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1 Introduction

The concept of 2-microlocal analysis or 2-microlocal function spaces is due to J.M. Bony
(see [Bo84]). It is an appropriate instrument to describe the local regularity and the
oscillatory behavior of functions near to singularities.
The approach is Fourier-analytical using Littlewood-Paley-analysis of distributions. The
theory has been elaborated and widely used in fractal analysis and signal processing
by several authors. We refer to [Ja91], [JaMey96], [LVSeu04], [Mey97], [MeyXu97],
[MoYa04] and [Xu96].
The main achievements are closely related to the use of wavelet methods and, as a
consequence, wavelet characterizations of 2-microlocal spaces. Here, we intend to give a
unified Fourier-analytical approach to generalize 2-microlocal Besov spaces and we are
interested in local characterizations of the spaces under consideration.
Therefore, let {ϕj}j∈N0 be a smooth resolution of unity (see Subsection 2.2 for the precise
definition) and let {wj}j∈N0 be a sequence of weight functions satisfying

0 < wj(x) ≤ Cwj(y)(1 + 2j|x− y|)α (1.1)

2−α1wj(x) ≤ wj+1(x) ≤ 2α2wj(x) , (1.2)

for x, y ∈ Rn, j ∈ N0 and α, α1, α2 ≥ 0. F and F−1 stand for the Fourier transform and
its inverse in the space S ′(Rn) of tempered distributions, respectively. Let 0 < p, q ≤ ∞
and s ∈ R. Then we introduce Bs,mloc

pq (Rn, w) as the space of all f ∈ S ′(Rn) such that

∥∥f |Bs,mloc
pq (Rn,w)

∥∥ =

( ∞∑
j=0

2jsq
∥∥wjF−1(ϕjFf)

∣∣Lp(Rn)
∥∥q

)1/q

< ∞ (1.3)

for 0 < q < ∞ and

∥∥f |Bs,mloc
p∞ (Rn,w)

∥∥ = sup
j∈N0

2js
∥∥wjF−1(ϕjFf)

∣∣Lp(Rn)
∥∥ < ∞ , (1.4)

for q = ∞. As a special case, let wj(x) = (1 + 2j|x − x0|)s′ for s′ ∈ R, x0 ∈ Rn and
j ∈ N0. If p = q = 2 we obtain the spaces Hs,s′

x0
considered by Bony in [Bo84]. The

case p = q = ∞ yields the 2-microlocal spaces Cs,s′
x0

introduced by Jaffard in [Ja91] and
extensively treated by Meyer, Jaffard and Lévy-Vehel ([JaMey96],[LVSeu04]).
The more general case 1 ≤ p, q ≤ ∞, and characterizations of chirp-like signals as
well as relations to gravitational wave signals, has been studied by Xu, Meyer and
Moritoh,Yamada ([Xu96],[MeyXu97],[MoYa04]).
We can rewrite

[F−1(ϕjFf)](x) = [(F−1ϕj) ∗ f ](x) . (1.5)
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The functions F−1ϕj do not have compact support. In particular, to compute the build-
ing blocks (F−1ϕjFf) in x ∈ Rn we need f globally. Roughly speaking, we shall show
that the functions F−1ϕj in (1.5) and (1.3),(1.4), respectively, can be replaced by smooth
functions with compact support in a ball of radius c2−j (c is a constant). This leads to
local characterizations of our spaces. Characterizations of such a type are well known for
weighted and unweighted Besov spaces (see for instance [Tri92] and [Tri06]) and turned
out to be very useful to solve some key problems as the behavior by pointwise multi-
plication and invariance under diffeomorphisms. Moreover, it paves the way to atomic
and wavelet representations as well as to discretizations (see [Tri06] for classical Besov
spaces) and isomorphisms to corresponding sequence spaces.
The paper is organized as follows. Section 2 contains all definitions and some basic
properties such as the independence of Bs,mloc

pq (Rn,w) of the choice of the resolution of
unity {ϕj}j∈N0 and the lift property. Here we rely on Fourier multiplier theorems for
weighted spaces of entire analytic functions which can be found in [SchmTri87].
The main part is Section 3, where we give the characterization by local means. We use
maximal function and inequalities and follow ideas in [Tri92], [Ry99] and [Vyb06] in a
different context.
The final Section 4 deals with embedding theorems for different metrics based on weighted
Nikols’kij inequalities ([SchmTri87]). Moreover, we apply the results of Section 3 (local
means) to prove a theorem on pointwise multiplication. Finally, we use the local means
characterization to prove that the spaces Bs,mloc

pq (Rn,w) are invariant under a special
class of diffeomorphisms.
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2 The 2-microlocal Besov spaces Bs,mloc
pq (Rn, w)

2.1 Preliminaries

As usual Rn symbolizes the n−dimensional Euclidean space, N is the collection of all
natural numbers and N0 = N∪ {0}. Z and C stand for the sets of integers and complex
numbers, respectively.
The points of the Euclidian space Rn are denoted by x = (x1, . . . , xn), y = (y1, . . . , yn), . . . .
If β = (β1, . . . , βn) ∈ Nn

0 is a multi-index, then its length is denoted by |β| =
∑n

j=1 βj.

The derivatives Dβ = ∂|β|/∂β1 · · · ∂βn have to be understood in the distributional sense.
We put xβ = xβ1

1 · · ·xβn
n .

The Schwartz space S(Rn) is the space of all complex valued rapidly decreasing infinitely
differentiable functions on Rn. Its topology is generated by the norms

‖ϕ‖k,l = sup
x∈Rn

(1 + |x|)k
∑

|β|≤l

|Dβϕ(x)| ,k, l ∈ N0 . (2.1)

A linear mapping f : S(Rn) → C is called a tempered distribution, if there is a constant
c > 0 and k, l ∈ N0 such that

|f(ϕ)| ≤ c‖ϕ‖k,l

holds for all ϕ ∈ S(Rn). The collection of all such mappings is denoted by S ′(Rn). The
Fourier transform is defined on both spaces S(Rn) and S ′(Rn) and is given by

(Ff)(ϕ) := f(Fϕ) , ϕ ∈ S(Rn) ,f ∈ S ′(Rn)

where

Fϕ(ξ) :=
1

(2π)n/2

∫

Rn

e−ix·ξ ϕ(x)dx .

Here x ·ξ = x1ξ1 + · · ·+xnξn stands for the inner product. The inverse Fourier transform
is denoted by F−1ϕ or ϕ∨ and we often write ϕ̂ instead of Fϕ.

Vector-valued sequence spaces
As usual Lp(Rn) for 0 < p ≤ ∞ stands for the Lebesgue spaces on Rn normed by
(quasi-normed for p < 1)

‖f |Lp(Rn)‖ =




∫

Rn

|f(x)|pdx




1/p

for 0 < p < ∞ and

‖f |L∞(Rn)‖ = ess-sup
x∈Rn

|f(x)| .
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If w is a non-negative measurable function on Rn, we denote the weighted Lebesgue
spaces by Lp(Rn, w) and they are defined for 0 < p ≤ ∞ by

‖f |Lp(Rn, w)‖ = ‖wf |Lp(Rn)‖ =




∫

Rn

|f(x)|pwp(x)dx




1/p

,

with the usual modification if p = ∞. For a complex valued sequence a = {aj}∞j=0 the
sequence spaces lq for 0 < q ≤ ∞ are normed by (quasi-normed for q < 1)

‖a| lq‖ =

( ∞∑
j=0

|aj|q
)1/q

for 0 < q < ∞ and

‖a| l∞‖ = sup
j∈N0

|aj| .

Let {fk}k∈N0 be a sequence of complex valued measurable functions, 0 < p ≤ ∞ and
0 < q ≤ ∞. Then we put

‖fk(x)| lq(Lp)‖ = ‖{fk}k∈N0| lq(Lp)‖ =




∞∑

k=0




∫

Rn

|fk(x)|pdx




q/p



1/q

=

( ∞∑

k=0

‖fk|Lp‖q

)1/q

,

also with the above modifications for p = ∞ or q = ∞.
The constant c adds up all unimportant constants. So the value of the constant c may
change from one occurrence to another. By ak ∼ bk we mean that there are two constants
c1, c2 > 0 such that c1ak ≤ bk ≤ c2ak for all admissible k.

2.2 Definitions and basic properties

In this section we present the Fourier analytical definition of generalized 2-microlocal
Besov spaces Bs,mloc

pq (Rn, w) and we prove the basic properties in analogy to the classical
Besov spaces. To this end we need smooth resolutions of unity and we introduce our
admissible weight sequences w = {wj}j∈N0 .

Definition 2.1 (Admissible weight sequence): Let α, α1, α2 ≥ 0. We say that a sequence
of non-negative measurable functions w = {wj}∞j=0 belongs to the class Wα

α1,α2
if and only

if

(i) There exists a constant C > 0 such that

0 < wj(x) ≤ Cwj(y)
(
1 + 2j|x− y|)α

for all j ∈ N0 and all x, y ∈ Rn. (2.2)

(ii) For all j ∈ N0 we have

2−α1wj(x) ≤ wj+1(x) ≤ 2α2wj(x) for all x ∈ Rn. (2.3)
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Such a system {wj}∞j=0 ∈ Wα
α1,α2

is called admissible weight sequence.

Remark 2.2: A non-negative measurable function % is called an admissible weight func-
tion if there exist constants α% ≥ 0 and C% > 0, such that

0 < %(x) ≤ C%%(y)(1 + |x− y|)α% holds for every x, y ∈ Rn. (2.4)

If w = {wj}∞j=0 is an admissible weight sequence, each wj is an admissible weight
function, but in general the constant Cwj

depends on j ∈ N0.

Remark 2.3: If we use w ∈ Wα
α1,α2

without any restrictions, then α, α1, α2 ≥ 0 are
arbitrary but fixed numbers.

Remark 2.4: If w ∈ Wα
α1,α2

, w̃ ∈ Wβ
β1,β2

and λ > 0, it is easy to check:

(a) The sequence w−1 = {w−1
j }∞j=0 belongs to the class Wα

α2,α1
.

(b) The sequence λw belongs to the class Wα
α1,α2

.

(c) The sequence wλ = {wλ
j }∞j=0 belongs to the class Wλα

λα1,λα2
.

(d) The sequence w + w̃ belongs to the class Wmax(α,β)
max(α1,β1),max(α2,β2).

(e) The sequence w · w̃ belongs to the class Wα+β
α1+β1,α2+β2

.

Example 2.5: Let U 6= ∅ be a subset of Rn. We denote by dist(x, U) = infz∈U |x − z|
the distance of x ∈ Rn from U . A typical admissible weight sequence is for fixed U ⊂ Rn

and s′ ∈ R given by

wj(x) :=
(
1 + 2j dist(x, U)

)s′
for j ∈ N0. (2.5)

We have for s′ ≥ 0

wj(x) ≤ wj+1(x) ≤ 2s′wj(x) and for s′ < 0 2s′wj(x) ≤ wj+1(x) ≤ wj(x) .

Hence, for all j ∈ N0 and all fixed s′ ∈ R

2−max(0,−s′)wj(x) ≤ wj+1(x) ≤ 2max(0,s′)wj(x) for every x ∈ Rn. (2.6)

From the inequality dist(x, U) ≤ |x− y|+ dist(y, U) we derive for s′ ≥ 0

wj(x) =
(
1 + 2j dist(x, U)

)s′

≤ (
1 + 2j|x− y|+ 2j dist(y, U)

)s′
.

Since a + b ≤ 2ab for a, b ≥ 1, we get

wj(x) ≤ [
2
(
1 + 2j dist(y, U)

)
(1 + 2j|x− y|)]s′

= 2s′wj(y)(1 + 2j|x− y|)s′ ,
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for all x, y ∈ Rn and all j ∈ N0. If s′ < 0 we can do the same calculation for the inverse
weight sequence w−1 and according to Remark 2.4(a) we find

wj(x) ≤ 2−s′wj(y)(1 + 2j|x− y|)−s′ ,

for all x, y ∈ Rn and all j ∈ N0. Finally, we have for fixed s′ ∈ R and all j ∈ N0

0 < wj(x) ≤ 2|s
′|wj(y)(1 + 2j|x− y|)|s′| , (2.7)

for all x, y ∈ Rn. Together with (2.6) we get w ∈ Wα
α1,α2

if |s′| ≤ α, max(0,−s′) ≤ α1

and max(0, s′) ≤ α2.
A special case is U = {x0} for x0 ∈ Rn. Then dist(U, x) = |x− x0| and we get the well
known two-microlocal weights [JaMey96]:

wj(x) = (1 + 2j|x− x0|)s′ for j ∈ N0. (2.8)

If U is an open subset of Rn, we get the weight sequence Moritoh and Yamada used in
[MoYa04].

Example 2.6: Let w : Rn → [0,∞) be a measurable function with the properties:
There are constants C1, C2 ≥ 1 and β ≥ 1 such that for all x, y ∈ Rn

0 ≤ w(x) ≤ C1w(y) + C2|x− y|β . (2.9)

For fixed s′ ∈ R and all j ∈ N0 we define

wj(x) =
(
1 + 2jw(x)

)s′/β
for all x ∈ Rn. (2.10)

By analogy to Example 2.5 above we get

0 < wj(x) ≤ (2 C1C2)
|s′| wj(y)

(
1 + 2j|x− y|)|s′| and (2.11)

2−max(0,−s′)wj(x) ≤ wj+1(x) ≤ 2max(0,s′)wj(x) holds for all x, y ∈ Rn and j ∈ N0.
(2.12)

Hence, we have w = (wj)j∈N0 ∈ Wα
α1,α2

for all α ≥ |s′| and α1 ≥ max(0,−s′), α2 ≥
max(0, s′).
As a special case we choose w : Rn → [0,∞) subadditiv, that is

0 ≤ w(x + y) ≤ c̃1 (w(x) + w(y)) and in addition we need

w(x) ≤ c̃2|x|β for all x ∈ Rn and fixed c̃1, c̃2, β ≥ 1.

Thus we have (2.9) with C1 = c̃1 und C2 = c̃1c̃2 and we can define the admissible weight
sequence as in (2.10).

Next we define the resolution of unity.

Definition 2.7 (Resolution of unity): A system ϕ = {ϕj}∞j=0 ⊂ S(Rn) belongs to the
class Φ(Rn) if and only if
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(i) supp ϕ0 ⊆ {x ∈ Rn : |x| ≤ 2} and supp ϕj ⊆ {x ∈ Rn : 2j−1 ≤ |x| ≤ 2j+1}

(ii) For each β ∈ Nn
0 there exist constants cβ > 0 such that

2j|β| sup
x∈Rn

|Dβϕj(x)| ≤ cβ holds for all j ∈ N0.

(iii) For all x ∈ Rn we have

∞∑
j=0

ϕj(x) = 1 .

Remark 2.8: Such a resolution of unity can easily be constructed. Consider the fol-
lowing example. Let ϕ0 ∈ S(Rn) with ϕ0(x) = 1 for |x| ≤ 1 and supp ϕ0 ⊆ {x ∈ Rn :
|x| ≤ 2}. For j ≥ 1 we define

ϕj(x) = ϕ0(2
−jx)− ϕ0(2

−j+1x) .

Now it is obvious that ϕ = {ϕj}j∈N0 ∈ Φ(Rn).

Definition 2.9: Let (ϕj)j∈N0
∈ Φ(Rn) be a resolution of unity and let w = (wj)j∈N0 ∈

Wα
α1,α2

. Further, let 0 < p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Then we define

Bs,mloc
pq (Rn, w) =

{
f ∈ S ′ :

∥∥f |Bs,mloc
pq (Rn, w)

∥∥
ϕ

< ∞
}

, where (2.13)

∥∥f |Bs,mloc
pq (Rn,w)

∥∥
ϕ

=

( ∞∑
j=0

2jsq
∥∥∥wj(ϕj f̂)∨

∣∣∣Lp(Rn)
∥∥∥

q
)1/q

, (2.14)

with the usual modifications if p or q are equal to infinity.

Remark 2.10: One recognizes immediately that for wj ≡ 1 one obtains the usual Besov
spaces, see [Tri83]. If one defines the admissible weight sequence as wj(x) = %(x) for
each j ∈ N0 and % being an admissible weight, we obtain the usual weighted Besov
spaces, see [EdTri96, Chapter 4].

Firstly, we have to prove that Definition 2.9 is independent of the chosen system
(ϕj)j∈N0

∈ Φ(Rn). We need a Fourier multiplier theorem for weighted Lebesgue spaces

of entire analytic functions as in [SchmTri87]. We define the Sobolev spaces W k
2 (Rn) for

k ∈ N0. A function f ∈ L2(Rn) belongs to W k
2 (Rn) if

∥∥f |W k
2 (Rn)

∥∥ :=


∑

|γ|≤k

‖Dγf |L2(Rn)‖2




1/2

< ∞ . (2.15)
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Theorem 2.11 ([SchmTri87]): Let % : Rn → R be an admissible weight which satisfies
(2.4) for some α% ≥ 0. Furthermore, let Bb = {y ∈ Rn : |y| ≤ b} for b > 0 and
0 < p ≤ ∞. Then for every κ ∈ N with

κ > n

(
1

min(1, p)
− 1

2

)
+ α% (2.16)

there exists a constant c > 0 (depending on b) such that

∥∥%F−1MFf
∣∣ Lp(Rn)

∥∥ ≤ c ‖M |W κ
2 (Rn)‖ ‖%f |Lp(Rn)‖ (2.17)

holds for all f ∈ Lp(Rn, %) ∩ S ′(Rn) with suppFf ⊆ Bb and all M ∈ S(Rn).

Remark 2.12: Additionally, we need a corollary of the Theorem 2.11. Let 0 < p ≤ ∞
and let

Bb = {y ∈ Rn : |y| ≤ b} for b > 0.

We assume that the weight satisfies

0 < %(x) ≤ C%%(y) (1 + ab|x− y|)α% for fixed a > 0 and all x, y ∈ Rn.

If f ∈ Lp(Rn, %) with suppFf ⊂ Bb, then suppF [f(b−1x)] ⊂ B1 and by the properties
of the Fourier transform

(
%F−1MFf

)
(x) =

{
%(b−1·)F−1

[
M(b·) (Ff(b−1·)) (·)]} (bx) . (2.18)

Therefore, we obtain

∥∥(
%F−1MFf

)
(x)

∣∣ Lp(Rn)
∥∥ =

∥∥{
%(b−1·)F−1

[
M(b·) (Ff(b−1·)) (·)]} (bx)

∣∣Lp(Rn)
∥∥

= b−
n
p

∥∥{
%(b−1·)F−1

[
M(b·) (Ff(b−1·)) (·)]} (x)

∣∣ Lp(Rn)
∥∥ .

For the weight function r(x) = %(b−1x) we have αr = α% and

0 < r(x) ≤ max(1, a)C% r(y) (1 + |x− y|)α% = C′
% r(y) (1 + |x− y|)α% .

We can apply Theorem 2.11 and obtain

∥∥(
%F−1MFf

)
(x)

∣∣Lp(Rn)
∥∥ ≤ c · C′

%b
−n

p ‖M(b·)|W κ
2 (Rn)‖

∥∥%(b−1·)f(b−1·)
∣∣Lp(Rn)

∥∥
= cC% ‖M(b·)|W κ

2 (Rn)‖ ‖%f |Lp(Rn)‖ (2.19)

for κ > n
(

1
min(1,p)

− 1
2

)
+ α%.

Now, we are ready to show that Definition 2.9 of the spaces Bs,mloc
pq (Rn, w) is inde-

pendent of the chosen resolution of unity ϕ ∈ Φ(Rn).
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Theorem 2.13 (Independence of the resolution of unity): Let ϕ = (ϕj)j∈N0
, φ =

(φj)j∈N0
∈ Φ(Rn) be two resolutions of unity and let w = {wj}j∈N0

∈ Wα
α1,α2

be an
admissible weight sequence. If 0 < p ≤ ∞, 0 < q ≤ ∞ and s ∈ R, then we have∥∥f |Bs,mloc

pq (Rn,w)
∥∥

ϕ
∼

∥∥f |Bs,mloc
pq (Rn,w)

∥∥
φ

for all f ∈ S ′(Rn).

Proof: It is sufficient to show that there is a c > 0 such that for all f ∈ S ′(Rn) we
have

∥∥f |Bs,mloc
pq (Rn, w)

∥∥
φ
≤ c

∥∥f |Bs,mloc
pq (Rn,w)

∥∥
ϕ
. Interchanging ϕ and φ we derive

the result we aim at.
Putting ϕ−1 = 0 we see

φj(x) = φj(x)
1∑

k=−1

ϕj+k(x) for all j ∈ N0.

By the properties of the Fourier transform

wj{F−1φj(Ff)} =
1∑

k=−1

wj

{F−1φj

(F [F−1ϕj+k (Ff)
])}

.

Now, we apply (2.19) with b = 2j+2, M = φj und f = F−1ϕj+k (Ff) for k ∈ {−1, 0, 1}.
We get for every j ∈ N0∥∥wj

{F−1φj

(F [F−1ϕj+k (Ff)
])}∣∣Lp(Rn)

∥∥
≤ c

∥∥φj(2
j+2·)

∣∣W κ
2 (Rn)

∥∥ ∥∥wj

{F−1ϕj+k (Ff)
}∣∣ Lp(Rn)

∥∥ , (2.20)

with κ > n
(

1
min(1,p)

− 1
2

)
+ α. By (2.2) and formula (2.19) the constant c does not

depend on j ∈ N. Since supp φj(2
j+2·) ⊆ B1 and using the properties of the resolution

of unity, we have

sup
l∈N0

∥∥φl(2
l+2·)

∣∣W κ
2 (Rn)

∥∥ ≤ c sup
l∈N0

sup
|β|≤κ

sup
x∈Rn

2l|β||(Dβφl)(x)| < cκ .

We conclude that

∥∥wj{F−1φj(Ff)}
∣∣ Lp(Rn)

∥∥ ≤ c

1∑

k=−1

∥∥wj

{F−1φj

(F [F−1ϕj+k (Ff)
])}∣∣ Lp(Rn)

∥∥

≤ c′
1∑

k=−1

∥∥wj

{F−1ϕj+k (Ff)
}∣∣ Lp(Rn)

∥∥ .

Finally, multiplying by 2js, using the property (2.3) of the admissible weight sequence
and taking the lq quasi-norm with respect to j, we see that
( ∞∑

j=0

2jsq
∥∥wj{F−1φj(Ff)}

∣∣ Lp(Rn)
∥∥q

)1/q

≤ c′(2s+α2 + 1 + 2−s+α1)
∥∥f |Bs,mloc

pq (Rn,w)
∥∥

ϕ
.

This completes the proof.

Remark 2.14: As in Theorem 2.3.3 in [Tri83] we can prove that Bs,mloc
pq (Rn, w) is a

quasi-Banach space for all s ∈ R and 0 < p, q ≤ ∞ and even a Banach space in the case
p, q ≥ 1.
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2.3 Lift property and equivalent norms

We introduce the lift operator as in the classical case of Besov spaces, [Tri83]. If σ ∈ R,
the operator Iσ is defined by

Iσ : f 7→
(
〈ξ〉σf̂

)∨
(2.21)

where 〈ξ〉 = (1 + |ξ|2)1/2.

Theorem 2.15: Let s, σ ∈ R and w = (wj)j∈N0 ∈ Wα
α1,α2

. Moreover, let 0 < p ≤ ∞
and 0 < q ≤ ∞. Then Iσ maps Bs,mloc

pq (Rn,w) isomorphically onto Bs−σ,mloc
pq (Rn, w) and∥∥Iσf |Bs−σ,mloc

pq (Rn, w)
∥∥ is an equivalent quasi-norm on Bs,mloc

pq (Rn, w).

Proof: To prove the theorem we show that

∥∥Iσf |Bs−σ,mloc
pq (Rn, w)

∥∥ =

( ∞∑
j=0

2j(s−σ)q
∥∥∥wj(ϕj〈ξ〉σf̂)∨

∣∣∣Lp(Rn)
∥∥∥

q
)1/q

∼
∥∥f |Bs,mloc

pq (Rn,w)
∥∥ .

Let φ ∈ S(Rn) with

φ(x) = 1 if
1

2
≤ |x| ≤ 2 and

supp φ ⊆
{

ξ ∈ Rn :
1

4
≤ |ξ| ≤ 4

}
.

Then we have for j ≥ 1
(
ϕj〈ξ〉σf̂

)∨
=

(
〈ξ〉σφ(2−jξ)ϕj f̂

)∨
,

and we define

Mj(ξ) := 2−σj〈ξ〉σφ(2−jξ) , whereas , supp ϕj f̂ ⊆ {ξ ∈ Rn : |ξ| ≤ 2j+1} .

Now, we can apply (2.19) with b = 2j+2 and κ ∈ N with κ > n
(

1
min(1,p)

− 1
2

)
+ α and

we obtain∥∥∥∥wj

(
2−σj〈ξ〉σφ(2−jξ)ϕj f̂

)∨∣∣∣∣ Lp(Rn)

∥∥∥∥ ≤ c sup
l∈N0

∥∥Ml(2
l+2·)

∣∣ W κ
2 (Rn)

∥∥
∥∥∥wj(ϕj f̂)∨

∣∣∣ Lp(Rn)
∥∥∥

(2.22)

for all j ∈ N0 and 0 < p ≤ ∞. If β ∈ Nn
0 is a multi-index with |β| ≤ κ, we have

∣∣Dβ
(
Ml(2

l+2·)) (x)
∣∣ =

∣∣Dβ
(
2−σl〈2l+2·〉σφ(4·)) (x)

∣∣
≤ 22σ

∑

γ≤β

cβ,γ

∣∣∣Dγ
(
2−2(l+2) + |x|2)σ/2

∣∣∣
∣∣(Dβ−γφ

)
(4x)

∣∣ 4|β−γ|

≤ 22(σ+κ) sup
|δ|≤κ

sup
y∈Rn

∣∣(Dδφ
)
(y)

∣∣∑

γ≤β

cβ,γ

∣∣∣Dγ
(
2−2(l+2) + |x|2)σ/2

∣∣∣ .

(2.23)
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Since φ ∈ S(Rn) and supp φ ⊆ {ξ ∈ Rn : 1
4
≤ |ξ| ≤ 4} we obtain

sup
|δ|≤κ

sup
y∈Rn

∣∣(Dδφ
)
(y)

∣∣ ≤ c . (2.24)

Furthermore, we have

∣∣∣Dγ
(
2−2(l+2) + |x|2)σ/2

∣∣∣ ≤ cσ,γ

(
2−2(l+2) + |x|2)σ/2−|γ|/2

and (2.25)

supp Ml(2
l+2·) ⊆

{
x ∈ Rn :

1

16
≤ |x| ≤ 1

}
. (2.26)

Finally, we get from (2.23)-(2.27) for 0 < σ < κ

∣∣Dβ
(
Ml(2

l+2·)) (x)
∣∣ ≤ c

∑

γ≤β

(
β

γ

)
cσ,γ

(
2−2(l+2) + |x|2)σ/2−|γ|/2

≤ c
∑
γ≤σ

(
β

γ

)
cσ,γ

(
2−2(l+2) + 1

)σ/2−|γ|/2
+

∑
σ<γ≤κ

(
β

γ

)
cσ,γ

(
2−2(l+2) +

1

16

)σ/2−|γ|/2

≤ c′ .

This implies for all l ∈ N0

∥∥Ml(2
l+2·)

∣∣ W κ
2 (Rn)

∥∥ =


 ∑

|β|≤κ

∥∥Dβ
(
Ml(2

l+2·))
∣∣ L2(Rn)

∥∥2




1/2

< ∞ .

For j = 0 we have to define φ0 as

φ0(x) = 1 if |x| ≤ 2 and

supp φ0 ⊆ {ξ ∈ Rn : |ξ| ≤ 4} .

By a similar calculation as above (j = 0) we can show for all j ∈ N0

∥∥∥∥wj

(
2−σj〈ξ〉σϕj f̂

)∨∣∣∣∣ Lp(Rn)

∥∥∥∥ ≤ c
∥∥∥wj(ϕj f̂)∨

∣∣∣ Lp(Rn)
∥∥∥ , (2.27)

where c is independent of j ∈ N0.
Now, taking the lq quasi-norm in (2.22) leads to

∥∥Iσf |Bs−σ,mloc
pq (Rn,w)

∥∥ ≤ c
∥∥f |Bs,mloc

pq (Rn,w)
∥∥ .

This proves the theorem.

The next theorem is a characterization of Bs,mloc
pq (Rn,w) by derivatives. We follow

closely Theorem 2.3.8 in [Tri83] and use the weighted Fourier multiplier theorem 2.11.
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Theorem 2.16: Let s ∈ R, w = (wj)j∈N0 ∈ Wα
α1,α2

, 0 < p, q ≤ ∞ and let m ∈ N0.
Then

∑

|β|≤m

∥∥Dβf
∣∣ Bs−m,mloc

pq (Rn,w)
∥∥ and

∥∥f |Bs−m,mloc
pq (Rn, w)

∥∥ +
n∑

i=1

∥∥∥∥
∂mf

∂xm
i

∣∣∣∣ Bs−m,mloc
pq (Rn,w)

∥∥∥∥

are equivalent quasi-norms on Bs,mloc
pq (Rn,w).

Proof: First Step: We define φ ∈ S(Rn) as

φ(x) = 1 for 1/2 ≤ |x| ≤ 2 and supp φ ⊆ {x ∈ Rn : 1/4 ≤ |x| ≤ 4} . (2.28)

Then for all j ∈ N
F−1ϕjFDβf = cF−1φ(2−j·)xβϕjFf

= cF−1φ(2−j·) xβ

(1 + |x|2)m/2
FF−1ϕj(1 + |x|2)m/2Ff .

Now, using (2.19) with b = 2j+2 and M = φ(2−j·) xβ

(1+|x|2)m/2 we get for

κ > n
(

1
min(1,p)

− 1
2

)
+ α

∥∥wjF−1ϕjFDβf
∣∣ Lp(Rn)

∥∥ = c

∥∥∥∥wjF−1φ(2−j·) xβ

(1 + |x|2)m/2
FF−1ϕj(1 + |x|2)m/2Ff

∣∣∣∣ Lp(Rn)

∥∥∥∥

≤
∥∥∥∥φ(4·) (2j+2x)β

(1 + |2j+2x|2)m/2

∣∣∣∣ W κ
2 (Rn)

∥∥∥∥
∥∥wjF−1ϕj(1 + |x|2)m/2Ff

∣∣Lp(Rn)
∥∥ , (2.29)

for all 0 < p ≤ ∞ and j ∈ N. Since (2j+2x)β

(1+|2j+2x|2)m/2 < c for |β| ≤ m and φ ∈ S(Rn), we
get

∥∥∥∥φ(4·) (2j+2x)β

(1 + |2j+2x|2)m/2

∣∣∣∣ W κ
2 (Rn)

∥∥∥∥ ≤ cκ,m independently of j ∈ N.

For j = 0 we obtain (2.29) by similar arguments and φ0 ∈ S(Rn) with φ0(x) = 1 for
|x| ≤ 2 and supp φ0 ⊆ {x ∈ Rn : |x| ≤ 4}. Hence, we have for all j ∈ N0∥∥wjF−1ϕjFDβf

∣∣ Lp(Rn)
∥∥ ≤ cκ,m

∥∥wjF−1ϕj(1 + |x|2)m/2Ff
∣∣ Lp(Rn)

∥∥ ,

where the constant cκ,m is independent of j ∈ N0 and |β| ≤ m. Finally, multiplying by
2j(s−m) and applying the lq quasi-norm in respect to j, we get for all |β| ≤ m

∥∥Dβf
∣∣ Bs−m,mloc

pq (Rn, w)
∥∥ ≤ c

∥∥Imf |Bs−m,mloc
pq (Rn,w)

∥∥ ≤ c′
∥∥f |Bs,mloc

pq (Rn,w)
∥∥ .

(2.30)

Second Step: Now, we assume that f ∈ Bs−m,mloc
pq (Rn,w) and ∂mf

∂xm
i
∈ Bs−m,mloc

pq (Rn,w)

for i = 1, . . . , n. We want to show that f belongs to Bs,mloc
pq (Rn,w). Theorem 2.15 shows

∥∥f |Bs,mloc
pq (Rn,w)

∥∥ ≤ c
∥∥Imf |Bs−m,mloc

pq (Rn, w)
∥∥

= c

( ∞∑
j=0

2j(s−m)q
∥∥wjF−1(1 + |x|2)m/2ϕjFf

∣∣Lp(Rn)
∥∥q

)
. (2.31)
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From [Tri83] we adopt the construction of functions %1, . . . , %n ∈ C∞(Rn) from the third
step of the proof of Theorem 2.3.8. If m is even, then %i(x) = 1 has the desired properties
but for odd m the situation is a bit more complicated. These functions fulfill

1 +
n∑

i=1

%i(x)xm
i ≥ c(1 + |x|2)m/2 for all x ∈ Rn.

Thus we have

M(x) := (1 + |x|2)m/2

[
1 +

n∑
i=1

%i(x)xm
i

]−1

≤ c for all x ∈ Rn.

With the function φ ∈ S(Rn) as in (2.28) and (2.19) with b = 2j+2 and κ > 0 large
enough we get for all j ∈ N
∥∥wjF−1(1 + |x|2)m/2ϕjFf

∣∣ Lp(Rn)
∥∥

=

∥∥∥∥∥wjF−1M(x)φ(2−j·)FF−1ϕj

[
1 +

n∑
i=1

%i(x)xm
i

]
Ff

∣∣∣∣∣ Lp(Rn)

∥∥∥∥∥

≤ c
∥∥M(2j+2·)φ(4·)

∣∣W κ
2 (Rn)

∥∥
∥∥∥∥∥wjF−1ϕj

[
1 +

n∑
i=1

%i(x)xm
i

]
Ff

∣∣∣∣∣ Lp(Rn)

∥∥∥∥∥ .

From the properties of M and φ ∈ S(Rn) we get that the Sobolev space norm is bounded,
independent of j ∈ N. For j = 0 we can do the same calculation with φ0 instead of
Φ(2−j·). By an analogous procedure as above we can use (2.19) again and obtain

∥∥wjF−1(1 + |x|2)m/2ϕjFf
∣∣Lp(Rn)

∥∥ ≤ c

∥∥∥∥∥wjF−1ϕj

[
1 +

n∑
i=1

%i(x)xm
i

]
Ff

∣∣∣∣∣Lp(Rn)

∥∥∥∥∥

≤ c′
∥∥wjF−1ϕjFf

∣∣ Lp(Rn)
∥∥ + c′

n∑
i=1

∥∥wjF−1%i(x)φ(2−j·)FF−1xm
i ϕjFf

∣∣ Lp(Rn)
∥∥

≤ c′
∥∥wjF−1ϕjFf

∣∣ Lp(Rn)
∥∥ + c′

n∑
i=1

∥∥%i(2
j+2x)φ(4·)

∣∣ W κ
2 (Rn)

∥∥ ∥∥wjF−1xm
i ϕjFf

∣∣Lp(Rn)
∥∥ ,

for κ > n
(

1
min(1,p)

− 1
2

)
+ α. Since %i ∈ C∞(Rn) and φ ∈ S(Rn) we get that the Sobolev

space norm is bounded by a constant independently of j ∈ N. If j = 0, then we use the
usual replacement by φ0. Finally, we have

∥∥wjF−1(1 + |x|2)m/2ϕjFf
∣∣Lp(Rn)

∥∥
≤ c

∥∥wjF−1ϕjFf
∣∣Lp(Rn)

∥∥ + c
∥∥wjF−1xm

i ϕjFf
∣∣Lp(Rn)

∥∥

= c
∥∥wjF−1ϕjFf

∣∣ Lp(Rn)
∥∥ + c

∥∥∥∥wjF−1ϕjF ∂mf

∂xm
i

∣∣∣∣ Lp(Rn)

∥∥∥∥
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for all j ∈ N0. Using (2.31) we get

∥∥f |Bs,mloc
pq (Rn,w)

∥∥ ≤ c
∥∥f |Bs−m,mloc

pq (Rn,w)
∥∥ + c

n∑
i=1

∥∥∥∥
∂mf

∂xm
i

∣∣∣∣ Bs−m,mloc
pq (Rn, w)

∥∥∥∥ .

Finally, this and (2.30) prove the theorem.

Now, we present a characterization of the 2-microlocal spaces with the special weight
sequence wj(x) = (1 + 2j dist(x, U))s′ for U ⊆ Rn.

Definition 2.17: Let {ϕj}j∈N0
∈ Φ(Rn) be a resolution of unity. Let U ⊆ Rn and

s′ ∈ R be fixed. Further, let 0 < p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Then we define

Bs,s′
pq (Rn, U) =

{
f ∈ S ′ :

∥∥∥f |Bs,s′
pq (Rn, U)

∥∥∥ < ∞
}

, where

∥∥∥f |Bs,s′
pq (Rn, U)

∥∥∥ =

( ∞∑
j=0

2jsq
∥∥∥(1 + 2j dist(x, U))s′(ϕj f̂)∨

∣∣∣Lp(Rn)
∥∥∥

q
)1/q

,

with the usual modifications if p or q are equal to infinity.

Remark 2.18: In slight abuse of notation we write Bs,s′
pq (Rn, x0) if U = {x0} ⊂ Rn.

If U = {x0} ⊂ Rn then Bs,s′
∞∞(Rn, x0) = Cs,s′

x0
, see [JaMey96, Definition 1.1]. For p =

q = 2 we get Bs,s′
22 (Rn, x0) = Hs,s′

x0
. Both types are the 2-microlocal spaces introduced

by Bony [Bo84] and Jaffard [Ja91].

Corollary 2.19: Let s, s′ ∈ R and let U ⊆ Rn. Further, let 0 < p, q ≤ ∞ and m ∈ N0,
then the following statements are equivalent

(i) f ∈ Bs,s′
pq (Rn, U)

(ii) Dβf ∈ Bs−m,s′
pq (Rn, U) for all 0 ≤ |β| ≤ m

(iii) f ∈ Bs−m,s′
pq (Rn, U) and ∂mf

∂xm
i
∈ Bs−m,s′

pq (Rn, U) for each i = 1, . . . , n.

Remark 2.20: This corollary coincides essentially with Corollary 3.1 in [Mey97] for the
special case p = q = ∞ and U = {x0} ⊂ Rn.
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3 Local Means

3.1 Preliminaries

In this part we present the main technical tool. We characterize the spaces Bs,mloc
pq (Rn,w)

by so called local means. We follow closely the method presented by Rychkov [Ry99]
and by Vybiral [Vyb06].
Recall the specific system {ϕj}j∈N0 ⊂ S(Rn) which we fix now for the rest of our work:
Let ϕ0 ∈ S(Rn) with

ϕ0(x) =

{
1 , if |x| ≤ 1

0 , if |x| ≥ 2
.

We put ϕ(x) = ϕ0(x)− ϕ0(2x) and

ϕj(x) = ϕ(2−jx) for all x ∈ Rn and all j ∈ N.

3.1.1 The Peetre maximal operator

The Peetre maximal operator was introduced by Jaak Peetre in [Pe75]. The operator
assigns to each system {ψj}j∈N0 ⊂ S(Rn), to each distribution f ∈ S ′(Rn) and to each
number a > 0 the following quantities

sup
y∈Rn

|(ψkf̂)∨(y)|
1 + |2k(y − x)|a , x ∈ Rn ,k ∈ N0 . (3.1)

Since ψk ∈ S(Rn) for all k ∈ N0 the operator is well-defined because (ψkf̂)∨ = c(ψ∨k ∗ f)
is well-defined for every distribution f ∈ S ′(Rn).
Given a system {ψk}k∈N0 ⊂ S(Rn), we set Ψk = ψ̂k ∈ S(Rn) and reformulate the Peetre
maximal operator (3.1) for every f ∈ S ′(Rn) and a > 0 as

(Ψ∗
kf)a(x) = sup

y∈Rn

|(Ψk ∗ f)(y)|
1 + |2k(y − x)|a , x ∈ Rn and k ∈ N0 . (3.2)

3.1.2 Helpful lemmas

Before proving the local means characterization we present some technical lemmas with-
out proof, which appeared in the papers of Rychkov [Ry99] and Vybiral [Vyb06]. The
first lemma describes the use of the so called moment conditions.

Lemma 3.1: Let g, h ∈ S(Rn) and let M ≥ −1 be an integer. Suppose that

(Dβ ĝ)(0) = 0 for 0 ≤ |β| ≤ M . (3.3)
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Then for each N ∈ N0 there is a constant CN such that

sup
z∈Rn

|(gt ∗ h)(z)|(1 + |z|N) ≤ CN tM+1 , for 0 < t < 1 , (3.4)

where gt(x) = t−ng(x/t).

Remark 3.2: If M = −1, the condition (3.3) is empty.

The next lemma is a discrete convolution inequality which we will need later on.

Lemma 3.3: Let 0 < p, q ≤ ∞ and δ > 0. Let {gk}k∈N0 be a sequence of non-negative
measurable functions on Rn and let

Gν(x) =
∞∑

k=0

2−|ν−k|δgk(x) , x ∈ Rn , ν ∈ N0 . (3.5)

Then there is some constant c = c(p, q, δ) such that

‖Gk| lq(Lp)‖ ≤ c ‖gk| lq(Lp)‖ . (3.6)

Lemma 3.4: Let 0 < r ≤ 1 and let {γν}ν∈N0, {βν}ν∈N0 be two sequences taking values
in (0,∞). Assume that for some N0 ∈ N0,

γν = O(2νN0

) , for ν →∞ .

Furthermore, we assume that for any N ∈ N

γν ≤ CN

∞∑

k=0

2−kNβk+νγ
1−r
k+ν , ν ∈ N0 , CN < ∞

holds, then for any N ∈ N

γr
ν ≤ CN

∞∑

k=0

2−kNβk+ν , ν ∈ N0 (3.7)

holds with the same constants CN .

The proofs of the lemmas can be found in [Ry99] and [Vyb06].

3.1.3 Comparison of different Peetre maximal operators

In this subsection we present an inequality between different Peetre maximal operators.
We start with two given functions ψ0, ψ1 ∈ S(Rn). We define

ψj(x) = ψ1(2
−j+1x) , for x ∈ Rn and j ∈ N. (3.8)

Furthermore, for all j ∈ N0 we write Ψj = ψ̂j and in an analogous manner we define Φj

from two starting functions φ0, φ1 ∈ S(Rn).
Using this notation we are ready to formulate the theorem.
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Theorem 3.5: Let w = {wj}j∈N0
∈ Wα

α1,α2
, 0 < p, q ≤ ∞ and s, a ∈ R with a > 0.

Moreover, let R + 1 ∈ N0 with R + 1 > s + α2,

Dβψ1(0) = 0 , 0 ≤ |β| ≤ R (3.9)

and for some ε > 0

|φ0(x)| > 0 on {x ∈ Rn : |x| < ε} (3.10)

|φ1(x)| > 0 on {x ∈ Rn : ε/2 < |x| < 2ε} (3.11)

then
∥∥2ks(Ψ∗

kf)awk

∣∣ lq(Lp)
∥∥ ≤ c

∥∥2ks(Φ∗
kf)awk

∣∣ lq(Lp)
∥∥ (3.12)

holds for every f ∈ S ′(Rn).

Proof: We define the functions {λj}j∈N0 by

λj(x) =
ϕj

(
2x
ε

)

φj(x)
.

It follows from the Tauberian conditions (3.10) and (3.11) that they satisfy

∞∑
j=0

λj(x)φj(x) = 1 , x ∈ Rn (3.13)

λj(x) = λ1(2
−j+1x) , x ∈ Rn , j ∈ N (3.14)

supp λ0 ⊂ {x ∈ Rn : |x| ≤ ε} and supp λ1 ⊂ {x ∈ Rn : ε/2 ≤ |x| ≤ 2ε} . (3.15)

Furthermore, we denote Λk = λ̂k for k ∈ N0 and obtain together with (3.13) the following
identities (convergence in S ′(Rn))

f =
∞∑

k=0

Λk ∗ Φk ∗ f , Ψν ∗ f =
∞∑

k=0

Ψν ∗ Λk ∗ Φk ∗ f . (3.16)

We have

|(Ψν ∗ Λk ∗ Φk ∗ f)(y)| ≤
∫

Rn

|(Ψν ∗ Λk)(z)||(Φk ∗ f)(y − z)|dz

≤ (Φ∗
kf)a(y)

∫

Rn

|(Ψν ∗ Λk)(z)|(1 + |2kz|a)dz (3.17)

=: (Φ∗
kf)a(y)Iν,k ,

where

Iν,k :=

∫

Rn

|(Ψν ∗ Λk)(z)|(1 + |2kz|a)dz .
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According to Lemma 3.1 we get

Iν,k ≤ c

{
2(k−ν)(R+1) ,k ≤ ν

2(ν−k)(a+|s|+1+α1) ,ν ≤ k .
(3.18)

Namely, we have for 1 ≤ k < ν with the change of variables 2kz 7→ z

Iν,k = 2−n

∫

Rn

|(Ψν−k ∗ Λ1(·/2))(z)|(1 + |z|a)dz

≤ c sup
z∈Rn

|(Ψν−k ∗ Λ1(·/2))(z)|(1 + |z|)a+n+1 ≤ c2(k−ν)(R+1) .

Similarly, we get for 1 ≤ ν < k with the substitution 2νz 7→ z

Iν,k = 2−n

∫

Rn

|(Ψ1(·/2) ∗ Λk−ν)(z)|(1 + |2k−νz|a)dz

≤ c2(ν−k)(M+1−a) .

M can be taken arbitrarily large because Λ has infinite vanishing moments. Taking
M > 2a + |s|+ α1 we derive (3.18) for the cases k, ν ≥ 1 with k 6= ν. The missing cases
can be treated separably in an analogous manner. The needed moment conditions are
always satisfied by (3.9) and (3.15). The case k = ν = 0 is covered by the constant c in
(3.18).
Furthermore, we have

(Φ∗
kf)a(y) ≤ (Φ∗

kf)a(x)(1 + |2k(x− y)|a)
≤ (Φ∗

kf)a(x)(1 + |2ν(x− y)|a) max(1, 2(k−ν)a) .

We put this into (3.17) and get

sup
y∈Rn

|(Ψν ∗ Λk ∗ Φk ∗ f)(y)|
1 + |2ν(x− y)|a ≤ c(Φ∗

kf)a(x)

{
2(k−ν)(R+1) ,k ≤ ν

2(ν−k)(|s|+1+α1) ,k ≥ ν .

Multiplying both sides with wν(x) and using

wν(x) ≤ wk(x)

{
2(k−ν)(−α2) ,k ≤ ν

2(ν−k)(−α1) ,k ≥ ν
, (3.19)

leads us to

sup
y∈Rn

|(Ψν ∗ Λk ∗ Φk ∗ f)(y)|
1 + |2ν(x− y)|a wν(x) ≤ c(Φ∗

kf)a(x)wk(x)

{
2(k−ν)(R+1−α2) ,k ≤ ν

2(ν−k)(|s|+1) ,k ≥ ν .

This inequality together with (3.16) gives for δ := min(1, R + 1− α2 − s) > 0

2νs(Ψ∗
νf)a(x)wν(x) ≤ c

∞∑

k=0

2−|k−ν|δ2ks(Φ∗
kf)a(x)wk(x) , x ∈ Rn .

Then, Lemma 3.3 yields immediately the desired result.
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Remark 3.6: The conditions (3.9) are usually called moment conditions while (3.10)
and (3.11) are the so called Tauberian conditions.
If R = −1 in Theorem 3.5, then there are no moment conditions on ψ1.

3.1.4 Boundedness of the Peetre maximal operator

We will present a theorem which describes the boundedness of the Peetre maximal
operator. We use the same notation introduced in the beginning of the last subsection.
Especially, we have the functions ψk ∈ S(Rn) and Ψk = ψ̂k ∈ S(Rn) for all k ∈ N0.

Theorem 3.7: Let {wk}k∈N0 ∈ Wα
α1,α2

, a, s ∈ R and 0 < p, q ≤ ∞. For some ε > 0 we
assume ψ0, ψ1 ∈ S(Rn) with

|ψ0| > 0 on {x ∈ Rn : |x| < ε} (3.20)

|ψ1| > 0 on {x ∈ Rn : ε/2 < |x| < 2ε} . (3.21)

If a > n
p

+ α, then

∥∥2ks(Ψ∗
kf)awk

∣∣ lq(Lp)
∥∥ ≤ c

∥∥2ks(Ψk ∗ f)wk

∣∣ lq(Lp)
∥∥ (3.22)

holds for all f ∈ S ′(Rn).

Proof: As in the last proof we find the functions {λj}j∈N0 with the properties (3.14)-
(3.15) and

∞∑

k=0

λk(2
−νx)ψk(2

−νx) = 1 for all ν ∈ N0 . (3.23)

Instead of (3.16) we get the identity

Ψν ∗ f =
∞∑

k=0

Λk,ν ∗Ψk,ν ∗Ψν ∗ f , (3.24)

where

Λk,ν(ξ) = [λk(2
−ν ·)]∧(ξ) = 2νnΛk(2

νξ) for all ν, k ∈ N0 .

The Ψk,ν are defined similarly. For k ≥ 1 and ν ∈ N0 we have Ψk,ν = Ψk+ν and with the
notation

σk,ν(x) =

{
ψ0(2

−νx) , if k = 0

ψν(x) , otherwise

we get ψk(2
−νx)ψν(x) = σk,ν(x)ψk+ν(x). Hence, we can rewrite (3.24) as

Ψν ∗ f =
∞∑

k=0

Λk,ν ∗ σ̂k,ν ∗Ψk+ν ∗ f . (3.25)
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For k ≥ 1 we get from Lemma 3.1

|(Λk,ν ∗ σ̂k,ν)(z)| = 2νn|(Λk ∗Ψ)(2νz)| ≤ CM2νn 2−kM

(1 + |2νz|a) (3.26)

for all k, ν ∈ N0 and arbitrarily large M ∈ N. For k = 0 we get the estimate (3.26) by
using Lemma 3.1 with M = −1. This together with (3.25) gives us

|(Ψν ∗ f)(y)| ≤ CM2νn

∞∑

k=0

∫

Rn

2−kM

(1 + |2ν(y − z)|a) |(Ψk+ν ∗ f)(z)|dz . (3.27)

For fixed r ∈ (0, 1] we divide both sides of (3.27) by (1 + |2ν(x− y)|a) and we take the
supremum in respect to y ∈ Rn. Using the inequalities

(1 + |2ν(y − z)|a)(1 + |2ν(x− y)|a) ≥ c(1 + |2ν(x− z)|a) ,

|(Ψk+ν ∗ f)(z)| ≤ |(Ψk+ν ∗ f)(z)|r(Ψ∗
k+νf)a(x)1−r(1 + |2k+ν(x− y)|a)1−r

and

(1 + |2k+ν(x− z)|a)1−r

(1 + |2ν(x− y)|a) ≤ 2ka

(1 + |2k+ν(x− y)|a)r
,

we get

(Ψ∗
νf)a(x) ≤ CM

∞∑

k=0

2−k(M+n−a)(Ψ∗
k+νf)a(x)1−r

∫

Rn

2(k+ν)n|(Ψk+ν ∗ f)(z)|r
(1 + |2k+ν(x− y)|a)r

dz . (3.28)

Now, we apply Lemma 3.4 with

γν = (Ψ∗
νf)a(x) , βν =

∫

Rn

2νn|(Ψν ∗ f)(z)|r
(1 + |2ν(x− y)|a)r

dz , ν ∈ N0

N = M + n− a, CN = CM + n− a and N0 giving the order of the distribution f .
By Lemma 3.4 we obtain for every N ∈ N, x ∈ Rn and ν ∈ N0

(Ψ∗
νf)a(x)r ≤ CN

∞∑

k=0

2−kNr

∫

Rn

2(k+ν)n|(Ψk+ν ∗ f)(z)|r
(1 + |2k+ν(x− y)|a)r

dz . (3.29)

We point out that (3.29) holds also for r > 1, where the proof is much simpler. We only
have to take (3.27) with a + n instead of a, divide both sides by (1 + |2ν(x− y)|a) and
apply Hölder’s inequality with respect to k and then z.
Multiplying (3.29) by wν(x)r we derive with the properties of our weight sequence

(Ψ∗
νf)a(x)rwν(x)r ≤ C ′

N

∞∑

k=0

2−k(N−α1)r

∫

Rn

2(k+ν)n|(Ψk+ν ∗ f)(z)|rwk+ν(z)r

(1 + |2k+ν(x− y)|a−α)r
dz , (3.30)
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for all x ∈ Rn, ν ∈ N0 and all N ∈ N.
Now, choosing r > 0 with n

a−α
< r < p the function

1

(1 + |z|)r(a−α)
∈ L1(Rn)

and by the majorant property of the Hardy-Littlewood maximal operator (see [StWe71],
Chapter 2) it follows

(Ψ∗
νf)a(x)rwν(x)r ≤ C ′

N

∞∑

k=0

2−k(N−α1)rM(|Ψk+ν ∗ f |rwr
k+ν)(x) . (3.31)

We choose N > 0 such that N > −s + α1 and denote

gk(x) = 2krsM(|Ψk ∗ f |rwr
k)(x) .

From (3.31) we derive

Gν(x) = (Ψ∗
νf)a(x)rwν(x)r ≤ C

∞∑

k≥ν

2−k(N−α1)rgk(x) .

So, for 0 < δ < N + s − α1, we can apply Lemma 3.3 with the lq/r(Lp/r) norm. This
gives us

∥∥2krs(Ψ∗
kf)a(x)rwk(x)r

∣∣ lq/r(Lp/r)
∥∥ ≤ c

∥∥2krsM(|Ψk ∗ f |rwr
k)(x)

∣∣ lq/r(Lp/r)
∥∥ (3.32)

Rewriting the left hand side of (3.32) and using the scalar Hardy-Littlewood Theorem
[FeS71] (we recall r < p) on the right hand side, we finally get

∥∥2ks(Ψ∗
kf)awk

∣∣ lq(Lp)
∥∥ ≤ c

∥∥2ks(Ψk ∗ f)wk

∣∣ lq(Lp)
∥∥ ,

and the proof is complete.

3.2 Local means characterization

In this section we only combine the two previous subsections to derive the usual local
means characterization as in [Tri92] and [Ry99]. The Peetre maximal operator was
defined in section 3.1.1 and the functions ψ0, ψ1 belong to S(Rn).

Theorem 3.8: Let w = {wk}k∈N0 ∈ Wα
α1,α2

, 0 < p, q ≤ ∞ and let s, a ∈ R, R + 1 ∈ N0

with a > n
p

+ α and R + 1 > s + α2. If

Dβψ1(0) = 0 , for 0 ≤ |β| ≤ R , (3.33)

and

|ψ0(x)| > 0 on {x ∈ Rn : |x| < ε} (3.34)

|ψ1(x)| > 0 on {x ∈ Rn : ε/2 < |x| < 2ε} (3.35)

for some ε > 0, then
∥∥f |Bs,mloc

pq (Rn,w)
∥∥ ∼

∥∥2ks(Ψk ∗ f)wk

∣∣ lq(Lp)
∥∥ ∼

∥∥2ks(Ψ∗
kf)awk

∣∣ lq(Lp)
∥∥

holds for all f ∈ S ′(Rn).
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Remark 3.9:

(a) The proof of Theorem 3.8 is is just a reformulation of Theorem 3.5 and Theorem
3.7.

(b) If R = −1, then there are no moment conditions (3.33) on ψ1.

(c) In [Vyb06] the proof for the local means characterization was made for the dom-
inating mixed smoothness case. It is not hard to see that we can also generalize
our weight functions in the following sense:
We can use tensor products of weights, i.e.

wk(x) =
n∏

i=1

wi
k(xi)

where the one-dimensional measurable functions wi
k(t) have to satisfy the weight

conditions

0 < wi
k(t) ≤ Ciwi

k(r)(1 + 2k|t− r|)αi ,

2−αi
1wi

k(t) ≤ wi
k+1(t) ≤ 2αi

2wi
k(t) .

Finally, we get the weight classWα
α1,α2

with α = (α1, . . . , αn) and α1 = (α1
1, . . . , α

n
1 ),

α2 = (α1
2, . . . , α

n
2 ). The local means characterization with this weights can be seen

directly if one compares the above Theorem with Theorem 1.23 in [Vyb06].

Next we reformulate the Theorem 3.8 in the sense of [Tri92].

Let B = {x ∈ Rn : |x| < 1} be the unit ball and k ∈ S(Rn) a function with sup-
port in B. For a distribution f ∈ S ′(Rn) the corresponding local means are defined by
(at least formally)

k(t, f)(x) =

∫

Rn

k(y)f(x + ty)dy = t−n

∫

Rn

k

(
y − x

t

)
f(y)dy , x ∈ Rn, t > 0 . (3.36)

Let k0, k
0 ∈ S(Rn) be two functions with

supp k0 ⊆ B , supp k0 ⊆ B , (3.37)

and

k̂0(0) 6= 0 , k̂0(0) 6= 0 . (3.38)

For N ∈ N0 we define the iterated Laplacian

k(y) := ∆Nk0(y) =

(
n∑

j=1

∂2

∂y2
j

)N

k0(y) , y ∈ Rn . (3.39)
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It follows easily that

ǩ(x) = |x|2N ǩ0(x) and that implies (3.40)

Dβǩ(0) = 0 for 0 ≤ |β| < 2N . (3.41)

Using this notation we come to the usual local means characterization.

Theorem 3.10: Let w = {wk}k∈N0 ∈ Wα
α1,α2

, 0 < p, q ≤ ∞, s ∈ R. Furthermore, let
N ∈ N0 with 2N > s+α2 and let k0, k

0 ∈ S(Rn) and the function k be defined as above.
Then

‖k0(1, f)w0|Lp(Rn)‖+

( ∞∑
j=1

2jsq
∥∥k(2−j, f)wj

∣∣Lp(Rn)
∥∥q

)1/q

∼
∥∥f |Bs,mloc

pq (Rn,w)
∥∥

(3.42)

holds for all f ∈ S ′(Rn).

Proof: We put

ψ0 = k∨0 , ψ1 = k∨(·/2) .

Then the Tauberian conditions (3.34) and (3.35) are satisfied and due to (3.41) also the
moment conditions (3.33) are fulfilled. If we define ψj for j ∈ N0 as in (3.8), then we get

(ψj f̂)∨(x) = c(ψ∨j ∗ f)(x) = c

∫

Rn

(Fψj)(y)f(x + y)dy . (3.43)

For j = 0 we get Fψ0 = k0 and for j ≥ 1 we obtain

(Fψj)(y) = (Fψ1(2
−j+1·))(y) = 2(j−1)n(Fψ1)(2

j−1y) = 2jnk(2jy) .

This and the equation (3.43) lead to

(ψj f̂)∨(x) = c2jn

∫

Rn

k(2jy)f(x + y)dy = ck(2−j, f)(x) , j ∈ N0 , x ∈ Rn .

Together with Theorem 3.8 the proof is complete.

Remark 3.11: If we take wj ≡ 1 for all j ∈ N0, we obtain the usual Besov spaces. If we
now compare our result with section 2.5.3 in [Tri92], we get an improvement with respect
to N ∈ N0. The condition in [Tri92] is 2N > max(s, σp) where σp = max(0, n(1/p− 1)).
We derived 2N > s in Theorem 3.10 (α2 = 0 for wj ≡ 1) wich seems to be more natural.
Furthermore, we proved the equivalence of the (quasi-)norms for all f ∈ S ′(Rn) by this
method where in [Tri92] the equivalence does only hold for f ∈ Bs

pq(Rn).
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For the last modification of the local means representation we introduce some neces-
sary notation. For ν ∈ N0, m ∈ Zn we denote by Qνm the cube centred at the point
2νm = (2νm1, . . . , 2

νmn) with sides parallel to coordinate axes and of length 2−ν . Hence

Qνm = {x ∈ Rn : |xi − 2νmi| ≤ 2−ν−1, i = 1, . . . , n} , ν ∈ N0 , m ∈ Zn . (3.44)

If γ > 0, then γQνm denotes a cube concentric with Qνm with sides also parallel to
coordinate axes and of length γ2−ν .
Defining the Peetre maximal operator by (3.2), we get

(Ψ∗
νf)a(x) ≥ c sup

x−y∈γQνm

|(Ψν ∗ f)(y)| , ν ∈ N0 , x ∈ Rn ,

where the constant c only depends on a > 0, γ > 0 and does not depend on x ∈ Rn and
ν ∈ N0.
With this simple observation we get immediately the following conclusion of Theorem
3.8.

Theorem 3.12: Let w = {wk}k∈N0 ∈ Wα
α1,α2

, 0 < p, q ≤ ∞, s ∈ R. For N ∈ N0 with
2N > s + α2 let k0, k

0, k be as in Theorem 3.10. Then for every γ > 0

∥∥f |Bs,mloc
pq (Rn,w)

∥∥ ∼
∥∥∥∥∥ sup

(x−y)∈γQ0,0

|k0(1, f)(y)|
∣∣∣∣∣ Lp(Rn, w0)

∥∥∥∥∥

+

( ∞∑
j=1

2jsq

∥∥∥∥∥ sup
(x−y)∈γQj,0

|k(2−j, f)(y)|
∣∣∣∣∣Lp(Rn, wj)

∥∥∥∥∥

q)1/q

,

(3.45)

holds for all f ∈ S ′(Rn).
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4 Further properties

4.1 Embedding theorems

4.1.1 General embeddings

For the spaces Bs,mloc
pq (Rn, w) introduced above we want to show some general embedding

theorems. We follow closely [Tri83], see Proposition 2.3.2/2 and Theorem 2.7.1. We say
a Banach space A1 is continuously embedded in another Banach space A2, A1 ↪→ A2, if
A1 ⊆ A2 and there is a c > 0 such that ‖a|A2‖ ≤ c ‖a|A1‖ for all a ∈ A1.
First, we present an embedding theorem which connects the two-microlocal Besov spaces
with the usual weighted Besov spaces [EdTri96]. We denote by Bs

p,q(Rn, α) the weighted

Besov spaces, with respect to the weight 〈x〉α = (1 + |x|2)α/2 for α ∈ R.

Theorem 4.1: Let w ∈ Wα
α1,α2

, s ∈ R and 0 < p, q ≤ ∞, then

Bs+α2
pq (Rn, α) ↪→ Bs,mloc

pq (Rn,w) ↪→ Bs−α1
pq (Rn,−α) .

Proof: Using the properties (2.2) and (2.3) we obtain

wj(x) ≤ 2jα2w0(x) ≤ C2jα2w0(0)(1 + |x|2)α/2

wj(x) ≥ 2−jα1w0(x) ≥ 1

C
2−jα1w0(0)(1 + |x|2)−α/2

for all x ∈ Rn and every j ∈ N0. It follows immediately

c12
−jα1

∥∥∥(1 + |x|2)−α/2(ϕj f̂)∨
∣∣∣Lp(Rn)

∥∥∥ ≤
∥∥∥wj(ϕj f̂)∨

∣∣∣Lp(Rn)
∥∥∥

≤ c22
jα2

∥∥∥(1 + |x|2)α/2(ϕj f̂)∨
∣∣∣ Lp(Rn)

∥∥∥
and therefrom the theorem.

The following is an easy consequence of the above theorem and Bs
pq(Rn) ↪→ Lmax(1,p)(Rn)

for s > σp = n(1/p− 1)+.

Corollary 4.2: Let and w ∈ Wα
α1,α2

and let 0 < p, q ≤ ∞, then for s > σp + α1

Bs,mloc
pq (Rn,w) ↪→ Lmax(1,p)(Rn, 〈x〉−α) .

We need a special weighted version of Nikol’skij’s inequality.

Proposition 4.3: Let % be an admissible weight satisfying (a, b > 0)

0 < %(x) ≤ C%%(y)(1 + ab|x− y|)α% for all x, y ∈ Rn .

Further let 0 < p ≤ q ≤ ∞ and Bb = {x ∈ Rn : |x| ≤ b}. If β ∈ Nn
0 is a multi-index,

then there exists a positive constant c such that
∥∥%Dβϕ

∣∣ Lq(Rn)
∥∥ ≤ cb|β|+n( 1

p
− 1

q ) ‖%ϕ|Lp(Rn)‖ (4.1)

holds for all ϕ ∈ Lp(Rn, %) with supp ϕ̂ ⊆ Bb where the c is independent of b > 0.
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Proof: We substitute

%̃(x) := %(b−1x) and

ϕ̃(x) := ϕ(b−1x) .

Now the weight %̃ satisfies

0 < %̃(x) ≤ C′
%%̃(y)(1 + |x− y|)α% for all x, y ∈ Rn . (4.2)

Further, the function ϕ̃ ∈ Lp(Rn, %̃) with supp ϕ̃ ⊂ B1. Now, we can apply Proposition
1.4.3 in [SchmTri87]. After a resubstitution we derive the above statement (4.1). From
Remark 2 in [SchmTri87, 1.4.2] we get that the constant c in (4.1) is independent of b
and of the choice of the weight function (it depends only on C′

% and α%).

Theorem 4.4: Let s ∈ R and w, % ∈ Wα
α1,α2

with
wj(x)

%j(x)
≤ c for all j ∈ N0 and x ∈ Rn.

(i) For 0 < p ≤ ∞ and 0 < q1 ≤ q2 ≤ ∞ we have

Bs,mloc
pq1

(Rn,%) ↪→ Bs,mloc
pq2

(Rn,w) . (4.3)

(ii) If 0 < p ≤ ∞, 0 < q1 ≤ ∞, 0 < q2 ≤ ∞ and ε > 0, then

Bs,mloc
pq1

(Rn,%) ↪→ Bs−ε,mloc
pq2

(Rn, w) . (4.4)

(iii) For 0 < p1 ≤ p2 ≤ ∞, 0 < q ≤ ∞ and −∞ < s2 ≤ s1 < ∞ with

s1 − n

p1

≥ s2 − n

p2

we have Bs1,mloc
p1q (Rn, %) ↪→ Bs2,mloc

p2q (Rn, w) . (4.5)

Proof: The proof of 4.3 and 4.4 is the same as in Proposition 2.3.2/2 in [Tri83] one
only has to plug in the weight sequence. To prove 4.5 we use Proposition 4.3 with
b = 2j+1, % = wj and ϕ = (ϕj f̂)∨ for each j ∈ N0. Now, the substituted weight functions
w̃j satisfy a condition as in (4.2), where the constants Cwj

and αwj
do not depend on

j ∈ N0. Hence, Proposition 4.3 gives

∥∥∥wj(ϕj f̂)∨
∣∣∣ Lp2(Rn)

∥∥∥ ≤ c2
jn

(
1

p1
− 1

p2

) ∥∥∥wj(ϕj f̂)∨
∣∣∣ Lp1(Rn)

∥∥∥ ,

for all j ∈ N0, where the constant c is independent of j ∈ N0. After multiplying
the inequality by 2j(s2−n/p2) and using the conditions on s1, s2, p1, p2 and the weight
sequences, we get

2js2

∥∥∥wj(ϕj f̂)∨
∣∣∣ Lp2

∥∥∥ ≤ c′2js1

∥∥∥%j(ϕj f̂)∨
∣∣∣Lp1

∥∥∥ .

Finally we apply the lq quasi-norm to find the desired result.

With minor modifications we have an analogous theorem to Theorem 2.3.3 in [Tri83].
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Theorem 4.5: Let w ∈ Wα
α1,α2

, s ∈ R and 0 < p, q ≤ ∞, then

S(Rn) ↪→ Bs,mloc
pq (Rn, w) ↪→ S ′(Rn) holds. (4.6)

If s ∈ R and 0 < p, q < ∞, then S(Rn) is dense in Bs,mloc
pq (Rn,w).

Proof: The proof is essentially the same as in [Tri83, 2.3.3]. One only has to bring in the
weight sequence and use its properties (2.2) and (2.3). Also the weighted Nikol’skij in-
equality (Proposition 4.3) and section 1.5 in [SchmTri87] has to be used as a replacement
for the unweighted ones in the proof in [Tri83].

4.1.2 Embeddings for 2-microlocal Besov spaces

In this subsection we present some special embedding theorems for the weight sequence
of 2-microlocal weights, wj(x) = (1 + 2j dist(x, U))s′ for fixed U ⊆ Rn and s′ ∈ R. The
spaces Bs,s′

pq (Rn, U) were defined in Definition 2.17. As shown in Example 2.5, the weight

sequence belongs to W |s′|
max(0,−s′),max(0,s′). We recall the spaces Bs

pq(Rn, α), with respect

to the weight 〈x〉α = (1 + |x|2)α/2 for α ∈ R. An easy consequence of Theorem 4.1 and
Theorem 4.4 is the following.

Theorem 4.6: Let s ∈ R and let 0 < p, q ≤ ∞.

(i) For s′ ∈ R and U = {x0} ∈ Rn we have

Bs,s′
pq (Rn, x0) ↪→ C

s−n
p

,s′
x0 .

(ii) For s′ ≥ 0 and U ⊆ V ⊆ Rn we have

Bs+s′
pq (Rn, s′) ↪→ Bs,s′

pq (Rn, U) ↪→ Bs,s′
pq (Rn, V ) ↪→ Bs

pq(Rn,−s′) .

(iii) For s′ ≥ 0 and U ⊆ V ⊆ Rn we have

Bs,s′
pq (Rn, U) ↪→ Bs,s′

pq (Rn, V ) ↪→ Bs
pq(Rn) ↪→ Bs,−s′

pq (Rn, V ) ↪→ Bs,−s′
pq (Rn, U) .

(iv) For s′ ≥ t′ and U ⊆ Rn we have

Bs,s′
pq (Rn, U) ↪→ Bs,t′

pq (Rn, U) .

Corollary 4.7: Let s ≥ s′ ≥ 0 and let 0 < p, q ≤ ∞. Further, if U ⊆ Rn, then

Bs,s′
pq (Rn, U) ↪→ Bs

pq(Rn) ↪→ Bs,−s
pq (Rn, U) .

Remark 4.8: Corollary 4.7 coincides partially with Proposition 1.3 (1) and (2) in
[JaMey96] for p = q = ∞ and U = {x0} and with Theorem 3.2 in [MoYa04] with
p = q ≥ 1 and U be an open subset or U = {x0} ⊂ Rn.
In the mentioned papers local versions of Bs,s′

pq (Rn, U) have been used to treat further

kinds of embeddings in the scale of Bs,s′
pq (Rn, U).
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4.2 Pointwise multipliers

Let g be a bounded function on Rn. We ask, under which conditions the mapping
f 7→ gf makes sense and generates a bounded operator in a given space Bs,mloc

pq (Rn, w).
We follow closely [Tri92, 4.2.2] and adapt the proofs to our situation. First, we prove a
lemma which is important for pointwise multipliers.

Lemma 4.9: Let w ∈ Wα
α1,α2

and let 0 < p, q ≤ ∞. Then for s > n
p

+ α + α1 and all
γ > 0 there is a constant cγ > 0 such that

∥∥∥∥∥w0(·) sup
|·−y|≤γ

|f(y)|
∣∣∣∣∣ Lp(Rn)

∥∥∥∥∥ ≤ cγ

∥∥f |Bs,mloc
pq (Rn,w)

∥∥ holds for all f ∈ S ′(Rn).

Proof: Let {ϕj}j∈N0 ∈ Φ(Rn) be the chosen resolution of unity from the beginning of
the chapter. Then we get for arbitrary ε > 0

∥∥∥∥∥w0(·) sup
|·−y|≤γ

|f(y)|
∣∣∣∣∣ Lp(Rn)

∥∥∥∥∥ ≤ c

∞∑
j=0

2jε

∥∥∥∥∥w0(·) sup
|·−y|≤γ

|(ϕj f̂)∨(y)|
∣∣∣∣∣Lp(Rn)

∥∥∥∥∥ .

For all a > 0 we have

sup
|x−y|≤γ

|(ϕj f̂)∨(y)| ≤ c2ja sup
z∈Rn

|(ϕj f̂)∨|(x− z)

1 + |2jz|a

where the constant only depends on γ > 0. Using the property (2.3) of the weight
sequence and Theorem 3.8, we obtain for arbitrary a > n/p + α and ε > 0

∥∥∥∥∥w0(·) sup
|·−y|≤γ

|f(y)|
∣∣∣∣∣Lp(Rn)

∥∥∥∥∥ ≤ c
∥∥∥(ϕ∗jf)a

∣∣ Ba+α1+ε,mloc
p1 (Rn,w)

∥∥∥

≤ c′
∥∥∥f |Ba+α1+ε,mloc

p1 (Rn,w)
∥∥∥

≤ c′′
∥∥f |Bs,mloc

pq (Rn, w)
∥∥ ,

for s > n
p

+ α + α1 and f ∈ S ′(Rn).

Let k0, k ∈ S(Rn) and k(t, f) be the same functions as in (3.36)-(3.39). For g ∈
Cm(Rn) we study gf where f ∈ Bs,mloc

pq (Rn, w). First, we prove the theorem and after
that we discuss, how gf has to be understood.

Theorem 4.10: Let w ∈ Wα
α1,α2

, s ∈ R and let 0 < p, q ≤ ∞. If m ∈ N is sufficiently
large, then there exists a positive number cm such that

∥∥gf |Bs,mloc
pq (Rn,w)

∥∥ ≤ cm

∑

|β|≤m

∥∥Dβg
∣∣ L∞(Rn)

∥∥ ∥∥f |Bs,mloc
pq (Rn,w)

∥∥ (4.7)

for all g ∈ Cm(Rn) and all f ∈ S ′(Rn).
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Proof: First Step: Firstly, we prove the theorem under the additional assumption s >
n
p

+ α + α1. We use the Taylor expansion of g ∈ Cm(Rn)

g(x) =
∑

|β|≤m−1

Dβg(y)

β!
(x− y)β +

∑

|β|=m

Dβg(y + θ(x− y))

β!
(x− y)β , (4.8)

for θ ∈ (0, 1). By (3.36) we have

k(2−j, f)(x) =

∫

Rn

k(y)f(x + 2−jy)g(x + 2−jy)dy

=
∑

|β|≤m−1

Dβg(x)

β!
2−j|β|

∫

Rn

yβk(y)f(x + 2−jy)dy + 2−jm

∫

Rn

k(y)rm(x, 2−j, y)f(x + 2−jy)dy ,

where the remainder term in Taylor’s expansion, rm(x, 2−j, y), is in any case uniformly
bounded. If we choose N ∈ N0 in (3.39) sufficiently large, for each β ≤ m − 1 the
function kβ(y) = yβk(y) is a new kernel for which Theorem 3.10 holds. Thus, choosing
m > s + α2 and using Theorem 3.10 for every |β| ≤ m− 1 we obtain
( ∞∑

j=1

2jsq
∥∥wjk(2−j, f)

∣∣ Lp(Rn)
∥∥q

)1/q

≤ c
∑

|β|≤m−1

∥∥Dβg
∣∣ L∞(Rn)

∥∥ ∥∥f |Bs,mloc
pq (Rn,w)

∥∥

+ c
∑

|β|≤m

∥∥Dβg
∣∣ L∞(Rn)

∥∥
∥∥∥∥∥w0(·) sup

|·−y|≤1

|f(y)|
∣∣∣∣∣ Lp(Rn)

∥∥∥∥∥

Now, Lemma 4.9 with γ = 1 proves the theorem provided s > n
p

+ α + α1.
Second Step: Let −∞ < s ≤ n

p
+α+α1 and let l ∈ N with s+2l > n

p
+α+α1. From the

lift property (see Section 2.3) we get, that any f ∈ Bs,mloc
pq (Rn,w) can be represented as

f = (id +(−∆)l)h, with

h ∈ Bs+2l,mloc
pq (Rn,w) and

∥∥h|Bs+2l,mloc
pq (Rn, w)

∥∥ ∼
∥∥f |Bs,mloc

pq (Rn,w)
∥∥ . (4.9)

We have

gf = (id +(−∆)l)gh +
∑

|β|<2l

Dβ(gβh) ,

where each gβ is a sum of terms of the type Dβg with |β| ≤ 2l. Now, Theorem 2.16
shows

∥∥gf |Bs,mloc
pq (Rn, w)

∥∥ ≤ c
∑

|β|≤2l

∥∥gβh|Bs+2l,mloc
pq (Rn, w)

∥∥ .

If l ∈ N is sufficiently large, that is m− 2l > s + 2l + α2, we can apply the first step and
and obtain

∥∥gf |Bs,mloc
pq (Rn, w)

∥∥ ≤ c
∑

|β|≤m

∥∥Dβg
∣∣L∞(Rn)

∥∥ ∥∥h|Bs+2l,mloc
pq (Rn,w)

∥∥ .

Finally, (4.9) proves the theorem.
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Remark 4.11: The interpretation of g ·f is a bit sophisticated. We approximate f and
g by smooth functions, fj and gj. The limit of gj · fj exists in Bs,mloc

pq (Rn,w), see [Tri92,
Remark 1/4.2.2], and we define g · f = limj→∞ gj · fj, where gj · fj has to be understood
in the usual pointwise sense, as limit element. For a more detailed discussion of this
procedure we refer also to [RuSi96, Chapter 4].

4.3 Invariance under Diffeomorphisms

In this section we show that the spaces Bs,mloc
pq (Rn,w) are invariant under diffeomor-

phisms. The result and the proof are closely related to Section 4.3 in[Tri92]. Let m ∈ N,
then we call an isomorphism ψ : Rn → Rn an m-diffeomorphism if the components ψj(x)
of ψ(x) = (ψ1(x), . . . , ψn(x)) have classical derivatives up to the order k and the func-
tions Dβψj(x) are bounded for all 0 < |β| ≤ m, 1 ≤ j ≤ n and all x ∈ Rn. Furthermore,
the Jacobian matrix ψ∗ has to fulfill | det ψ∗(x)| ≥ d > 0 for all x ∈ Rn. If y = ψ(x) is a
m-diffeomorphism for every m ∈ N, then it is called diffeomorphism.
We want to prove that f → f ◦ ψ is a linear and bounded operator in all spaces
Bs,mloc

pq (Rn,w). If ψ is a diffeomorphism, then

f ◦ ψ(x) = f(ψ(x)) (4.10)

makes sense for all f ∈ S ′(Rn). If ψ is only an m-diffeomorphism, then (4.10) has to
be understood as an approximation procedure with smooth functions (see also Remark
4.11). In the proof we use the local means characterization in the form of Theorem 3.10.
First of all, we have to prove two lemmas which will be useful later on.
We need a modification of Theorem 3.10. Therefore, let k0 and k0 be kernels in the sense
of (3.37)-(3.39) with N ∈ N0 large enough and a(x) be an n×n matrix with real-valued
continuous entries aij(x), where x ∈ Rn and i, j ∈ {1, . . . , n}. Further, there exist two
numbers d, d′ > 0 with

|aij(x)| ≤ d′ for all x ∈ Rn, i, j ∈ {1, . . . , n} and (4.11)

| det a(x)| ≥ d > 0 for all x ∈ Rn. (4.12)

Since, y 7→ ya(x) is an isomorphic mapping for fixed x ∈ Rn we can generalize (3.36) by

k(a, t, f)(x) =

∫

Rn

k(y)f(x + ta(x)y)dy . (4.13)

Lemma 4.12: Let w ∈ Wα
α1,α2

, s ∈ R and let0 < p, q ≤ ∞. Further, let a(x) be the
above matrix with (4.11), (4.12) and let k0 and k be the functions from (3.37)-(3.39).
Then there exists a constant c such that

‖k0(a, 1, f)w0|Lp(Rn)‖+

( ∞∑
j=1

2jsq
∥∥k(a, 2−j, f)wj

∣∣ Lp(Rn)
∥∥q

)1/q

≤ c
∥∥f |Bs,mloc

pq (Rn,w)
∥∥

(4.14)

holds for all f ∈ S ′(Rn).
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Proof: Let B be the collection of all matrices b = {bij}n
i,j=1 satisfying (4.11) and (4.12).

For fixed b ∈ B we derive by this properties

k(b, t, f)(x) = kb(t, f)(x) whereas kb(y) = ck(b−1y) (4.15)

is a modified kernel in the sense of (3.37)-(3.39). The same holds for kb
0, so that we can

apply now Theorem 3.10 with the new kernels, and get

∥∥kb
0(1, f)w0

∣∣ Lp(Rn)
∥∥ +

( ∞∑
j=1

2jsq
∥∥kb(2−j, f)wj

∣∣ Lp(Rn)
∥∥q

)1/q

∼ c
∥∥f |Bs,mloc

pq (Rn,w)
∥∥

for all f ∈ S ′(Rn). Now, we obtain (4.14) from this formula in going over to the
supremum over all b ∈ B inside the Lp quasi-norms.

The second Lemma is necessary for our weighted spaces. To get the invariance under
diffeomorphisms of our spaces we also need a special restriction on the diffeomorphisms.
From now on we consider only diffeomorphisms ψ which satisfy ψ(x) = x for x near to
infinity (|x| > R for some R > 0).
With that restriction we are ready to formulate the next lemma.

Lemma 4.13: Let w0 be an admissible weight function. Let R > 0 and ψ be an m-
diffeomorphism with ψ(x) = x for |x| > R, then there exists a constant c > 0 such
that

(w0 ◦ ψ−1)(x) ≤ cw0(x) holds for all x ∈ Rn.

Proof: If ψ is an m-diffeomorphism with the restriction above, then also ψ−1 is an
m-diffeomorphism with ψ−1(x) = x for |x| > R. We define

a∗ := max
1≤i,j≤n

sup
x∈Rn

∣∣∣∣
∂ψ−1

i

∂xj

(x)

∣∣∣∣ . (4.16)

Using the properties of the weight function w0 and Taylor expansion of ψ−1 we obtain

w0(ψ
−1(x)) ≤ Cw0(x)(1 + |x− ψ−1(x)|)α ≤ Cw0(x)(1 + |x− ψ−1(0)− ψ−1

∗ (..) · x|)α

≤ Cw0(x)2α(1 + |ψ−1(0)|)α(1 + |x− ψ−1
∗ (..) · x|)α

≤ C′w0(x)(1 + |x− ψ−1
∗ (..) · x|)α .

Here ψ−1
∗ (..) is the Jacobian where in every line different arguments from the line segment

between 0 and x are possible. In every case, the absolute values from all entries of ψ−1
∗ (..)

are bounded by a∗. We can estimate from this property

|x− ψ−1
∗ (..) · x| ≤ |x|(1 + a∗n) for all x ∈ Rn. (4.17)

Finally, we get from ψ−1(x) = x for |x| > R and the preceding calculation

w0 ◦ ψ−1(x) = w0(ψ
−1(x)) ≤

{
CR,α,ψ,nw0(x) for |x| ≤ R

w0(x) for |x| > R
,

and this finishes the proof.
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Now, the main theorem can be stated.

Theorem 4.14: Let w ∈ Wα
α1,α2

, 0 < p, q ≤ ∞ and let s ∈ Rn. Further, let ψ be a m-
diffeomorphism for m ∈ N large enough and with ψ(x) = x for large x. Then f 7→ f ◦ψ
is an isomorphic mapping from Bs,mloc

pq (Rn,w) onto Bs,mloc
pq (Rn,w).

Proof: First Step: It is enough to prove, that there exists a constant c > 0 such that
∥∥f ◦ ψ|Bs,mloc

pq (Rn,w)
∥∥ ≤ c

∥∥f |Bs,mloc
pq (Rn, w)

∥∥ for all f ∈ S ′(Rn). (4.18)

The reverse inequality follows immediately if we use ψ−1 in (4.18). Furthermore, we
always assume that f is a smooth function.
Second Step: Let s > n

p
+ α + 2α1 + α + 2, then we can find a number K ∈ N with

α1 + α2 + 1 < K +
n

p
+ α + α1 < s and s + α2 < 2K . (4.19)

We use the local means characterization, Theorem 3.10, with some kernels k0, k and
N ∈ N0 large enough. To simplify our notation we write k(1, f) := k0(1, f) and we put
the first summand with k0 and w0 into the infinite summation with j = 0. So we get
with this notation

∥∥f ◦ ψ|Bs,mloc
pq (Rn,w)

∥∥ ≤ c

( ∞∑
j=0

2jsq
∥∥wjk(2−j, f ◦ ψ)

∣∣Lp(Rn)
∥∥q

)1/q

≤ c




∞∑
j=0

2jq(s+α2)

∥∥∥∥∥∥
w0(x)

∫

Rn

k(y)f(ψ(x + 2−jy))dy

∣∣∣∣∣∣
Lp(Rn)

∥∥∥∥∥∥

q


1/q

.

(4.20)

We use Taylor expansion on ψ and obtain

ψ(x + 2−jy) = ψ(x) + 2−jψ∗(x) · y +
∑

2≤|β|<2K

2−j|β|D
βψ(x)

β!
yβ + 2−2KjR2K(x, 2−j, y) ,

where Dβψ and the remainder term R2K stand for appropriate vectors. Again, we apply
Taylor expansion now on f and derive

f


ψ(x) + 2−jψ∗(x) · y +

∑

2≤|β|<2K

+2−2KjR2K




= f


ψ(x) + 2−jψ∗(x) · y +

∑

2≤|β|<2K


 + 2−2KjR̃2K(x, 2−j, y) · (∇f)(ξ) , (4.21)

where the last term is a scalar product with an immaterially modified remainder term.
Now, putting the last summand of (4.21) into (4.20) and using 2K > s + α2 we can
estimate this by

c

∥∥∥∥∥w0(x) sup
|ψ(x)−z|<c′

|(∇f)(z)|
∣∣∣∣∣Lp(Rn)

∥∥∥∥∥ .
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An obvious substitution and Lemma 4.13, Lemma 4.9 and Theorem 2.16 show that this
is bounded by c

∥∥f |Bs,mloc
pq (Rn, w)

∥∥. To handle the first term in (4.21) we use Taylor
again and get

f


ψ(x) + 2−jψ∗(x) · y +

∑

2≤|β|<2K




=
∑

0≤|γ|<K

Dγf(ψ(x) + 2−jψ∗(x) · y)

γ!


 ∑

2≤|β|<2K




γ

+
∑

|γ|=K

Dγf

γ!


 ∑

2≤|β|<2K




γ

. (4.22)

From
∣∣∣∣∣∣


 ∑

2≤|β|<2K




γ∣∣∣∣∣∣
≤ c2−2Kj for |γ| = K ,

we can estimate the last term of (4.22) in (4.20) by

c
∑

|γ|=K

∥∥∥∥∥w0(x) sup
|ψ(x)−z|<c′

|Dγf(z)|
∣∣∣∣∣ Lp(Rn)

∥∥∥∥∥ .

The same substitution as above and Lemma 4.13, Lemma 4.9 and Theorem 2.16 show
the boundedness by c

∥∥f |Bs,mloc
pq (Rn,w)

∥∥ when s−K > n
p

+ α + α1. Finally, it remains

to estimate the first term of (4.22) in (4.20). The resulting term is

c
∑

0≤|γ|<K




∞∑
j=0

2jsq

∥∥∥∥∥∥
wj(x)2−jb

∫

Rn

k(y)yδDγf(ψ(x) + 2−jψ∗(x) · y)dy

∣∣∣∣∣∣
Lp(Rn)

∥∥∥∥∥∥

q


1/q

,

where b ≥ 2|γ| and |δ| ≤ (2K − 1)|γ|. For large N ∈ N0 we get that k̃γ(y) := k(y)yδ are
new kernels in the sense of Theorem 3.10 and we can estimate

≤ c′
∑

0≤|γ|<K

( ∞∑
j=0

2jq(s+α2−b)
∥∥∥w0(x)k̃γ(ψ∗ ◦ ψ−1, 2−j, Dγf)(ψ(x))

∣∣∣ Lp(Rn)
∥∥∥

q
)1/q

.

Substitution and usage of Lemma 4.13 makes us ready to use Lemma 4.12 and we derive

≤ c′
∑

0≤|γ|<K

∥∥Dγf |Bs+α1+α2−b,mloc
pq (Rn,w)

∥∥ .

This can be estimated by c
∥∥f |Bs,mloc

pq (Rn, w)
∥∥ if K > α1 + α2 + 1 and therefore

s > n
p

+ α + 2α1 + α2 + 2.
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Third Step: Let s ≤ n
p

+ α + 2α1 + α2 + 2 then there is an l ∈ N such that s + 2l >
n
p

+ α + 2α1 + α2 + 2. As in the previous section we present f ∈ Bs,mloc
pq (Rn,w) by

f = (id +(−∆)l)h h ∈ Bs+2l,mloc
pq (Rn, w) (4.23)

and

∥∥f |Bs,mloc
pq (Rn, w)

∥∥ ∼
∥∥h|Bs+2l,mloc

pq (Rn,w)
∥∥ . (4.24)

We have

f(x) =
∑

|β|≤2l

cβ(x)(Dβh ◦ ψ ◦ ψ−1)(x) , (4.25)

where cβ are some functions. We assume that they are smooth and that we can apply
Theorem 4.10 and obtain

∥∥f ◦ ψ|Bs,mloc
pq (Rn,w)

∥∥ ≤ c
∑

|β|≤2l

∥∥Dβh ◦ ψ
∣∣ Bs,mloc

pq (Rn, w)
∥∥ ≤ c′

∥∥h ◦ ψ|Bs+2l,mloc
pq (Rn,w)

∥∥ .

Finally, the second step and (4.23) lead to the result we focused on.

The restriction ψ(x) = x for large x is not satisfactory. For the special case of the 2-
microlocal Besov spaces Bs,s′

pq (Rn, x0) with the weight sequence wj(x) = (1+2j|x−x0|)s′

a more moderate restriction on ψ can be used. Let us have a look on w0 ◦ψ−1 for s′ ≥ 0,
we have

w0 ◦ ψ−1(x) = w0(ψ−1(x)) =
(
1 + |ψ−1(x)− x0|

)s′
.

Now, using Taylor expansion on ψ−1 at the point x0, we get

=
(
1 + |ψ−1(x0) + ψ−1

∗ (..) · (x− x0)− x0|
)s′

.

Finally, demanding ψ−1(x0) = x0 we obtain in the same manner as in (4.17)

=
(
1 + |ψ−1

∗ (..) · (x− x0)|
)s′ ≤ Cψ,n,s′(1 + |(x− x0)|)s′ = Cψ,n,s′w0(x) ,

which is the result we aimed at. We can use the above calculation instead of Lemma
4.13 in the proof of Theorem 4.14. So the following corollary holds.

Corollary 4.15: Let x0 ∈ Rn, 0 < p, q ≤ ∞, s ∈ R and s′ ≥ 0, Further let ψ be an
m-diffeomorphism with m ∈ N large enough and ψ(x0) = x0, then f 7→ f ◦ ψ is an
isomorphic mapping from Bs,s′

pq (Rn, x0) onto Bs,s′
pq (Rn, x0).
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