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Henning Kempka ∗, Jan Vyb́ıral †

February 9, 2011

Abstract

We address an open problem posed recently by Almeida and Hästö in [1].
They defined the spaces ℓq(·)(Lp(·)) of variable integrability and summability
and showed that ‖ · |ℓq(·)(Lp(·))‖ is a norm if q is constant almost everywhere
or if ess-sup

x∈Rn 1/p(x) + 1/q(x) ≤ 1. Nevertheless, the natural conjecture
(expressed also in [1]) is that the expression is a norm if p(x), q(x) ≥ 1 almost
everywhere. We show, that ‖ · |ℓq(·)(Lp(·))‖ is a norm, if 1 ≤ q(x) ≤ p(x) for
almost every x ∈ R

n. Furthermore, we construct an example of p(x) and q(x)
with min(p(x), q(x)) ≥ 1 for every x ∈ R

n such that the triangle inequality does
not hold for ‖ · |ℓq(·)(Lp(·))‖.
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1 Introduction

For the definition of the spaces ℓq(·)(Lp(·)) we follow closely [1]. Spaces of variable
integrability Lp(·) and variable sequence spaces ℓq(·) have first been considered in
1931 by Orlicz [5] but the modern development started with the paper [4]. We refer
to [3] for an excellent overview of the vastly growing literature on the subject.

First of all we recall the definition of the variable Lebesgue spaces Lp(·)(Ω), where
Ω is a measurable subset of Rn. A measurable function p : Ω → (0,∞] is called a
variable exponent function if it is bounded away from zero. For a set A ⊂ Ω we
denote p+A = ess-supx∈A p(x) and p−A = ess-infx∈A p(x); we use the abbreviations
p+ = p+Ω and p− = p−Ω . The variable exponent Lebesgue space Lp(·)(Ω) consists of
all measurable functions f such that there exist an λ > 0 such that the modular

̺Lp(·)(Ω)(f/λ) =

∫

Ω
ϕp(x)

(

|f(x)|

λ

)

dx
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is finite, where

ϕp(t) =











tp if p ∈ (0,∞),

0 if p = ∞ and t ≤ 1,

∞ if p = ∞ and t > 1.

This definition is nowadays standard and was used also in [1, Section 2.2] and [3,
Definition 3.2.1].

If we define Ω∞ = {x ∈ Ω : p(x) = ∞} and Ω0 = Ω \ Ω∞, then the Luxemburg
norm of a function f ∈ Lp(·)(Ω) is given by

∥

∥f |Lp(·)(Ω)
∥

∥ = inf{λ > 0 : ̺Lp(·)(Ω)(f/λ) ≤ 1}

= inf

{

λ > 0 :

∫

Ω0

(

|f(x)|

λ

)p(x)

dx ≤ 1 and |f(x)| ≤ λ for a.e. x ∈ Ω∞

}

.

If p(·) ≥ 1, then it is a norm, but it is always a quasi-norm if at least p− > 0, see
[4] for details. We denote the class of all measurable functions p : Rn → (0,∞] such
that p− > 0 by P(Rn).

To define the mixed spaces ℓq(·)(Lp(·)) we have to define another modular. For
p, q ∈ P(Rn) and a sequence (fν)ν∈N0 of Lp(·)(R

n) functions we define

̺ℓq(·)(Lp(·))(fν) =

∞
∑

ν=0

inf

{

λν > 0 : ̺p(·)

(

fν

λ
1/q(·)
ν

)

≤ 1

}

. (1)

The (quasi-) norm in the ℓq(·)(Lp(·)) spaces is defined as usually by

∥

∥fν| ℓq(·)(Lp(·))
∥

∥ = inf{µ > 0 : ̺ℓq(·)(Lp(·))(fν/µ) ≤ 1} . (2)

This (quasi-) norm was used in [1] to define the spaces of Besov type with variable
integrability and summability. Spaces of Triebel-Lizorkin type with variable indices
have been considered recently in [2]. The appropriate Lp(·)(ℓq(·)) space is a normed
space whenever ess-infx∈Rn min(p(x), q(x)) ≥ 1. This was the expected result and
coincides with the case of constant exponents.

As pointed out in the remark after Theorem 3.8 in [1], the same question is still
open for the ℓq(·)(Lp(·)) spaces.

2 When does
∥

∥·| ℓq(·)(Lp(·))
∥

∥ define a norm?

In Theorem 3.6 of [1] the authors proved that if the condition 1
p(x) +

1
q(x) ≤ 1 holds

for almost every x ∈ R
n, then

∥

∥ ·| ℓq(·)(Lp(·))
∥

∥ defines a norm. They also proved in
Theorem 3.8 that

∥

∥ ·| ℓq(·)(Lp(·))
∥

∥ is a quasi-norm for all p, q ∈ P(Rn). Furthermore,
the authors of [1] posed a question if the (rather natural) condition p(x), q(x) ≥ 1
for almost every x ∈ R

n ensures that
∥

∥ ·| ℓq(·)(Lp(·))
∥

∥ is a norm.
We give (in Theorem 1) a positive answer if 1 ≤ q(x) ≤ p(x) ≤ ∞ almost

everywhere on R
n. Furthermore in Theorem 2, we construct two functions p(·), q(·) ∈

P(Rn), such that infx∈Rn min(p(x), q(x)) ≥ 1, but the triangle inequality does not
hold for

∥

∥ ·| ℓq(·)(Lp(·))
∥

∥.
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2.1 Positive results

Theorem 1. Let p, q ∈ P(Rn), such that either 1 ≤ q(x) ≤ p(x) ≤ ∞ for almost

every x ∈ R
n or 1/p(x) + 1/q(x) ≤ 1 for almost every x ∈ R

n. Then
∥

∥ ·| ℓq(·)(Lp(·))
∥

∥

defines a norm.

Proof. We want to show, that

‖fν + gν |ℓq(·)(Lp(·))‖ ≤ ‖fν |ℓq(·)(Lp(·))‖+ ‖gν |ℓq(·)(Lp(·))‖ (3)

for all sequences of measurable functions {fν}ν∈N0 and {gν}ν∈N0 . Let µ1 > 0 and
µ2 > 0 be given with

̺ℓq(·)(Lp(·))

(

fν
µ1

)

≤ 1 and ̺ℓq(·)(Lp(·))

(

gν
µ2

)

≤ 1.

We want to show, that

̺ℓq(·)(Lp(·))

(

fν + gν
µ1 + µ2

)

≤ 1.

For every ε > 0, there exist sequences of positive numbers {λν}ν∈N0 and {Λν}ν∈N0 ,
such that

̺p(·)

(

fν(x)

µ1λ
1/q(x)
ν

)

≤ 1 and ̺p(·)

(

gν(x)

µ2Λ
1/q(x)
ν

)

≤ 1 (4)

together with
∞
∑

ν=0

λν ≤ 1 + ε and

∞
∑

ν=0

Λν ≤ 1 + ε.

We set

Aν :=
µ1λν + µ2Λν

µ1 + µ2
, i.e.

∞
∑

ν=0

Aν ≤ 1 + ε.

We shall prove, that

̺p(·)

(

fν(x) + gν(x)

A
1/q(x)
ν (µ1 + µ2)

)

≤ 1 for all ν ∈ N0. (5)

Let Ω0 := {x ∈ R
n : p(x) < ∞} and Ω∞ := {x ∈ R

n : p(x) = ∞}. We put for every
x ∈ Ω0

Fν(x) :=

(

|fν(x)|

µ1λ
1/q(x)
ν

)p(x)

and Gν(x) :=

(

|gν(x)|

µ2Λ
1/q(x)
ν

)p(x)

.

Then (4) may be reformulated as

∫

Ω0

Fν(x)dx ≤ 1 and ess-sup
x∈Ω∞

|fν(x)|

µ1λ
1/q(x)
ν

≤ 1 (6)

and
∫

Ω0

Gν(x)dx ≤ 1 and ess-sup
x∈Ω∞

|gν(x)|

µ2Λ
1/q(x)
ν

≤ 1 . (7)
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Our aim is to prove (5), which reads

∫

Ω0

(

|fν(x) + gν(x)|

A
1/q(x)
ν (µ1 + µ2)

)p(x)

dx ≤ 1 and ess-sup
x∈Ω∞

|fν(x) + gν(x)|

A
1/q(x)
ν (µ1 + µ2)

≤ 1. (8)

We first prove the second part of (8). First we observe, that (6) and (7) imply, that

|fν(x)| ≤ µ1λ
1/q(x)
ν and |gν(x)| ≤ µ2Λ

1/q(x)
ν

holds for almost every x ∈ Ω∞. Using q(x) ≥ 1, and Hölder’s inequality in the form

µ1λ
1/q(x)
ν + µ2Λ

1/q(x)
ν

µ1 + µ2
≤

(

µ1λν + µ2Λν

µ1 + µ2

)1/q(x)

,

we get
|fν(x) + gν(x)|

A
1/q(x)
ν (µ1 + µ2)

≤ 1.

If q(x) = ∞, only notational changes are necessary.
Next we prove the first part of (8). Let 1 ≤ q(x) ≤ p(x) < ∞ for almost all

x ∈ Ω0. Then we use Hölder’s inequality in the form

F ν(x)
1/p(x)λ1/q(x)

ν µ1 +Gν(x)
1/p(x)Λ1/q(x)

ν µ2 (9)

≤ (µ1 + µ2)
1−1/q(x)(µ1λν + µ2Λν)

1/q(x)−1/p(x)(Fν(x)λνµ1 +Gν(x)Λνµ2)
1/p(x).

If 1/p(x) + 1/q(x) ≤ 1 for almost every x ∈ Ω0, then we replace (9) by

F ν(x)
1/p(x)λ1/q(x)

ν µ1 +Gν(x)
1/p(x)Λ1/q(x)

ν µ2 (10)

≤ (µ1 + µ2)
1−1/p(x)−1/q(x)(µ1λν + µ2Λν)

1/q(x)(Fν(x)µ1 +Gν(x)µ2)
1/p(x).

Using (9), we may further continue

∫

Ω0

(

|fν(x) + gν(x)|

A
1/q(x)
ν (µ1 + µ2)

)p(x)

dx

=

∫

Ω0

(

Fν(x)
1/p(x)λ

1/q(x)
ν µ1 +Gν(x)

1/p(x)Λ
1/q(x)
ν µ2

µ1 + µ2

)p(x)

·

(

µ1λν + µ2Λν

µ1 + µ2

)−
p(x)
q(x)

dx

≤

∫

Ω0

Fν(x)λνµ1 +Gν(x)Λνµ2

µ1λν + µ2Λν
dx

=
µ1λν

µ1λν + µ2Λν

∫

Ω0

Fν(x)dx+
µ2Λν

µ1λν + µ2Λν

∫

Ω0

Gν(x)dx ≤ 1,

where we used also (6) and (7). If we start with (10) instead, we proceed in the
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following way

∫

Ω0

(

|fν(x) + gν(x)|

A
1/q(x)
ν (µ1 + µ2)

)p(x)

dx

=

∫

Ω0

(

Fν(x)
1/p(x)λ

1/q(x)
ν µ1 +Gν(x)

1/p(x)Λ
1/q(x)
ν µ2

µ1 + µ2

)p(x)

·

(

µ1λν + µ2Λν

µ1 + µ2

)−
p(x)
q(x)

dx

≤

∫

Ω0

Fν(x)µ1 +Gν(x)µ2

µ1 + µ2
dx =

µ1

µ1 + µ2

∫

Ω0

Fν(x)dx +
µ2

µ1 + µ2

∫

Ω0

Gν(x)dx ≤ 1.

In both cases, this finishes the proof of (8).

2.2 Counterexample

Theorem 2. There exist functions p, q ∈ P(Rn) with infx∈Rn p(x) ≥ 1 and infx∈Rn q(x) ≥
1 such that ‖ · |ℓq(·)(Lp(·))‖ does not satisfy the triangle inequality.

Proof. Let Q0, Q1 ⊂ R
n be two disjoint unit cubes, let p(x) := 1 everywhere on R

n

and put q(x) := ∞ for x ∈ Q1 and q(x) := 1 for x 6∈ Q1. Let f1 = χQ0 and f2 = χQ1 .
Finally, we put f = (f1, f2, 0, . . . ) and g = (f2, f1, 0, . . . ).

We calculate for every L > 0 fixed

inf

{

λ1 > 0 : ̺p(·)

(

f1(x)

λ
1/q(x)
1 L

)

≤ 1

}

= inf

{

λ1 > 0 :
1

λ1L
≤ 1

}

= 1/L

and

inf

{

λ2 > 0 : ̺p(·)

(

f2(x)

λ
1/q(x)
2 L

)

≤ 1

}

= inf

{

λ2 > 0 :
1

L
≤ 1

}

.

If L ≥ 1, then the last expression is equal to zero, otherwise it is equal to ∞.
We obtain

‖f |ℓq(·)(Lp(·))‖ = inf{L > 0 : ̺ℓq(·)(Lp(·))(f/L) ≤ 1} = inf{L > 0 : 1/L+ 0 ≤ 1} = 1

and the same is true also for ‖g|ℓq(·)(Lp(·))‖. It is therefore enough to show, that
‖f + g|ℓq(·)(Lp(·))‖ > 2.

Using the calculation

inf

{

λ > 0 : ̺p(·)

(

f1(x) + f2(x)

L · λ1/q(x)

)

≤ 1

}

= inf

{

λ > 0 :

∫

Q0

1

L · λ
+

∫

Q1

1

L
≤ 1

}

= inf

{

λ > 0 :
1

L · λ
+

1

L
≤ 1

}

=
1

L− 1
,

which holds for every L > 1 fixed, we get

‖f + g|ℓq(·)(Lp(·))‖ = inf

{

L > 0 : ̺ℓq(·)(Lp(·))

(

f + g

L

)

≤ 1

}

= inf

{

L > 0 : 2 inf

{

λ > 0 : ̺p(·)

(

f1(x) + f2(x)

L · λ1/q(x)

)

≤ 1

}

≤ 1

}

= inf

{

L > 1 : 2 ·
1

L− 1
≤ 1

}

= 3.
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Remark 1. Let us observe, that 1 ≤ q(x) ≤ p(x) ≤ ∞ holds for x ∈ Q0 and
1/p(x) + 1/q(x) ≤ 1 is true for x ∈ Q1. It is therefore necessary to interprete the
assumptions of Theorem 1 in a correct way, namely that one of the conditions of
Theorem 1 holds for (almost) all x ∈ R

n. This is not to be confused with the
statement, that for (almost) every x ∈ R

n at least one of the conditions is satisfied,
which is not sufficient.

Remark 2. A similar calculation (which we shall not repeat in detail) shows, that one
may also put q(x) := q0 large enough for x ∈ Q1 to obtain an counterexample. Hence
there is nothing special about the infinite value of q and the same counterexample
may be reproduced with uniformly bounded exponents p, q ∈ P(Rn).
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