + eikπ︸︷︷︸
= e−ikπ

µ
(
{π}

)
µ({π})

=

∫
(−π,π)

cos(−kλ) dµ(λ) + e−ikπµ({π}) = γ(−k) ∀k ∈ Z,

i.e., γ is an even function. Finally, we have, for arbitrary n ∈ N, t1, . . . , tn ∈ Z and
a1, . . . , an ∈ R,

n∑
j,k=1

ajγ(tj − tk)ak =

∫
(−π,π]

n∑
j,k=1

ajake
i(tj−tk)λ dµ(λ)

=

∫
(−π,π]

∣∣∣ n∑
j=1

aje
itjλ
∣∣∣2 dµ(λ) ≥ 0.

Hence, γ is the autocovariance function of some real-valued stationary process.
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(=⇒)

Suppose now that γ is an even and real-valued function satisfying (2.1.12). We have to
show that there exists a finite measure µ on B

∣∣
(−π,π]

such that µ(B) = µ(−B) for all
B ∈ B

∣∣
(−π,π]

, B ⊆ (−π, π) and

γ(k) =

∫
(−π,π]

eikλ dµ(λ) ∀k ∈ Z.

If γ(0) = 0, then all other autocovariances vanish as well and the zero measure
(µ(B) = 0 ∀B ∈ B

∣∣
(−π,π]

) solves the system of equations.
Let γ(0) > 0. Since the existence of a spectral density is not guaranteed we start with

some sort of “regularized” spectral density. Let

fn(λ) :=
1

2π

∞∑
l=−∞

(
1 − |l|

n

)
+
e−ilλγ(k) =

1

2π

n−1∑
l=−(n−1)

(
1 − |l|

n

)
cos(lλ)γ(k)

=
1

2πn

n∑
r,s=1

cos
(
(r − s)λ

)︸ ︷︷ ︸
= cos(rλ) cos(sλ) + sin(rλ) sin(sλ)

γ(r − s)

=
1

2πn

n∑
r,s=1

cos(rλ)γ(r − s) cos(sλ) +
1

2πn

n∑
r,s=1

sin(rλ)γ(r − s) sin(sλ).

fn is obviously a real-valued function which is by (2.1.12) also non-negative definite. Let
µn be a measure on B such that µn((a, b]) =

∫ b
a
fn(λ)1[−π,π](λ) dλ for all a, b ∈ R, a ≤ b.

Then ∫
R
eikλ dµn(λ) =

∫ π

−π
eikλfn(λ) dλ

=

∫ π

−π
eikλ

1

2π

n−1∑
l=−(n−1)

(
1 − |l|

n

)
γ(l)e−ilλ dλ

=
n−1∑

l=−(n−1)

(
1 − |l|

n

)
γ(l)

1

2π

∫ π

−π
ei(k−l)λ dλ︸ ︷︷ ︸

= δk,l

=
(

1 − |k|
n

)
+
γ(k)

holds for all k ∈ Z. We have in particular that µn(R) = µn([−π, π]) = γ(0) for all
n ∈ N. Therefore,

(
µn/γ(0)

)
n∈N is a tight sequence of probability measures on

(R,B) and it follows from (iii) of Lemma 2.1.3 that there exists a subsequence (nj)j∈N
of N such that (µnj/γ(0))j∈N converges weakly to a probability measure µ̃ on (R,B),
where µ̃

(
[−π, π]c

)
= lim infj→∞ µnj

(
[−π, π]c

)
/γ(0) = 0. Therefore,

1

γ(0)

∫
R
eikλ dµnj(λ) −→

j→∞

∫
R
eikλ dµ̃(λ) =

∫
[−π,π]

eikλ dµ̃(λ) ∀k ∈ Z,

It is easy to see that the measure µ̃ is symmetric about zero. Let µ̃− be such that
µ̃−(B) = µ̃(−B) for all B ∈ B. Since µnj/γ(0) =⇒ µ̃ we obtain that

µnj
(
(a, b]

)
/γ(0) −→

j→∞
µ̃
(
(a, b]

)
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holds for all a, b such that a < b and µ̃({a, b}) = 0. For the same reason we obtain that

µnj
(
[−b,−a)

)
/γ(0) −→

j→∞
µ̃
(
[−b,−a)

)
= µ̃−

(
(a, b]

)
holds for all a, b such that a < b and µ̃({−a,−b}) = 0. Since µnj

(
(a, b]

)
= µnj

(
[−b,−a)

)
for all a < b and since the probability measure µ̃ has a positive mass in at most a
countable number of points we see that

µ̃
(
(a, b]

)
= µ̃−

(
(a, b]

)
holds true for all a < b, with the possible exception of a countable number of points.
In other words, the distribution functions of these two measures coincide at almost all
points which means that µ̃ = µ̃−.

Let µ∞(B) = γ(0)µ̃(B) ∀B ∈ B. It could still be the case that the measure µ∞ has
some mass in the point −π. In order to end up with an appropriate measure on B

∣∣
(−π,π]

we shift this mass to the point π, i.e. we define

µ(B) = µ∞(B) + 1B(π)µ∞({−π}) ∀B ∈ B
∣∣
(−π,π]

.

Then µ(B) = µ∞(B) = µ∞(−B) = µ(−B) for all B ∈ B
∣∣
(−π,π]

, B ⊆ (−π, π) and∫
(−π,π]

eikλ dµ(λ) =

∫
[−π,π]

eikλ dµ∞(λ) = lim
j→∞

∫
[−π,π]

eikλ dµnj(λ) = γ(k),

which completes the proof.

In the following we show that both the spectral distribution function F and the
spectral measure µ are uniquely defined by the autocovariances of the corresponding
stationary process.

Lemma 2.1.5. Let γ be the autocovariance function of a real-valued and weakly stationary
process and let µ1 and µ2 be measures on

(
(−π, π],B

∣∣
(−π,π]

)
such that

γ(k) =

∫
(−π,π]

eikλ dµj(λ) ∀k ∈ Z, j = 1, 2.

Then
µ1 = µ2.

Proof. Since

µj
(
(−π, π]

)
=

∫
(−π,π]

ei0λ dµj(λ) = γ(0) < ∞

we see that µ1 and µ2 are finite measures. According to the uniqueness theorem of
measure theory it suffices to show that

µ1

(
(a, b]

)
= µ2

(
(a, b]

)
∀a, b such that − π ≤ a < b ≤ π.
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Let a, b be arbitrary such that −π ≤ a < b ≤ π. We show that∫
(−π,π]

1(a,b](x) dµ1(x) =

∫
(−π,π]

1(a,b](x) dµ2(x).

To this end we approximate the indicator function 1(a,b] by a sequence of trigono-
metric functions. First of all, there exists a sequence (fn)n∈N of continuous functions
fn : [−π, π] → [0, 1] such that fn(−π) = fn(π) and fn(λ) −→

n→∞
1(a,b](λ) ∀λ ∈ (−π, π].

Then, by dominated convergence,∫
(−π,π]

1(a,b](x) dµj(x) =

∫
(−π,π]

lim
n→∞

fn(x) dµj(x) = lim
n→∞

∫
(−π,π]

fn(x) dµj(x), j = 1, 2.

Therefore, it suffices to show that∫
(−π,π]

f(x) dµ1(x) =

∫
(−π,π]

f(x) dµ2(x)

holds for all continuous functions f : [−π, π] → [0, 1] such that f(−π) = f(π).
Let f be such a function. By Fejér’s theorem there exists a sequence of trigono-
metric functions

(
Tnf

)
n∈N (i.e., Tnf(λ) = a0 +

∑n
k=1 ak cos(kλ) + bk sin(kλ), for some

a0, . . . , an, b1, . . . , bn ∈ R) such that

δn := sup
λ∈[−π,π]

{
|Tnf(λ)− f(λ)|

}
−→
n→∞

0.

From ∫
(−π,π]

eikλ dµ1(λ) =

∫
(−π,π]

eikλ dµ2(λ) = γ(k) ∈ R ∀k ∈ Z

we obtain ∫
(−π,π]

cos(kλ) dµ1(λ) =

∫
(−π,π]

cos(kλ) dµ2(λ) ∀k ∈ N0

and ∫
(−π,π]

sin(kλ) dµ1(λ) =

∫
(−π,π]

sin(kλ) dµ2(λ) = 0 ∀k ∈ N.

Therefore, ∫
(−π,π]

Tnf(λ) dµ1(λ) =

∫
(−π,π]

Tnf(λ) dµ2(λ) ∀n ∈ N.

Finally, since∫
(−π,π]

Tnf(λ) dµj(λ) −
∫

(−π,π]

f(λ) dµj(λ) ≤ δn µj
(
(−π, π]

)
−→
n→∞

0, j = 1, 2,

we obtain the assertion.

Exercise

Ex. 2.1.2 Suppose that Y and Z are uncorrelated random variables with EY = EZ =
0 and EY 2 = EZ2 = 1. For t ∈ Z, let Xt = Y cos(θt) + Z sin(θt), where θ ∈ [0, π].

(i) Compute the autocovariance function γX of the process (Xt)t∈Z.
Hint: Use the trigonometric identity cos(a) cos(b) + sin(a) sin(b) = cos(a− b)
∀a, b ∈ R.

(ii) Determine the spectral measure of (Xt)t∈Z. Does there exist a spectral density?
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2.2 Estimation in the spectral domain

Let X = (Xt)t∈Z be a weakly stationary and real-valued process with autocovariance
function γ, where

∑∞
k=0 |γ(k)| < ∞. Then the process X has a spectral density fX ,

which is defined as

fX(λ) =
1

2π

∞∑
k=−∞

γ(k) cos(kλ) ∀λ ∈ [−π, π].

Suppose that realizations of the random variables X1, . . . , Xn are available. If we are will-
ing to assume that some model described by a finite-dimensional parameter is adequate,
then we can first estimate this parameter and obtain an estimator of the spectral density
by plugging this estimator into the formula for the spectral density of the corresponding
class of processes. For example, suppose that (Xt)t∈Z is an autoregressive process of or-
der p, where α(z) = 1− α1z − · · · − αpzp 6= 0 ∀z ∈ C, |z| ≤ 1 and that the sequence of
innovations is given by (εt)t∈Z ∼WN(0, σ2

ε). Then the spectral density is defined as

fX(λ) =
σ2
ε

2π
∣∣1 − α1e−iλ − · · · − αpe−ipλ

∣∣2 ∀λ ∈ [−π, π].

We know that the Yule-Walker estimators α̂1, . . . , α̂p and σ̂2
ε of the respective parameters

α1, . . . , αp and σ2
ε are consistent, i.e., they converge in probability to their theoretical

counterparts as the sample size n tends to infinity. Since fX(λ) is a continuous function
of these parameters, a consistent estimator of the spectral density is given by

f̂X(λ) =
σ̂2
ε

2π
∣∣1 − α̂1e−iλ − · · · − α̂pe−ipλ

∣∣2 ∀λ ∈ [−π, π].

The pictures below show the true spectral density fX of an AR(p) process with parameters
α1 = α2 = α3 = 0.2 and independent innovations εt ∼ N(0, 1) (red lines), together with
one realization of the model-based estimator f̂X obtained from samples of size n =100,
200, 500 and 1,000, respectively, (blue lines).
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103

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Spectral density vs. model−based estimator, n= 500

frequency

true s.d.
estimated s.d.

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Spectral density vs. model−based estimator, n= 1000

frequency

true s.d.
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If a parametric model with a known relation between the parameters and the spectral
density is not available or if consistent estimators of the model parameters are difficult
to obtain, then we could use so-called nonparametric approaches to estimate the spectral
density or the spectral distribution function. We consider such methods in the following.

Note that γ(k) can be estimated by

γ̂n(k) =

{
n−1

∑n−|k|
t=1

(
Xt+|k| − X̄n

)(
Xt − X̄n

)
if |k| ≤ n− 1,

0 if |k| ≥ n,

where X̄n = n−1
∑n

t=1 Xt is the sample mean. Under the additional assumption of
EXt = 0, we could estimate γ(k) also by

γ̃n(k) =

{
n−1

∑n−|k|
t=1 Xt+|k|Xt if |k| ≤ n− 1,

0 if |k| ≥ n.

Plugging these quantities into the above formula for fX(λ) we obtain the following esti-
mators of the spectral density:

In(λ) =
1

2π

n−1∑
k=−(n−1)

γ̃n(k) cos(kλ),

In,X̄n(λ) =
1

2π

n−1∑
k=−(n−1)

γ̂n(k) cos(kλ).

In is called the periodogram and In,X̄n the centered periodogram of the data set
X1, . . . , Xn. At first glance, the centered periodogram In,X̄n seems to be better motivated
than the periodogram In since it is based on more reliable estimators of the autocovari-
ances which are also appropriate if EXt 6= 0. Nevertheless, we will see below that these
estimators coincide at particular frequencies λ. For a sample of size n, we define the
so-called Fourier frequencies by

λk =
2πk

n
, for k ∈ Z such that λk ∈ (−π, π].
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Note that λk ∈ (−π, π] holds if and only if k ∈
{
− bn−1

2
c,−bn−1

2
c + 1, . . . , bn

2
c
}
, where

bac denotes the largest integer not greater than a. For technical reasons, we also define
the quantity

In,µ(λ) =
1

2π

n−1∑
k=−(n−1)

( 1

n

n−|k|∑
t=1

(
Xt+|k| − µ

)(
Xt − µ

))
cos(kλ).

The following lemma provides a few algebraic properties of the periodogram.

Lemma 2.2.1. (i) In(λ) = 1
2πn

∣∣∣∑n
t=1Xt e

−itλ
∣∣∣2 ∀λ ∈ [−π, π].

(Analogous formulas hold true for In,µ and In,X̄n with Xt−µ and Xt− X̄n instead of Xt,
respectively.)
(ii) For each Fourier frequency λk 6= 0,

In(λk) = In,µ(λk) = In,X̄n(λk).

Proof. (i) It holds that

1

2πn

∣∣∣ n∑
t=1

Xt e
−itλ
∣∣∣2 =

1

2πn

n∑
s,t=1

XsXt e
−i(s−t)λ

=
1

2π

1

n

n∑
s,t=1

XsXt cos
(
(s− t)λ

)
=

1

2π

n−1∑
k=−(n−1)

γ̃n(k) cos(kλ).

(ii) Since c+ c2 + · · ·+ cn = c(1 + c+ · · ·+ cn−1) = c 1−cn
1−c holds for all c ∈ C with c 6= 1,

we obtain, for a Fourier frequency λk = 2πk/n 6= 0,

n∑
t=1

e−itλk =
n∑
t=1

(
e−iλk

)t
= e−iλk

1 − e−i 2πk

1 − e−iλk
= 0.

This implies that

n∑
t=1

Xt e
−itλk =

n∑
t=1

(
Xt − µ

)
e−itλk =

n∑
t=1

(
Xt − X̄n

)
e−itλk ,

which proves (ii).
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Theorem 2.2.2. Let X = (Xt)t∈Z be a stationary and real-valued process with autoco-
variance function γ,

∑∞
k=−∞ |γ(k)| <∞.

(i) If EXt = 0, then
sup

λ∈[−π,π]

∣∣EIn(λ) − fX(λ)
∣∣ −→
n→∞

0.

(ii) If EXt = µ, then

EIn(0) − nµ2

2π
−→
n→∞

fX(0)

and

max
{∣∣EIn(λk) − fX(λk)

∣∣ : λk = 2πk/n ∈ (−π, π], λk 6= 0
}
−→
n→∞

0.

Proof. (i) Since EIn(λ) = 1
2π

∑n−1
k=−(n−1)(1 − |k|/n)γ(k) cos(kλ) we obtain by domi-

nated convergence

∣∣EIn(λ) − fX(λ)
∣∣ ≤ 1

2π

∞∑
k=−∞

∣∣|k|/n ∧ 1
∣∣ |γ(k)| −→

n→∞
0.

(ii) It holds that

EIn(0) =
1

2πn
E
∣∣∣ n∑
t=1

Xt

∣∣∣2
=

1

2πn

{
E
[( n∑

t=1

(Xt − µ
)2]

+ n2µ2
}

=
1

2π

n−1∑
k=−(n−1)

(
1− |k|/n

)
γ(k) +

nµ2

2π
,

which implies, again by dominated convergence,

EIn(0) − nµ2

2π
=

1

2π

n−1∑
k=−(n−1)

(
1− |k|/n

)
γ(k) −→

n→∞

1

2π

∞∑
k=−∞

γ(k) = fX(0).

For each Fourier frequency λk 6= 0, we have that In(λk) = In,µ(λk). Therefore, we have
the equality

EIn(λk) = EIn,µ(λk) =
1

2π

n−1∑
k=−(n−1)

(
1− |k|/n

)
γ(k) cos(kλ).

Hence, we obtain the second statement of part (ii) in complete analogy to (i).

Although the periodogram is asymptotically unbiased for fX(λ) at the Fourier frequencies
λk 6= 0, the following lemma shows the disappointing fact that its variance does not vanish
as n→∞, even in case of a white noise.
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Lemma 2.2.3. Let (Xt)t∈Z ∼ IID(0, σ2), EX4
t =: η <∞. Then, for Fourier frequencies

λk = 2πk/n (k = −
[
n−1

2
], . . . ,

[
n
2
]),

(i) If |λj| 6= |λk|, then

cov
(
In(λj), In(λk)

)
=

η − 3σ2

4π2n
,

i.e., the values of the periodogram are asymptotically uncorrelated.

(ii) It holds that

var
(
In(λk)

)
=

{
η− 3σ4

4π2n
+ σ4

2π2 , if λk ∈ {0, π},
η− 3σ4

4π2n
+ σ4

4π2 , if λk 6∈ {0, π}.

Proof. We start off with a few preparatory calculations. It holds that

EIn(λ) =
1

2π

n−1∑
k=−(n−1)

(
1− |k|/n

)
γ(k)︸︷︷︸

=σ2δ0,k

cos(kλ) =
σ2

2π
∀λ ∈ [−π, π].

Furthermore, we have that

E
[
In(λj) In(λk)

]
=

1

4π2n2
E
[∣∣∣ n∑

t=1

Xte
−itλj

∣∣∣2∣∣∣ n∑
t=1

Xte
−itλk

∣∣∣2]
=

1

4π2n2

n∑
s,t=1

n∑
u,v=1

E
[
XsXtXuXv

]
e−i(s−t)λje−i(u−v)λk .

Note that E
[
XsXtXuXv

]
6= 0 is only possible if s = t = u = v or if each index appears

twice. Therefore,

E
[
In(λj) In(λk)

]
=

1

4π2n2

n∑
t=1

E
[
X4
t

]
+

1

4π2n2

∑
(s,t,u,v) : s=t6=u=v

E
[
X2
s

]︸ ︷︷ ︸
=σ2

E
[
X2
u

]︸ ︷︷ ︸
=σ2

e−i(s−t)λj︸ ︷︷ ︸
= 1

e−i(u−v)λk︸ ︷︷ ︸
= 1

+
1

4π2n2

∑
(s,t,u,v) : s=u6=t=v

E
[
X2
s

]︸ ︷︷ ︸
=σ2

E
[
X2
t

]︸ ︷︷ ︸
=σ2

e−i(s−t)λj e−i(u−v)λk

+
1

4π2n2

∑
(s,t,u,v) : s=v 6=t=u

E
[
X2
s

]︸ ︷︷ ︸
=σ2

E
[
X2
t

]︸ ︷︷ ︸
=σ2

e−i(s−t)λj e−i(u−v)λk

=
1

4π2n2

n∑
t=1

(
η − 3σ2

)
+

1

4π2n2

n∑
s,u=1

σ4

+
1

4π2n2

n∑
s,t=1

σ4 e−i(s−t)(λj+λk)

+
1

4π2n2

n∑
s,t=1

σ4 e−i(s−t)(λj−λk)

=: T1 + · · · + T4,
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say. Now we are in a position to prove (i) and (ii).
(i) We have that

T2 =
σ4

4π2
= EIn(λj)EIn(λk).

Since |λj| 6= |λk| we have λj + λk, λj − λk 6∈ {0, 2π}, which leads to
∑n

t=1 e
−i(s−t)(λj+λk) =∑n

t=1 e
−i(s−t)(λj−λk) = 0 and, therefore,

T3 = T4 = 0.

Hence,

cov
(
In(λj), In(λk)

)
= T1 =

η − 3σ4

4π2n
.

(ii) We have, as above,

T1 =
η − 3σ4

4π2n
and T2 =

(
EIn(λk)

)2
.

If λk ∈ {0, π}, then 2λk ∈ {0, 2π}, which implies

T3 =
σ4

4π2
.

On the other hand, if λk 6∈ {0, π}, then 2λk 6∈ {0, 2π}, which leads to

T3 = 0.

In both cases,

T4 =
σ4

4π2
.

Collecting all terms we see that

var
(
In(λk)

)
= T1 + T3 + T4,

which completes the proof of the second statement.

Theorem 2.2.4. Suppose that (Xt)t∈Z ∼ IID(0, σ2). Then, for Fourier frequencies λk =
2πk/n (k = −bn−1

2
c, . . . , bn

2
c),

(i) In(λk)
d−→ σ2

2π
Z2

1 , if λk ∈ {0, π},

(ii) In(λk)
d−→ σ2

2π

(
Z2

1 + Z2
2

)
/2, if λk 6∈ {0, π},

where Z1, Z2 ∼ N(0, 1) are independent.

Proof. First of all, we rewrite the periodogram in a suitable form:

In(λk) =
1

2πn

∣∣∣ n∑
t=1

Xt e
−itλk

∣∣∣2
=

1

2πn

∣∣∣ n∑
t=1

Xt

{
cos(tλk) − i sin(tλk)

}∣∣∣2
=

1

2π

{( 1√
n

n∑
t=1

Xt cos(tλk)
)2

+
( 1√

n

n∑
t=1

Xt sin(tλk)
)2}

.
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(i) Let λk ∈ {0, π}. Then

sin
(
tλk
)

= 0 and cos
(
tλk
)

=

{
1, if λk = 0,
(−1)k, if λk = π

holds for all t = 1, . . . , n. Since, by the Lindeberg-Feller central limit theorem
(Theorem 1.5.10),

1√
n

n∑
t=1

cos
(
tλk
)
Xt

d−→ σ Z1 ∼ N
(
0, σ2

)
.

we obtain by the Continuous Mapping Theorem that

In(λk) =
1

2π

( 1√
n

n∑
t=1

cos
(
tλk
)
Xt

)2 d−→ 1

2π
(σZ1)2 =

σ2

2π
Z2

1 .

(ii) Let λk be a Fourier frequency, λk 6∈ {0, π}. In this case, both the cosine and sine
terms matter and we show that

Z(n) :=
1√
n

n∑
t=1

(
Xt cos(tλk)
Xt sin(tλk)

)
d−→ σ√

2

(
Z1

Z2

)
∼ N

(( 0
0

)
,
( σ2/2 0

0 σ2/2

))
.

(2.2.1)
From (2.2.1) we obtain, again by the Continuous Mapping Theorem, that

In(λk) =
1

2π

{( 1√
n

n∑
t=1

Xt cos(tλk)
)2

+
( 1√

n

n∑
t=1

Xt sin(tλk)
)2}

d−→ 1

2π

{( σ√
2
Z1

)2

+
( σ√

2
Z2

)2}
=

σ2

2π

(
Z2

1 + Z2
2

)
/2.

It remains to prove (2.2.1). According to the Cramér-Wold device, (2.2.1) is equiv-
alent to

cTZ(n) =
n∑
t=1

1√
n

(
c1 cos(tλk) + c2 sin(tλk)

)
Xt︸ ︷︷ ︸

=:Zn,t

d−→ σ√
2
cT
(
Z1

Z2

)
∼ N

(
0,
σ2

2

(
c2

1 + c2
2

))

for all c = (c1, c2)T ∈ R2. (2.2.2)

To show this, we use once more the Lindeberg-Feller central limit theorem (Theo-
rem 1.5.10). We verify that the conditions of this theorem are satisfied. For each
n ∈ N, the random variables Zn,1, . . . , Zn,n are stochastically independent and we
have

EZn,t = 0

and
n∑
t=1

E
[
Z2
n,t

]
=

1

n

n∑
t=1

{
c2

1 cos2(tλk) + c2
2 sin2(tλk) + 2c1c2 cos(tλk) sin(tλk)

}
E
[
X2
t

]
=

σ2(c2
1 + c2

2)

2
. (2.2.3)
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Note that the second equality in (2.2.3) follows from the trigonometric identities

n∑
t=1

cos2(tλk) =
n∑
t=1

sin2(tλk) =
n

2
(2.2.4a)

and
n∑
t=1

cos(tλk) sin(tλk) = 0, (2.2.4b)

which hold true for all Fourier frequencies λk 6∈ {0, π}. Finally, we obtain by
Lebesgue’s theorem on dominated convergence that, for arbitrary ε > 0,

Ln(ε) =
n∑
t=1

E
[

Z2
n,t︸︷︷︸

≤ (|c1|+|c2|)2X2
t /n

1
(
|Zn,t| > ε

)]

≤ (|c1|+ |c2|)2

n

n∑
t=1

E
[
X2
t 1
(
(|c1|+ |c2|)|Xt| >

√
n ε
)]

= (|c1|+ |c2|)2E
[
X2

1 1
(
(|c1|+ |c2|)|X1| >

√
n ε
)]
−→
n→∞

0.

Hence, all conditions of the Lindeberg-Feller central limit theorem are satisfied.
Since the variance of the limit variable is given by the right-hand side of (2.2.3) we
obtain that (2.2.2) holds true.

Exercise

Ex. 2.2.1 Let λk = 2πk/n be a Fourier frequency, λk 6∈ {0, π}. Show that

n∑
t=1

cos2(tλk) =
n∑
t=1

sin2(tλk) =
n

2

and
n∑
t=1

cos(tλk) sin(tλk) = 0.

Hint: Prove first that cos2(x) − sin2(x) = sin(2x) and cos(x) sin(x) = sin(2x)
∀x ∈ R.
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Now we generalize the result of Theorem 2.2.4 to the case of linear processes. Recall
that, for (εt)t∈Z ∼ IID(0, σ2) and Xt =

∑∞
t=−∞ βkεt−k, where

∑∞
k=−∞ |βk| < ∞, the

process (Xt)t∈Z has a spectral density fX ,

fX(λ) =
∣∣β(e−iλ)

∣∣2fε(λ) ∀λ ∈ [−π, π],

where β(e−iλ) =
∑∞

k=−∞ βke
−ikλ and fε(λ) = σ2/(2π). The following theorem shows that

there exists a similar relation between the respective periodograms based on X1, . . . , Xn

and ε1, . . . , εn.

Theorem 2.2.5. Suppose that (εt)t∈Z ∼ IID(0, σ2), Xt =
∑∞

t=−∞ βkεt−k, where∑∞
k=−∞ |βk| <∞. Let IXn and Iεn be the periodograms based on X1, . . . , Xn and ε1, . . . , εn,

respectively. Then
IXn (λ) =

∣∣β(e−iλ)
∣∣2 Iεn(λ) + Rn(λ),

where
sup

λ∈[−π,π]

E
∣∣Rn(λ)

∣∣ −→
n→∞

0.

Proof. Let

JXn (λ) := n−1/2

n∑
t=1

Xt e
−itλ and Jεn(λ) := n−1/2

n∑
t=1

εt e
−itλ

denote the so-called finite Fourier transforms of X1, . . . , Xn and ε1, . . . , εn, respectively.
We establish the connection between JXn (λ) and Jεn(λ):

JXn (λ) = n−1/2

n∑
t=1

( ∞∑
k=−∞

βkεt−k

)
e−itλ

= n−1/2

∞∑
k=−∞

βke
−ikλ

n∑
t=1

εt−ke
−i(t−k)λ

= n−1/2

∞∑
k=−∞

βke
−ikλ

n−k∑
t=1−k

εte
−itλ

= β
(
e−iλ

)
Jεn(λ) + n−1/2

∞∑
k=−∞

βke
−ikλ

{ n−k∑
t=1−k

εte
−itλ −

n∑
t=1

εte
−itλ
}
,

i.e.,
JXn (λ) = β(e−iλ) Jεn(λ) + Zn,

where Zn = n−1/2
∑∞

k=−∞ βke
−ikλUn,k and Un,k =

∑n−k
t=1−k εte

−itλ −
∑n

t=1 εte
−itλ. Since

IXn (λ) = |JXn (λ)|2/(2π) and Iεn(λ) = |Jεn(λ)|2/(2π) we obtain

IXn (λ) −
∣∣β(e−iλ)

∣∣2Iεn(λ) =
1

2π

∣∣Zn∣∣2 +
1

2π
β(e−iλ)Jεn(λ) Zn +

1

2π
β(e−iλ)Jεn(λ) Zn

=: Rn,1 + Rn,2 + Rn,3,
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say. Note that if |k| < n, then Un,k is a sum of 2|k| independent random variables,
whereas if |k| ≥ n, Un,k is a sum of 2n independent random variables. It follows that

E
[
|Un,k|2

]
= 2σ2 min{|k|, n}.

We obtain by the Minkowski inequality (named after the German mathematician Her-
mann Minkowski) that√

E
[
|Zn|2

]
=

1√
n

∥∥∥ ∞∑
k=−∞

βk e
−ikλ Un,k

∥∥∥
≤ 1√

n

∥∥∥ ∞∑
k=−∞

∣∣βk e−ikλ Un,k∣∣∥∥∥
= lim

m→∞

1√
n

∥∥∥ m∑
k=−m

∣∣βk e−ikλ Un,k∣∣∥∥∥
≤︸︷︷︸

Minkowski

lim
m→∞

1√
n

m∑
k=−m

∥∥∥βk e−ikλ Un,k∥∥∥
= O

( ∞∑
k=−∞

|βk|
√
|k|/n ∧ 1

)
−→
n→∞

0, (2.2.5)

where the latter step follows by dominated convergence. It follows directly from (2.2.5)
that

sup
λ∈[−π,π]

{
E
∣∣Rn,1

∣∣} −→
n→∞

0.

Since |β(e−iλ)| ≤
∑∞

k=−∞ |βk| <∞ and

E
[∣∣Jεn(λ)

∣∣2] = 2π E
[
Iεn(λ)

]
= σ2

we obtain, by Cauchy-Schwarz and again (2.2.5), that

sup
λ∈[−π,π]

{
E|Rn,2| + E|Rn,3|

}
−→
n→∞

0,

which completes the proof.

Theorems 2.2.4 and 2.2.5 allow us to derive the asymptotic behavior of the periodogram
for general linear processes.

Corollary 2.2.6. Suppose that (εt)t∈Z ∼ IID(0, σ2), Xt =
∑∞

t=−∞ βkεt−k, where∑∞
k=−∞ |βk| < ∞. Let IXn be the periodogram based on X1, . . . , Xn. Then, for Fourier

frequencies λk = 2πk/n (k = −bn−1
2
c, . . . , bn

2
c),

(i) IXn (λk)
d−→ fX(λk)Z

2
1 , if λk ∈ {0, π},

(ii) IXn (λk)
d−→ fX(λk)

(
Z2

1 + Z2
2

)
/2, if λk 6∈ {0, π},

where Z1, Z2 ∼ N(0, 1) are independent.
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Proof. Let Iεn be the periodogram based on ε1, . . . , εn. It follows from Theorem 2.2.5 that

IXn (λk) =
∣∣β(e−iλk)

∣∣2 Iεn(λk) + Rn(λk),

where Rn(λk)
P−→ 0.

Since, by Theorem 2.2.4,

Iεn(λk)
d−→


σ2

2π
Z2

1 , if λk ∈ {0, π},

σ2

2π

(
Z2

1 + Z2
2

)
/2, if λk 6∈ {0, π}

and fX(λk) = fε(λk)
∣∣β(e−iλk)

∣∣2 = σ2

2π

∣∣β(e−iλk)
∣∣2 we obtain that

IXn (λk)
d−→


σ2

2π

∣∣β(e−iλk)
∣∣2Z2

1 , if λk ∈ {0, π},

σ2

2π

∣∣β(e−iλk)
∣∣2(Z2

1 + Z2
2

)
/2, if λk 6∈ {0, π}

=


fX(λk)Z

2
1 , if λk ∈ {0, π},

fX(λk)
(
Z2

1 + Z2
2

)
/2, if λk 6∈ {0, π}

Corollary 2.2.6 underlines once more that the periodogram is not a consistent estimator
of the spectral density. This will be corroborated by the following pictures which show
the true spectral density fX of an AR(p) process with parameters α1 = α2 = α3 = 0.2
and independent innovations εt ∼ N(0, 1) (red lines), together with one realization of the
periodogram In obtained from samples of size n =100, 200, 500 and 1,000, respectively,
(blue lines). As can be seen, the periodogram fluctuates around the true spectral density,
however, its variability stays high even for moderately large sample sizes n. This is
disappointing because we should hope that observing the time series (Xt)t∈Z long enough
will enable us to estimate its spectral density with arbitrary precision.
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Exercise

Ex. 2.2.2 Suppose that the conditions of Corollary 2.2.6 are fulfilled.

(i) Show that, for λ ∈ {0, π} and fX(λ) 6= 0,

P
(
fX(λ) ∈

[
IXn (λ)/u2

1−α1
, IXn (λ)/u2

1−α2

])
−→
n→∞

2
(
α2 − α1

)
,

where u1−α = Φ−1(1− α) and 1/2 < α1 < α2 < 1.

(ii) Show that, for a Fourier frequency λ 6∈ {0, π} such that fX(λ) 6= 0,

P
(
fX(λ) ∈

[
IXn (λ)/(− ln(α1)), IXn (λ)/(− ln(α2))

])
−→
n→∞

α2 − α1,

where 0 < α1 < α2 < 1.
Hint: Use the fact that χ2

2 = Exp(1/2).
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In the following we consider consistent estimators of the spectral density and the
spectral distribution function. We begin with the simpler case of estimating the spectral
distribution function FX which is given by

FX(λ) =
1

2π

∫ λ

−π

{
γ(0) +

∑
k : k 6=0

γ(k) cos(kω)
}
dω =

1

2π

{
γ(0)(λ+π) + 2

∞∑
k=1

γ(k)
sin(kλ)

k

}
.

Recall that the periodogram In(λ) and the centered periodogram
In,X̄n(λ) are estimators of fX(λ) based on γ̃n(k) = n−1

∑n−|k|
t=1 Xt+|k|Xt and

γ̂n(k) = n−1
∑n−|k|

t=1

(
Xt+|k| − X̄n

)(
Xt − X̄n

)
, respectively. (γ̃n(k) = γ̂n(k) = 0 if

|k| ≥ n.) This leads to the following estimators of the spectral distribution function.

F̂n(λ) =

∫ λ

−π
In(ω) dω =

1

2π

{
γ̃n(0)(π + λ) + 2

n−1∑
k=1

γ̃n(k)
sin(kλ)

k

}
and

F̂n,X̄n(λ) =

∫ λ

−π
In,X̄n(ω) dω =

1

2π

{
γ̂n(0)(π + λ) + 2

n−1∑
k=1

γ̂n(k)
sin(kλ)

k

}
.

The following lemma shows that both F̂n(λ) and F̂n,X̄n(λ) are asymptotically unbiased
estimators of FX(λ).

Lemma 2.2.7. Let X = (Xt)t∈Z be a weakly stationary and real-valued process with
autocovariance function γ,

∑∞
k=−∞

∣∣γ(k)
∣∣ <∞.

(i) If EXt = 0, then
sup

λ∈[−π,π]

∣∣EF̂n(λ) − FX(λ)
∣∣ = O

(
n−1
)
.

(ii) For arbitrary EXt,

sup
λ∈[−π,π]

∣∣EF̂n,X̄n(λ) − FX(λ)
∣∣ = O

(
n−1 ln(n)

)
.

Proof. (i) Suppose that EXt = 0. Then Eγ̃n(k)−γ(k) =
(
(1−|k|/n)+−1

)
γ(k), which

implies that∣∣EF̂n(λ) − FX(λ)
∣∣ =

∣∣∣ 1
π

∞∑
k=1

((
1− |k|/n

)
+
− 1

)
γ(k)

sin(kλ)

k

∣∣∣
≤ 1

π

∞∑
k=1

(
1 −

(
1− |k|/n

)
+

)
︸ ︷︷ ︸

≤k/n

1

k

∣∣γ(k)
∣∣ = O

(
n−1
)
.

(ii) In this case, the calculations in the proof of Lemma 1.4.8 show that

Eγ̂n(k) =
(
1 − |k|/n

)
+
γ(k) + O

(
n−1
)
,

which implies that∣∣EF̂n,X̄n(λ) − FX(λ)
∣∣ ≤ 1

n

n∑
k=1

(
1 −

(
1 − |k|/n

)
+

)1

k

∣∣γ(k)
∣∣ + O

( 1

n

(
1 +

n∑
k=1

1

k

))
= O

(
n−1 ln(n)

)
.
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Lemma 2.2.8. Let X = (Xt)t∈Z be a strictly stationary process with autocovari-
ance function γ such that EXt = µ,

∑∞
k=−∞

∣∣γ(k)
∣∣ < ∞, EX4

t < ∞, and∑∞
t,u,v=−∞

∣∣ cum
(
X0 − µ,Xt − µ,Xu − µ,Xv − µ

)∣∣ < ∞.

(i) If µ = 0, then
var
(
F̂n(λ)

)
= O

(
n−1
)
.

(ii) For arbitrary µ,

var
(
F̂n,X̄n(λ)

)
= var

(
F̂n,µ(λ)

)
+ O

(
n−2/3 ln(n)

)
,

where F̂n,µ(λ) =
∫ λ
−π In,µ(ω) dω).

Proof. (i) We represent F̂n(λ) as a quadratic form, F̂n(λ) =
∑n

s,t=1AstXsXt, where

Ast =

{ 1
2πn

(π + λ) if s = t,
1

2πn
sin((s−t)λ)

s−t if s 6= t.

It follows from Lemma 1.4.9 that

var
(
F̂n(λ)

)
=

n∑
s,t,u,v=1

Ast︸︷︷︸
=O(n−1)

Auv︸︷︷︸
=O(n−1)

cum
(
Xs, Xt, Xu, Xv

)
+ 2 tr

(
AΣAΣ

)
=: Tn,1 + Tn,2,

where A =
((
Ast
))
s,t=1,...,n

, Σ =
((
γ(s− t)

))
s,t=1,...,n

. It is obvious, that

Tn,1 = O
(
n−1
)
.

The term |Tn,2| can be estimated by

∣∣Tn,2∣∣ ≤ 2
n∑

s,t,u,v=1

∣∣AstΣtuAuvΣvs

∣∣
≤

n∑
s,t,u,v=1

(
A2
st + A2

uv

) ∣∣Σtu

∣∣ ∣∣Σvs

∣∣
≤ max

1≤s,t≤n

{ n∑
u=1

∣∣Σtu

∣∣︸ ︷︷ ︸
= |γ(t−u)|

n∑
v=1

∣∣Σvs

∣∣︸ ︷︷ ︸
= |γ(v−s)|

} n∑
s,t=1

A2
st

+ max
1≤u,v≤n

{ n∑
s=1

∣∣Σvs

∣∣︸ ︷︷ ︸
= |γ(v−s)|

n∑
t=1

∣∣Σtu

∣∣︸ ︷︷ ︸
= |γ(t−u)|

} n∑
u,v=1

A2
uv

≤ 2
( ∞∑
k=−∞

|γ(k)|
)2

n∑
s,t=1

A2
st (2.2.6)

and it follows from max1≤s≤n
∑n

t=1 A
2
st ≤ 1

n2 + 1
4n2π2

∑n−1
k=1

1
k2

= O
(
n−2
)
that

Tn,2 = O
(
n−1
)
.
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(ii) We have

γ̂n(k) =
1

n

n−|k|∑
t=1

(
Xt+|k| − µ + µ− X̄n

)(
Xt − µ + µ− X̄n

)
=

1

n

n−|k|∑
t=1

(
Xt+|k| − µ

)(
Xt − µ

)
︸ ︷︷ ︸

=: γ̂n,µ(k)

+
n∑

s,t=1

M
(k,n)
st

(
Xs − µ

)(
Xt − µ

)
,

where maxs,t
{∣∣M (k,n)

st

∣∣} = O
(
n−2
)
. This implies

F̂n,X̄n(λ) =
1

2π

{
γ̂n(0)(π + λ) + 2

n−1∑
k=1

γ̂n(k)
sin(kλ)

k

}
=

1

2π

{
γ̂n,µ(0)(π + λ) + 2

n−1∑
k=1

γ̂n,µ(k)
sin(kλ)

k

}
︸ ︷︷ ︸

= F̂n,µ(λ)

+
n∑

s,t=1

R
(n)
st (Xs − µ)(Xt − µ),

where it follows from R
(k,n)
st = M

(0,n)
st (π + λ) + 2

∑n−1
k=1 M

(k,n)
st sin(kλ)/k that

maxs,t
{∣∣R(n)

st

∣∣} = O
(
n−2 ln(n)

)
. It follows from Lemma 1.4.9 that

var
( n∑
s,t=1

R
(n)
st (Xs − µ)(Xt − µ)

)
=

n∑
s,t,u,v=1

R
(n)
st R

(n)
uv cum

(
Xs − µ,Xt − µ,Xu − µ,Xv − µ

)
+ 2

n∑
s=1

n∑
t,u,v=1

R
(n)
st ΣtuR

(n)
uv Σvs

= . . . = O
(
n−2(ln(n))2

)
.

Since, according to (i), var
(
F̂n,µ(λ)

)
= O

(
n−1
)
we obtain by the Cauchy-Schwarz in-

equality that
var
(
F̂n,X̄n(λ)

)
= var

(
F̂n,µ(λ)

)
+ O

(
n−3/2 ln(n)

)
.

We conclude from Lemmas 2.2.7 and 2.2.8 that the squared error risk of the estimators
of the spectral distribution function tends to zero as n → ∞. This is in sharp contrast
to the behavior of In(λ) and In,X̄n(λ). The essential difference between estimators of the
spectral distribution function and the periodogram can be found when we consider their
respective representations as quadratic forms,

∑
s,tAstXsXt. In case of the estimators of

the spectral distribution function we have that Ast = O
(
n−1(1 ∧ 1/|s− t|)

)
. In contrast,

in case of In(λ) and In,X̄n(λ), we have that Ast = O
(
n−1
)
which provides some hint why

the variance of the spectral density estimators does not vanish as n→∞.
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In the following we introduce two methods to obtain consistent (sequences of) esti-
mators of the spectral density. We assume that the process (Xt)t∈Z is strictly stationary
with EXt = 0 and that its autocovariance function γ is absolutely summable. As we did
for the estimator of the spectral distribution function, we also assume that E[X4

t ] < ∞
and that

∑∞
t,u,v=−∞ cum

(
X0, Xt, Xu, Xv

)
< ∞. The first method is motivated by the

representation

fX(λ) =
1

2π

∞∑
k=−∞

γ(k) cos(kλ).

Since the autocovariance function is absolutely summable, we obtain that∣∣∣ 1

2π

∑
k : |k|>m

γ(k) cos(kλ)
∣∣∣ ≤ 1

2π

∑
k : |k|>m

∣∣γ(k)
∣∣ −→
m→∞

0,

which suggests the so-called lag window estimator (since a “window” ensures that only
a limited number of lags are included). This estimator is defined as

f̂n(λ) :=
1

2π

∑
k : |k|≤mn

γ̃n(k) cos(kλ) ∀λ ∈ [−π, π].

Of course, if mn ≥ n− 1, then f̂n is equal to the periodogram In. To obtain consistency,
the sequence (mn)n∈N has to fulfill two requirements: It is easy to see that mn −→

n→∞
∞

leads to a vanishing bias and, as we see below, mn/n −→
n→∞

0 yields a vanishing variance.
Here are details of the corresponding calculations:

Since
Eγ̃n(k) =

{
(1− |k|/n)γ(k), if |k| ≤ n− 1,
0, if |k| > n− 1

we obtain that
Ef̂n(λ) =

1

2π

∑
k : |k|≤mn

(
1− |k|/n)+γ(k) cos(kλ).

Hence, we obtain by Lebesgue’s theorem on dominated convergence that

fX(λ) − Ef̂n(λ) =
1

2π

∞∑
k=−∞

(
1 − (1− |k|/n)+1(|k| ≤ mn)︸ ︷︷ ︸

−→
n→∞

1

)
γ(k) cos(kλ) −→

n→∞
0

(2.2.7)
holds true if mn −→

n→∞
∞. To estimate the variance of f̂n(λ), we rewrite this estimator as

a quadratic form,

f̂n(λ) =
n∑

s,t=1

AstXsXt,

where
Ast =

{
1

2πn
cos(λ(s− t)), if |s− t| ≤ mn,

0, if |s− t| > mn.

It follows from Lemma 1.4.9 that

var
(
f̂n(λ)

)
=

n∑
s,t,u,v=1

AstAuv cum(Xs, Xt, Xu, Xv) + 2 tr
(
AΣAΣ

)
=: Tn,1 + Tn,2,
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where A =
((
Ast
))
s,t=1,...,n

and Σ =
((
γ(s−t)

))
s,t=1,...,n

denotes the covariance matrix of the
vector (X1, . . . , Xn)T . To estimate |Tn,1| it suffices to use the fact that |Ast| ≤ 1/(2πn).
Therefore,

∣∣Tn,1∣∣ ≤ 1

4π2n2

n∑
s=1

n∑
t,u,v=1

∣∣ cum(Xs, Xt, Xu, Xv)
∣∣

︸ ︷︷ ︸
≤

∑∞
t,u,v=−∞ | cum(X0,Xt,Xu,Xv)|<∞

= O
(
n−1
)
.

The term |Tn,2| can be estimated as follows:

∣∣Tn,2∣∣ ≤ 2
n∑

s,t,u,v=1

∣∣AstΣtuAuvΣvs

∣∣
≤

n∑
s,t,u,v=1

(
A2
st + A2

uv

) ∣∣Σtu

∣∣ ∣∣Σvs

∣∣
≤ max

1≤s,t≤n

{ n∑
u=1

∣∣Σtu

∣∣︸ ︷︷ ︸
= |γ(t−u)|

n∑
v=1

∣∣Σvs

∣∣︸ ︷︷ ︸
= |γ(v−s)|

} n∑
s,t=1

A2
st

+ max
1≤u,v≤n

{ n∑
s=1

∣∣Σvs

∣∣︸ ︷︷ ︸
= |γ(v−s)|

n∑
t=1

∣∣Σtu

∣∣︸ ︷︷ ︸
= |γ(t−u)|

} n∑
u,v=1

A2
uv

≤ 2
( ∞∑
k=−∞

|γ(k)|
)2

n∑
s,t=1

A2
st.

Since |Ast| ≤ 1/(2πn) and only the main diagonal and 2mn minor diagonals of A can
contain nonzero entries we see that

n∑
s,t=1

A2
st ≤

1

(2πn)2
n (2mn + 1),

which implies ∣∣Tn,2∣∣ = O
(
mn/n

)
.

Hence,
var
(
f̂n(λ)

)
= O

(
n−1
)

+ O
(
mn/n

)
= O

(
mn/n

)
. (2.2.8)

(2.2.7) and (2.2.8) imply that

E
[(
f̂n(λ) − fX(λ)

)2
]

= var
(
f̂n(λ)

)
+
(
Ef̂n(λ) − fX(λ)

)2 −→
n→∞

0,

if the sequence (mn)n∈N of truncation parameters is chosen such that mn −→
n→∞

∞ and
mn/n −→

n→∞
0. In this case, we obtain by the Markov inequality that

f̂n(λ)
P−→ fX(λ),

i.e., the sequence
(
f̂n(λ)

)
n∈N is consistent for fX(λ).
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The following pictures show the true spectral density fX of a stationary AR(p) process
with parameters α1 = α2 = α3 = 0.2 and independent innovations εt ∼ N(0, 1) (red
lines), together with one realization of the lag window estimator f̂n obtained from samples
of size n =100, 200, 500 and 1,000, respectively, (blue lines). Although the parameter mn

was chosen independently of n to be equal to 10, we see that the lag window estimator
approximates fX quite well for samples of size 500 and 1,000. This is in sharp contrast
to the periodogram, which fluctuates around the true spectral density regardless of the
size of the sample.
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A second method to obtain a consistent estimator of the spectral density is motivated
by the fact that the values of the periodogram at different Fourier frequencies are asymp-
totically uncorrelated. (We have shown such a result for a white noise but this also holds
true e.g. for linear processes.) On the other hand, the periodogram is an asymptotically
unbiased estimator of the spectral density and the spectral density itself is a continuous
function. Therefore, it seems promising to “smooth” the periodogram which is achieved
in a particularly simple way by

̂̂
fn(λ) :=

1

2hn

∫ λ+hn

λ−hn
In(ω) dω.

The parameter hn is called “bandwidth” and it controls the degree of smoothing. We
will see that this estimator is asymptotically unbiased if hn −→

n→∞
0 and that its variance

tends to zero if nhn −→
n→∞

∞.
Recall from (i) of Theorem 2.2.2 that

sup
ω∈[−π,π]

∣∣EIn(ω) − fX(ω)
∣∣ −→
n→∞

0.

Since fX is continuous we obtain that∣∣E ̂̂fn(λ) − fX(λ)
∣∣

=
1

2hn

∣∣∣ ∫ λ+hn

λ−hn
EIn(ω) − fX(λ) dω

∣∣∣
≤ 1

2hn

∫ λ+hn

λ−hn

∣∣fX(ω) − fX(λ)
∣∣ dω + sup

ω∈[−π,π]

∣∣EIn(ω) − fX(ω)
∣∣ −→
n→∞

0. (2.2.9)

To estimate the variance of ̂̂fn(λ), we rewrite it as a quadratic form,

̂̂
fn(λ) =

n∑
s,t=1

A′stXsXt,

where

A′st =
1

2πn

1

2hn

∫ λ+hn

λ−hn
cos
(
ω(s−t)

)
dω =


1

2πn
, if s = t,

1
2πn

sin((s−t)(λ+hn))−sin((s−t)(λ−hn))
2hn (s−t) , if s 6= t.

It follows again from Lemma 1.4.9 that

var
(̂̂
fn(λ)

)
=

n∑
s,t,u,v=1

A′stA
′
uv cum(Xs, Xt, Xu, Xv) + 2 tr

(
A′ΣA′Σ

)
=: T ′n,1 + T ′n,2,

where A′ =
((
A′st
))
s,t=1,...,n

and Σ =
((
γ(s− t)

))
s,t=1,...,n

denotes the covariance matrix of
the vector (X1, . . . , Xn)T . Since |A′s,t| ≤ 1/(2πn) we obtain

∣∣T ′n,1∣∣ ≤ 1

4π2n2

n∑
s=1

n∑
t,u,v=1

∣∣ cum(Xs, Xt, Xu, Xv)
∣∣

︸ ︷︷ ︸
≤

∑∞
t,u,v=−∞ | cum(X0,Xt,Xu,Xv)|<∞

= O
(
n−1
)
.
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In order to estimate |T ′n,2|, we have to take a closer look at the A′st. For s 6= t, we have

that
∣∣∣ sin((s−t)(λ+hn))−sin((s−t)(λ−hn))

2hn (s−t)

∣∣∣ ≤ min
{

1, 1/(hn|s− t|)
}
, which implies that

n∑
s,t=1

A′s,t
2 ≤ 1

4π2n

(
1 +

∑
k : k 6=0

min{1, 1/(h2
nk

2)}
)

= O
( 1

nhn

)
.

Therefore, we obtain in analogy to the computations above that

∣∣T ′n,2∣∣ ≤ 2
( ∞∑
k=−∞

|γ(k)|
)2

n∑
s,t=1

A′st
2

= O
( 1

nhn

)
,

which implies that

var
(̂̂
fn(λ)

)
= O

(
n−1
)

+ O
( 1

nhn

)
= O

( 1

nhn

)
. (2.2.10)

(2.2.9) and (2.2.10) imply that

E
[(̂̂
fn(λ) − fX(λ)

)2]
= var

(
f̂n(λ)

)
+
(
Ef̂n(λ) − fX(λ)

)2

−→
n→∞

0,

if the sequence (hn)n∈N of bandwidths is chosen such that hn −→
n→∞

0 and nhn −→
n→∞

∞. Then
we obtain by the Markov inequality that

̂̂
fn(λ)

P−→ fX(λ),

i.e., the sequence
(̂̂
fn(λ)

)
n∈N is consistent.

The following pictures show the true spectral density fX of a stationary AR(p) pro-
cess with parameters α1 = α2 = α3 = 0.2 and independent innovations εt ∼ N(0, 1)

(red lines), together with one realization of the smoothed periodogram ̂̂
fn obtained from

samples of size n =100, 200, 500 and 1,000, respectively, (blue lines). The bandwidth hn
was chosen independently of n to be equal to 0.2. As in case of the lag window estimator,
we obtain quite a good approximation of the spectral density fX for samples of size 500
and 1,000.
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Although the lag window estimator f̂n(λ) and the smoothed periodogram ̂̂
fn(λ) are

motivated by different considerations, they have an important feature in common. If
we represent these estimators as quadratic forms, f̂n(λ) =

∑n
s,t=1AstXsXt and

̂̂
fn(λ) =∑n

s,t=1A
′
stXsXt, respectively, then we see that the coefficients Ast and A′st are consider-

ably smaller than their counterparts for the periodogram (In(λ) =
∑n

s,t=1
cos((s−t)λ)

2πn
XsXt),

as |s − t| gets large. This is in fact the key for obtaining a vanishing variance by these
two estimators as the sample size n tend to infinity. On the other hand, the downweight-
ing of γ̃n(k) for large values of |k| does not matter much since it follows from absolute
summability of γ that the contribution of the corresponding autocovariances to the spec-
tral density decreases as |k| gets large. Therefore, the estimators f̂n(λ) and ̂̂fn(λ) are still
asymptotically unbiased if the tuning parameters mn and hn are chosen within the range
described above.
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3 Solutions to the exercises

Ex. 1.1.1 Show that C is an algebra but not a σ-algebra on R∞.

Solution
We verify that C satisfies the axioms of an algebra:

a) R∞ ∈ C since R︸︷︷︸
∈B

×R∞ ∈ C1.

b) Let A ∈ C. Then A = B×R∞ for someB ∈ Bd and some d ∈ N. Since Ac = Bc×R∞
and Bc ∈ Bd we obtain that Ac ∈ C.

c) Let A1, A2 ∈ C. Then A1 = B1 × R∞ and A2 = B2 × R∞, for some B1 ∈ Bd1 ,
B2 ∈ Bd2 , and some d1, d2 ∈ N.
If d1 = d2, then

A1 ∪ A2 =
(
B1 ∪B2

)︸ ︷︷ ︸
∈Bd1

×R∞ ∈ Cd1 .

If d1 > d2, then A2 = B2 × Rd2−d1︸ ︷︷ ︸
∈Bd1

×R∞ ∈ Cd1 and

A1 ∪ A2 =
(
B1 ∪ (B2 × Rd1−d2)

)︸ ︷︷ ︸
∈Bd1

×R∞ ∈ Cd1 .

If d1 < d2, then A1 ∪ A2 ∈ Cd2 follows analogously.

It follows from a) to c) that C is an algebra on R∞.

To disprove that C is not a σ-algebra, consider the sets An := [0, 1]n×R∞. Then An ∈ C
for all n ∈ N, however,

∞⋂
n=1

An = [0, 1]× [0, 1]× · · · =
{

(x1, x2, . . .) : xt ∈ [0, 1] for all t
}
6∈ C.
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Ex. 1.1.2 Show that, for µ ∈ R,{
x ∈ R∞ :

1

n

n∑
t=1

xt −→
n→∞

µ
}
∈ σ

(
C
)
.

Solution
Note that a sequence (yn)n∈N of real numbers converges to some µ ∈ R if there exists
for each ε > 0 some sufficiently large N = N(ε) ∈ N such that |yn − µ| ≤ ε holds for all
n ≥ N .
Therefore,{

x ∈ R∞ :
1

n

n∑
t=1

xt −→
n→∞

µ
}

=
∞⋂
K=1

∞⋃
N=1

∞⋂
n=N

{
x ∈ R∞ :

∣∣∣ 1
n

n∑
t=1

xt − µ
∣∣∣ ≤ 1

K

}
︸ ︷︷ ︸

∈Cn

∈ C.
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Ex. 1.1.3 Let (Xt)t∈[0,∞) be a stochastic process on a probability space (Ω,F , P ) such
that

– X0 = 0 with probability 1,

– for 0 < t1 < t2 < . . . < tk, k ∈ N, the incrementsXt1 , Xt2−Xt1 , . . . , Xtk−Xtk−1

are stochastically independent.

– for s < t, Xt −Xs ∼ N
(
0, t− s

)
.

Find the finite-dimensional distributions PXt1 ,...,Xtk .

Solution
Let 0 ≤ t1 < t2 < . . . < tk. Since the increments are independent and normally dis-
tributed we obtain that

Xt1

Xt2 −Xt1
...

Xtk −Xtk−1

 ∼ Nk(0k, Diag
(
t1, t2 − t1, . . . , tk − tk−1

))
,

where 0k =
(

0, . . . , 0︸ ︷︷ ︸
k times

)T . It follows that
 Xt1

...
Xtk

 =


1 0 · · · 0

1 1
. . . ...

... . . . . . . 0
1 · · · 1 1




Xt1

Xt2 −Xt1
...

Xtk −Xtk−1

 ∼ Nk(0k, M),
where

M =


1 0 · · · 0

1 1
. . . ...

... . . . . . . 0
1 · · · 1 1




t1 0 · · · 0

0 t2 − t1
. . . ...

... . . . . . . 0
0 · · · 0 tk − tk−1




1 0 · · · 0

1 1
. . . ...

... . . . . . . 0
1 · · · 1 1


T

.

The elements of the matrix M can also be computed as follows. Since, for i < j,

Mi,j = cov
(
Xti , Xtj

)
= cov

(
Xti , Xti

)︸ ︷︷ ︸
= ti

+ cov
(
Xti , Xtj −Xti

)︸ ︷︷ ︸
= 0

we obtain, for 1 ≤ i, j ≤ k,
M = min

{
ti, tj

}
.

Finally, if t1, . . . , tk are arbitrary distinct and non-negative numbers, Xt1
...
Xtk

 ∼ Nk
0k,

 t1 ∧ t1 · · · t1 ∧ tk
. . .

. . . . . .
tk ∧ t1 · · · tk ∧ tk


 .
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Ex. 1.2.1 Suppose that (εt)t∈Z is a sequence of i.i.d. random variables, Eε0 = 0,
Eε2

0 =: σ2
ε <∞, and

Xt := εt + β εt−1.

Is the process (Xt)t∈Z (weakly) stationary?

Solution
We have that

EXt = E
[
εt + β εt−1

]
= Eεt + β Eεt−1 = 0

and

cov
(
Xt+k, Xt

)
= cov

(
εt+k + β εt+k−1, εt + β εt−1

)
=


(1 + β2)σ2

ε , if k = 0,
β σ2

ε , if k = ±1,
0, if |k| > 1

holds for all t ∈ Z. Therefore, the process (Xt)t∈Z is (weakly) stationary?
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Ex. 1.2.2 Let (βk)k∈Z be a sequence of real numbers with
∑∞

k=−∞ β
2
k < ∞. The

function γ : Z→ R is defined by γ(k) =
∑∞

j=−∞ βj+kβj.

Is γ an autocovariance function?

Solution
It follows from Theorem 1.2.5 that it suffices to show that

• γ is real-valued ( 6= ±∞) and γ(k) = γ(−k) ∀k ∈ Z,

•
∑n

i,j=1 aiγ(ti − tj)aj ≥ 0 ∀a1, . . . , an ∈ R, ∀t1, . . . , tn ∈ Z, ∀n ∈ N.

First of all, we obtain that

∞∑
j=−∞

∣∣βj+k∣∣ ∣∣βj∣∣ ≤
√√√√ ∞∑

j=−∞

β2
j+k

√√√√ ∞∑
j=−∞

β2
j < ∞.

Hence, the infinite series
∑∞

j=−∞ βj+kβj is absolutely convergent and its sum therefore is
finite. Moreover, it is obvious that

γ(k) =
∞∑

j=−∞

βj+k βj =
∞∑

j=−∞

βj βj−k = γ(−k) ∀k ∈ Z,

i.e., γ is indeed a real-valued and even function.

To prove that γ is non-negative definite, suppose that n ∈ N, a1, . . . , an ∈ R, and
t1, . . . , tn ∈ Z are arbitrary. Then

n∑
i,j=1

ai γ(ti − tj) aj =
n∑

i,j=1

ai

(∑
k∈Z

βk+ti−tj βk

)
aj.

Since the infinite series
∑

k∈Z βk+ti−tj βk is absolutely summable we conclude that above
triple sum is also absolutely convergent and any change of the order of summation does
not change the value of the sum. Therefore, we obtain

n∑
i,j=1

ai γ(ti − tj) aj =
n∑

i,j=1

ai

(∑
k∈Z

βk+ti βk+tj

)
aj

=
∑
k∈Z

( n∑
i=1

aiβk+ti

)( n∑
j=1

ajβk+tj

)
=

∑
k∈Z

( n∑
i=1

aiβk+ti

)2

≥ 0.

To summarize, γ is an even, real-valued and non-negative definite function. It follows
from Theorem 1.2.5 that there exists a stochastic process with γ as its autocovariance
function.
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Ex. 1.3.1 Let (εt)t∈Z be a sequence of i.i.d. random variables on (Ω,F , P ) and (βk)k∈Z
be a sequence of real numbers. Assume that Eεt = 0, σ2

ε := Eε2
t < ∞, and∑∞

k=−∞ β
2
k <∞.

(i) Show that
(
Xt,m

)
m∈N defined by

Xt,m :=
m∑

k=−m

βkεt−k

is a Cauchy sequence in L2(Ω,F , P ).

(ii) Let Xt be the L2-limit of
(
Xt,m

)
m∈N.

Compute cov(Xt+k, Xt).

(iii) Let π : Z→ Z be a bijective function. Then, for each t ∈ Z,
(
βπ(k)εt−π(k)

)
k∈Z

is a rearrangement of the sequence
(
βkεt−k

)
t∈Z.

a) Show that
(
X̃t,m

)
m∈N defined by

X̃t,m :=
m∑

k=−m

βπ(k)εt−π(k)

is also a Cauchy sequence in L2(Ω,F , P ).
b) Show that ∥∥Xt,m − X̃t,m

∥∥ −→
m→∞

0

and conclude that
P
(
Xt = X̃t

)
= 1,

where X̃t denotes the L2-limit of
(
X̃t,m

)
m∈N.

Solution

(i) Let, w.l.o.g., m < n. Then∥∥Xt,n − Xt,m

∥∥2
=

〈
Xt,n − Xt,m, Xt,n − Xt,m

〉
=

〈 ∑
j : m<|j|≤n

βj εt−j,
∑

k : m<|k|≤n

βk εt−k

〉
=

∑
j,k : m<|j|,|k|≤n

βjβk 〈εt−j, εt−k〉︸ ︷︷ ︸
= δj,k σ2

ε

=
∑

k : m<|k|≤n

σ2
ε β

2
k .

Since the sequence (βk)k∈Z is absolutely summable we see that the right-hand side
of the above display can be made arbitrarily small if m and n are sufficiently large.
Hence, (Xt,m)m∈N is a Cauchy sequence in L2(Ω,F , P ).
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(ii) Since EXt,m = 0 for all t,m and E|Xt,m−Xt| ≤
∥∥Xt,m−Xt

∥∥→m→∞ 0 we conclude
that EXt = 0 for all t ∈ Z. Now we obtain by continuity of the inner product (see
(ii) of Lemma 1.3.4) that

cov
(
Xt+k, Xt

)
=

〈
Xt+k, Xt

〉
= lim

m→∞

〈
Xt+k,m, Xt,m

〉
= lim

m→∞

〈 m∑
j=−m

βjεt+k−j,

m∑
l=−m

βlεt−l

〉
= lim

m→∞

m∑
j,l=−m

βjβl 〈εt+k−j, εt−l〉︸ ︷︷ ︸
= δj−k,l σ2

ε

= σ2
ε

∑
j∈Z

βjβj−k.

(iii) a) Let ε > 0. Since
∑

k∈Z β
2
π(k) =

∑
k∈Z β

2
k < ∞ we obtain for m < n, as in the

proof of part (i),∥∥X̃t,m − X̃t,n

∥∥2
=

∥∥ ∑
k : m<|k|≤n

βπ(k)εt−π(k)

∥∥2

= σ2
ε

∑
k : m<|k|≤n

β2
π(k) ≤ ε if m ≥ N(ε),

for some sufficiently large N(ε).

b) Let ε > 0. It follows from
∑

k∈Z β
2
k < ∞ that there exists some Kε ∈ N such

that
∑

k : |k|>Kε β
2
k < ε. Ifm is such that {−Kε, . . . , Kε} ⊆ {π(−m), . . . , π(m)},

then ∥∥Xt,m − X̃t,m

∥∥2
=

∥∥ ∑
k : |k|≤m

βkεt−k − βπ(k)εt−π(k)

∥∥2

= σ2
ε

∑
k∈{−m,...,m}\{π(−m),...,π(m)}

β2
k

+ σ2
ε

∑
k∈{π(−m),...,π(m)}\{−m,...,m}

β2
π(k)

≤ 2σ2
ε ε.

We obtain by the triangle inequality that∥∥Xt − X̃t

∥∥ ≤ ∥∥Xt − Xt,m

∥∥ +
∥∥Xt,m − X̃t,m

∥∥ +
∥∥X̃t,m − X̃t

∥∥ −→
m→∞

0,

which implies that
∥∥Xt − X̃t

∥∥ = 0, and so

P
(
Xt = X̃t

)
= 1.
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Ex. 1.4.1 Suppose that Y and Z are uncorrelated random variables with EY = EZ =
0 and EY 2 = EZ2 = 1. For t ∈ N, let Xt = Y cos(θt) + Z sin(θt), where θ ∈ R.

Show that X̂3 = 2 cos(θ)X2 −X1 is the best linear predictor of X3 given X1, X2.

Hint: E[XsXt] = cos(θ(s− t)) and cos(2θ) = (cos(θ))2 − (sin(θ))2.

Solution
According to (ii) of Theorem 1.3.6, it suffices to show that

〈X3 − X̂3, Xk〉 = 0 for k = 1, 2.

We can easily verify this:

〈X3 − 2 cos(θ)X2 + X1, X1〉 = cos(2θ) − 2
(

cos(θ)
)2

+ 1

= −
(

sin(θ)
)2 −

(
cos(θ)

)2
+ 1 = 0

and
〈X3 − 2 cos(θ)X2 + X1, X2〉 = cos(θ) − 2 cos(θ) + cos(−θ) = 0.
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Ex. 1.4.2 Let (εt)t∈Z ∼WN(0, σ2
ε) and Xt =

∑∞
k=0 α

kεt−k, for some α ∈ R, |α| < 1.

Show that X̂n+1 := αXn is the best linear predictor of Xn+1 given X1, . . . , Xn.
Hint: Argue that Xn+1 − αXn = εn+1 and use (ii) of Lemma 1.3.4.

Solution
Since

∑∞
k=0 α

kεt−k converges absolutely we obtain that

Xn+1 − αXn =
∞∑
k=0

αkεn+1−k − α ·
∞∑
k=0

αkεn−k

= εn+1 +

(
∞∑
k=1

αkεn+1−k −
∞∑
k=0

αk+1εn−k

)
︸ ︷︷ ︸

= 0

.

According to Theorem 1.3.6, we have to show that

〈Xn+1 − αXn, Xk〉 = 0 ∀k = 1, . . . , n.

In order to use linearity of the inner product, we first replace Xk by its truncated coun-
terpart Xk,m =

∑m
l=0 α

lεk−l. We obtain

〈Xn+1 − αXn, Xk,m〉 = 〈εn+1,
m∑
l=0

αlεk−l〉

=
m∑
l=0

αl 〈εn+1, εk−l〉︸ ︷︷ ︸
= 0

= 0.

Finally, we obtain by continuity of the inner product ((ii) of Lemma 1.3.4) that

〈Xn+1 − αXn, Xk〉 = lim
m→∞

〈Xn+1 − αXn, Xk,m〉 = 0 ∀k = 1, . . . , n.
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