A note on the spaces of variable integrability and summability of Almeida and Hästö

Henning Kempka * Jan Vybíral ${ }^{\dagger}$

February 9, 2011

Abstract

We address an open problem posed recently by Almeida and Hästö in 1 . They defined the spaces $\ell_{q(\cdot)}\left(L_{p(\cdot)}\right)$ of variable integrability and summability and showed that $\left\|\cdot \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|$ is a norm if q is constant almost everywhere or if $\operatorname{ess}^{-\sup _{x \in \mathbb{R}^{n}} 1 / p(x)+1 / q(x) \leq 1 \text {. Nevertheless, the natural conjecture }}$ (expressed also in (1) is that the expression is a norm if $p(x), q(x) \geq 1$ almost everywhere. We show, that $\left\|\cdot \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|$ is a norm, if $1 \leq q(x) \leq p(x)$ for almost every $x \in \mathbb{R}^{n}$. Furthermore, we construct an example of $p(x)$ and $q(x)$ with $\min (p(x), q(x)) \geq 1$ for every $x \in \mathbb{R}^{n}$ such that the triangle inequality does not hold for $\left\|\cdot \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|$.

2010 AMS Subj. Classification: Primary 46E35
Keywords: Triangle inequality, Lebesgue spaces with variable exponent, iterated Lebesgue spaces

1 Introduction

For the definition of the spaces $\ell_{q(\cdot)}\left(L_{p(\cdot)}\right)$ we follow closely [1]. Spaces of variable integrability $L_{p(\cdot)}$ and variable sequence spaces $\ell_{q(\cdot)}$ have first been considered in 1931 by Orlicz [5] but the modern development started with the paper [4]. We refer to [3] for an excellent overview of the vastly growing literature on the subject.

First of all we recall the definition of the variable Lebesgue spaces $L_{p(\cdot)}(\Omega)$, where Ω is a measurable subset of \mathbb{R}^{n}. A measurable function $p: \Omega \rightarrow(0, \infty]$ is called a variable exponent function if it is bounded away from zero. For a set $A \subset \Omega$ we denote $p_{A}^{+}=\operatorname{ess}^{-\sup _{x \in A}} p(x)$ and $p_{A}^{-}=\operatorname{ess}^{-i n f}{ }_{x \in A} p(x)$; we use the abbreviations $p^{+}=p_{\Omega}^{+}$and $p^{-}=p_{\Omega}^{-}$. The variable exponent Lebesgue space $L_{p(\cdot)}(\Omega)$ consists of all measurable functions f such that there exist an $\lambda>0$ such that the modular

$$
\varrho_{L_{p(\cdot)}(\Omega)}(f / \lambda)=\int_{\Omega} \varphi_{p(x)}\left(\frac{|f(x)|}{\lambda}\right) d x
$$

[^0]is finite, where
\[

\varphi_{p}(t)= $$
\begin{cases}t^{p} & \text { if } p \in(0, \infty) \\ 0 & \text { if } p=\infty \text { and } t \leq 1 \\ \infty & \text { if } p=\infty \text { and } t>1\end{cases}
$$
\]

This definition is nowadays standard and was used also in [1, Section 2.2] and [3, Definition 3.2.1].

If we define $\Omega_{\infty}=\{x \in \Omega: p(x)=\infty\}$ and $\Omega_{0}=\Omega \backslash \Omega_{\infty}$, then the Luxemburg norm of a function $f \in L_{p(\cdot)}(\Omega)$ is given by

$$
\begin{aligned}
\left\|f \mid L_{p(\cdot)}(\Omega)\right\| & =\inf \left\{\lambda>0: \varrho_{L_{p(\cdot)}(\Omega)}(f / \lambda) \leq 1\right\} \\
& =\inf \left\{\lambda>0: \int_{\Omega_{0}}\left(\frac{|f(x)|}{\lambda}\right)^{p(x)} d x \leq 1 \text { and }|f(x)| \leq \lambda \text { for a.e. } x \in \Omega_{\infty}\right\} .
\end{aligned}
$$

If $p(\cdot) \geq 1$, then it is a norm, but it is always a quasi-norm if at least $p^{-}>0$, see [4] for details. We denote the class of all measurable functions $p: \mathbb{R}^{n} \rightarrow(0, \infty$] such that $p^{-}>0$ by $\mathcal{P}\left(\mathbb{R}^{n}\right)$.

To define the mixed spaces $\ell_{q(\cdot)}\left(L_{p(\cdot)}\right)$ we have to define another modular. For $p, q \in \mathcal{P}\left(\mathbb{R}^{n}\right)$ and a sequence $\left(f_{\nu}\right)_{\nu \in \mathbb{N}_{0}}$ of $L_{p(\cdot)}\left(\mathbb{R}^{n}\right)$ functions we define

$$
\begin{equation*}
\varrho_{\ell_{q(\cdot)}\left(L_{p(\cdot))}\right)}\left(f_{\nu}\right)=\sum_{\nu=0}^{\infty} \inf \left\{\lambda_{\nu}>0: \varrho_{p(\cdot)}\left(\frac{f_{\nu}}{\lambda_{\nu}^{1 / q(\cdot)}}\right) \leq 1\right\} . \tag{1}
\end{equation*}
$$

The (quasi-) norm in the $\ell_{q(\cdot)}\left(L_{p(\cdot)}\right)$ spaces is defined as usually by

$$
\begin{equation*}
\left\|f_{\nu} \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|=\inf \left\{\mu>0: \varrho_{\ell_{q(\cdot)}\left(L_{p(\cdot)}\right)}\left(f_{\nu} / \mu\right) \leq 1\right\} \tag{2}
\end{equation*}
$$

This (quasi-) norm was used in [1 to define the spaces of Besov type with variable integrability and summability. Spaces of Triebel-Lizorkin type with variable indices have been considered recently in [2]. The appropriate $L_{p(\cdot)}\left(\ell_{q(\cdot)}\right)$ space is a normed space whenever $\operatorname{ess}^{-\inf _{x \in \mathbb{R}^{n}} \min (p(x), q(x)) \geq 1 \text {. This was the expected result and }}$ coincides with the case of constant exponents.

As pointed out in the remark after Theorem 3.8 in [1] the same question is still open for the $\ell_{q(\cdot)}\left(L_{p(\cdot)}\right)$ spaces.

2 When does $\left\|\cdot \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|$ define a norm?

In Theorem 3.6 of [1] the authors proved that if the condition $\frac{1}{p(x)}+\frac{1}{q(x)} \leq 1$ holds for almost every $x \in \mathbb{R}^{n}$, then $\|\cdot\| \ell_{q(\cdot)}\left(L_{p(\cdot)}\right) \|$ defines a norm. They also proved in Theorem 3.8 that $\left\|\cdot \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|$ is a quasi-norm for all $p, q \in \mathcal{P}\left(\mathbb{R}^{n}\right)$. Furthermore, the authors of [1] posed a question if the (rather natural) condition $p(x), q(x) \geq 1$ for almost every $x \in \mathbb{R}^{n}$ ensures that $\left\|\cdot \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|$ is a norm.

We give (in Theorem (1) a positive answer if $1 \leq q(x) \leq p(x) \leq \infty$ almost everywhere on \mathbb{R}^{n}. Furthermore in Theorem2, we construct two functions $p(\cdot), q(\cdot) \in$ $\mathcal{P}\left(\mathbb{R}^{n}\right)$, such that $\inf _{x \in \mathbb{R}^{n}} \min (p(x), q(x)) \geq 1$, but the triangle inequality does not hold for $\left\|\cdot \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|$.

2.1 Positive results

Theorem 1. Let $p, q \in \mathcal{P}\left(\mathbb{R}^{n}\right)$, such that either $1 \leq q(x) \leq p(x) \leq \infty$ for almost every $x \in \mathbb{R}^{n}$ or $1 / p(x)+1 / q(x) \leq 1$ for almost every $x \in \mathbb{R}^{n}$. Then $\left\|\cdot \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|$ defines a norm.

Proof. We want to show, that

$$
\begin{equation*}
\left\|f_{\nu}+g_{\nu}\left|\ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\|\leq\| f_{\nu}\right| \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|+\left\|g_{\nu} \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\| \tag{3}
\end{equation*}
$$

for all sequences of measurable functions $\left\{f_{\nu}\right\}_{\nu \in \mathbb{N}_{0}}$ and $\left\{g_{\nu}\right\}_{\nu \in \mathbb{N}_{0}}$. Let $\mu_{1}>0$ and $\mu_{2}>0$ be given with

$$
\varrho_{\ell_{q(\cdot)}\left(L_{p(\cdot)}\right)}\left(\frac{f_{\nu}}{\mu_{1}}\right) \leq 1 \quad \text { and } \quad \varrho_{\ell(\cdot)}\left(L_{p(\cdot)}\right)\left(\frac{g_{\nu}}{\mu_{2}}\right) \leq 1 .
$$

We want to show, that

$$
\varrho_{\ell_{q(\cdot)}\left(L_{p(\cdot)}\right)}\left(\frac{f_{\nu}+g_{\nu}}{\mu_{1}+\mu_{2}}\right) \leq 1 .
$$

For every $\varepsilon>0$, there exist sequences of positive numbers $\left\{\lambda_{\nu}\right\}_{\nu \in \mathbb{N}_{0}}$ and $\left\{\Lambda_{\nu}\right\}_{\nu \in \mathbb{N}_{0}}$, such that

$$
\begin{equation*}
\varrho_{p(\cdot)}\left(\frac{f_{\nu}(x)}{\mu_{1} \lambda_{\nu}^{1 / q(x)}}\right) \leq 1 \quad \text { and } \quad \varrho_{p(\cdot)}\left(\frac{g_{\nu}(x)}{\mu_{2} \Lambda_{\nu}^{1 / q(x)}}\right) \leq 1 \tag{4}
\end{equation*}
$$

together with

$$
\sum_{\nu=0}^{\infty} \lambda_{\nu} \leq 1+\varepsilon \quad \text { and } \quad \sum_{\nu=0}^{\infty} \Lambda_{\nu} \leq 1+\varepsilon
$$

We set

$$
A_{\nu}:=\frac{\mu_{1} \lambda_{\nu}+\mu_{2} \Lambda_{\nu}}{\mu_{1}+\mu_{2}}, \quad \text { i.e. } \quad \sum_{\nu=0}^{\infty} A_{\nu} \leq 1+\varepsilon .
$$

We shall prove, that

$$
\begin{equation*}
\varrho_{p(\cdot)}\left(\frac{f_{\nu}(x)+g_{\nu}(x)}{A_{\nu}^{1 / q(x)}\left(\mu_{1}+\mu_{2}\right)}\right) \leq 1 \quad \text { for all } \quad \nu \in \mathbb{N}_{0} . \tag{5}
\end{equation*}
$$

Let $\Omega_{0}:=\left\{x \in \mathbb{R}^{n}: p(x)<\infty\right\}$ and $\Omega_{\infty}:=\left\{x \in \mathbb{R}^{n}: p(x)=\infty\right\}$. We put for every $x \in \Omega_{0}$

$$
F_{\nu}(x):=\left(\frac{\left|f_{\nu}(x)\right|}{\mu_{1} \lambda_{\nu}^{1 / q(x)}}\right)^{p(x)} \quad \text { and } \quad G_{\nu}(x):=\left(\frac{\left|g_{\nu}(x)\right|}{\mu_{2} \Lambda_{\nu}^{1 / q(x)}}\right)^{p(x)} .
$$

Then (4) may be reformulated as

$$
\begin{equation*}
\int_{\Omega_{0}} F_{\nu}(x) d x \leq 1 \quad \text { and } \quad \operatorname{ess-sup}_{x \in \Omega_{\infty}} \frac{\left|f_{\nu}(x)\right|}{\mu_{1} \lambda_{\nu}^{1 / q(x)}} \leq 1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega_{0}} G_{\nu}(x) d x \leq 1 \quad \text { and } \quad \underset{x \in \Omega_{\infty}}{\operatorname{ess}-\sup } \frac{\left|g_{\nu}(x)\right|}{\mu_{2} \Lambda_{\nu}^{1 / q(x)}} \leq 1 \tag{7}
\end{equation*}
$$

Our aim is to prove (5), which reads

$$
\begin{equation*}
\int_{\Omega_{0}}\left(\frac{\left|f_{\nu}(x)+g_{\nu}(x)\right|}{A_{\nu}^{1 / q(x)}\left(\mu_{1}+\mu_{2}\right)}\right)^{p(x)} d x \leq 1 \quad \text { and } \quad \underset{x \in \Omega_{\infty}}{\operatorname{ess-sup}} \frac{\left|f_{\nu}(x)+g_{\nu}(x)\right|}{A_{\nu}^{1 / q(x)}\left(\mu_{1}+\mu_{2}\right)} \leq 1 \tag{8}
\end{equation*}
$$

We first prove the second part of (8). First we observe, that (6) and (7) imply, that

$$
\left|f_{\nu}(x)\right| \leq \mu_{1} \lambda_{\nu}^{1 / q(x)} \quad \text { and } \quad\left|g_{\nu}(x)\right| \leq \mu_{2} \Lambda_{\nu}^{1 / q(x)}
$$

holds for almost every $x \in \Omega_{\infty}$. Using $q(x) \geq 1$, and Hölder's inequality in the form

$$
\frac{\mu_{1} \lambda_{\nu}^{1 / q(x)}+\mu_{2} \Lambda_{\nu}^{1 / q(x)}}{\mu_{1}+\mu_{2}} \leq\left(\frac{\mu_{1} \lambda_{\nu}+\mu_{2} \Lambda_{\nu}}{\mu_{1}+\mu_{2}}\right)^{1 / q(x)}
$$

we get

$$
\frac{\left|f_{\nu}(x)+g_{\nu}(x)\right|}{A_{\nu}^{1 / q(x)}\left(\mu_{1}+\mu_{2}\right)} \leq 1
$$

If $q(x)=\infty$, only notational changes are necessary.
Next we prove the first part of (8). Let $1 \leq q(x) \leq p(x)<\infty$ for almost all $x \in \Omega_{0}$. Then we use Hölder's inequality in the form

$$
\begin{align*}
& F_{\nu}(x)^{1 / p(x)} \lambda_{\nu}^{1 / q(x)} \mu_{1}+G_{\nu}(x)^{1 / p(x)} \Lambda_{\nu}^{1 / q(x)} \mu_{2} \tag{9}\\
& \quad \leq\left(\mu_{1}+\mu_{2}\right)^{1-1 / q(x)}\left(\mu_{1} \lambda_{\nu}+\mu_{2} \Lambda_{\nu}\right)^{1 / q(x)-1 / p(x)}\left(F_{\nu}(x) \lambda_{\nu} \mu_{1}+G_{\nu}(x) \Lambda_{\nu} \mu_{2}\right)^{1 / p(x)}
\end{align*}
$$

If $1 / p(x)+1 / q(x) \leq 1$ for almost every $x \in \Omega_{0}$, then we replace (9) by

$$
\begin{align*}
& F_{\nu}(x)^{1 / p(x)} \lambda_{\nu}^{1 / q(x)} \mu_{1}+G_{\nu}(x)^{1 / p(x)} \Lambda_{\nu}^{1 / q(x)} \mu_{2} \tag{10}\\
& \quad \leq\left(\mu_{1}+\mu_{2}\right)^{1-1 / p(x)-1 / q(x)}\left(\mu_{1} \lambda_{\nu}+\mu_{2} \Lambda_{\nu}\right)^{1 / q(x)}\left(F_{\nu}(x) \mu_{1}+G_{\nu}(x) \mu_{2}\right)^{1 / p(x)}
\end{align*}
$$

Using (9), we may further continue

$$
\begin{aligned}
& \int_{\Omega_{0}}\left(\frac{\left|f_{\nu}(x)+g_{\nu}(x)\right|}{A_{\nu}^{1 / q(x)}\left(\mu_{1}+\mu_{2}\right)}\right)^{p(x)} d x \\
& =\int_{\Omega_{0}}\left(\frac{F_{\nu}(x)^{1 / p(x)} \lambda_{\nu}^{1 / q(x)} \mu_{1}+G_{\nu}(x)^{1 / p(x)} \Lambda_{\nu}^{1 / q(x)} \mu_{2}}{\mu_{1}+\mu_{2}}\right)^{p(x)} \cdot\left(\frac{\mu_{1} \lambda_{\nu}+\mu_{2} \Lambda_{\nu}}{\mu_{1}+\mu_{2}}\right)^{-\frac{p(x)}{q(x)}} d x \\
& \leq \int_{\Omega_{0}} \frac{F_{\nu}(x) \lambda_{\nu} \mu_{1}+G_{\nu}(x) \Lambda_{\nu} \mu_{2}}{\mu_{1} \lambda_{\nu}+\mu_{2} \Lambda_{\nu}} d x \\
& =\frac{\mu_{1} \lambda_{\nu}}{\mu_{1} \lambda_{\nu}+\mu_{2} \Lambda_{\nu}} \int_{\Omega_{0}} F_{\nu}(x) d x+\frac{\mu_{2} \Lambda_{\nu}}{\mu_{1} \lambda_{\nu}+\mu_{2} \Lambda_{\nu}} \int_{\Omega_{0}} G_{\nu}(x) d x \leq 1
\end{aligned}
$$

where we used also (6) and (7). If we start with (10) instead, we proceed in the
following way

$$
\begin{aligned}
& \int_{\Omega_{0}}\left(\frac{\left|f_{\nu}(x)+g_{\nu}(x)\right|}{A_{\nu}^{1 / q(x)}\left(\mu_{1}+\mu_{2}\right)}\right)^{p(x)} d x \\
& =\int_{\Omega_{0}}\left(\frac{F_{\nu}(x)^{1 / p(x)} \lambda_{\nu}^{1 / q(x)} \mu_{1}+G_{\nu}(x)^{1 / p(x)} \Lambda_{\nu}^{1 / q(x)} \mu_{2}}{\mu_{1}+\mu_{2}}\right)^{p(x)} \cdot\left(\frac{\mu_{1} \lambda_{\nu}+\mu_{2} \Lambda_{\nu}}{\mu_{1}+\mu_{2}}\right)^{-\frac{p(x)}{q(x)}} d x \\
& \leq \int_{\Omega_{0}} \frac{F_{\nu}(x) \mu_{1}+G_{\nu}(x) \mu_{2}}{\mu_{1}+\mu_{2}} d x=\frac{\mu_{1}}{\mu_{1}+\mu_{2}} \int_{\Omega_{0}} F_{\nu}(x) d x+\frac{\mu_{2}}{\mu_{1}+\mu_{2}} \int_{\Omega_{0}} G_{\nu}(x) d x \leq 1 .
\end{aligned}
$$

In both cases, this finishes the proof of (8).

2.2 Counterexample

Theorem 2. There exist functions $p, q \in \mathcal{P}\left(\mathbb{R}^{n}\right)$ with $\inf _{x \in \mathbb{R}^{n}} p(x) \geq 1$ and $\inf _{x \in \mathbb{R}^{n}} q(x) \geq$ 1 such that $\left\|\cdot \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|$ does not satisfy the triangle inequality.
Proof. Let $Q_{0}, Q_{1} \subset \mathbb{R}^{n}$ be two disjoint unit cubes, let $p(x):=1$ everywhere on \mathbb{R}^{n} and put $q(x):=\infty$ for $x \in Q_{1}$ and $q(x):=1$ for $x \notin Q_{1}$. Let $f_{1}=\chi_{Q_{0}}$ and $f_{2}=\chi_{Q_{1}}$. Finally, we put $f=\left(f_{1}, f_{2}, 0, \ldots\right)$ and $g=\left(f_{2}, f_{1}, 0, \ldots\right)$.

We calculate for every $L>0$ fixed

$$
\inf \left\{\lambda_{1}>0: \varrho_{p(\cdot)}\left(\frac{f_{1}(x)}{\lambda_{1}^{1 / q(x)} L}\right) \leq 1\right\}=\inf \left\{\lambda_{1}>0: \frac{1}{\lambda_{1} L} \leq 1\right\}=1 / L
$$

and

$$
\inf \left\{\lambda_{2}>0: \varrho_{p(\cdot)}\left(\frac{f_{2}(x)}{\lambda_{2}^{1 / q(x)} L}\right) \leq 1\right\}=\inf \left\{\lambda_{2}>0: \frac{1}{L} \leq 1\right\}
$$

If $L \geq 1$, then the last expression is equal to zero, otherwise it is equal to ∞.
We obtain

$$
\left\|f \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|=\inf \left\{L>0: \varrho_{\ell_{q(\cdot)}\left(L_{p(\cdot)}\right)}(f / L) \leq 1\right\}=\inf \{L>0: 1 / L+0 \leq 1\}=1
$$

and the same is true also for $\left\|g \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|$. It is therefore enough to show, that $\left\|f+g \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\|>2$.

Using the calculation

$$
\begin{aligned}
\inf \{\lambda & \left.>0: \varrho_{p(\cdot)}\left(\frac{f_{1}(x)+f_{2}(x)}{L \cdot \lambda^{1 / q(x)}}\right) \leq 1\right\}=\inf \left\{\lambda>0: \int_{Q_{0}} \frac{1}{L \cdot \lambda}+\int_{Q_{1}} \frac{1}{L} \leq 1\right\} \\
& =\inf \left\{\lambda>0: \frac{1}{L \cdot \lambda}+\frac{1}{L} \leq 1\right\}=\frac{1}{L-1}
\end{aligned}
$$

which holds for every $L>1$ fixed, we get

$$
\begin{aligned}
\left\|f+g \mid \ell_{q(\cdot)}\left(L_{p(\cdot)}\right)\right\| & =\inf \left\{L>0: \varrho_{\ell_{q(\cdot)}\left(L_{p(\cdot)}\right)}\left(\frac{f+g}{L}\right) \leq 1\right\} \\
& =\inf \left\{L>0: 2 \inf \left\{\lambda>0: \varrho_{p(\cdot)}\left(\frac{f_{1}(x)+f_{2}(x)}{L \cdot \lambda^{1 / q(x)}}\right) \leq 1\right\} \leq 1\right\} \\
& =\inf \left\{L>1: 2 \cdot \frac{1}{L-1} \leq 1\right\}=3 .
\end{aligned}
$$

Remark 1. Let us observe, that $1 \leq q(x) \leq p(x) \leq \infty$ holds for $x \in Q_{0}$ and $1 / p(x)+1 / q(x) \leq 1$ is true for $x \in Q_{1}$. It is therefore necessary to interprete the assumptions of Theorem 1 in a correct way, namely that one of the conditions of Theorem 1 holds for (almost) all $x \in \mathbb{R}^{n}$. This is not to be confused with the statement, that for (almost) every $x \in \mathbb{R}^{n}$ at least one of the conditions is satisfied, which is not sufficient.
Remark 2. A similar calculation (which we shall not repeat in detail) shows, that one may also put $q(x):=q_{0}$ large enough for $x \in Q_{1}$ to obtain an counterexample. Hence there is nothing special about the infinite value of q and the same counterexample may be reproduced with uniformly bounded exponents $p, q \in \mathcal{P}\left(\mathbb{R}^{n}\right)$.

Acknowledgement: The first author acknowledges the financial support provided by the DFG project HA 2794/5-1 "Wavelets and function spaces on domains". The second author acknowledges the financial support provided by the FWF project Y 432-N15 START-Preis "Sparse Approximation and Optimization in High Dimensions".

References

[1] A. Almeida, P. Hästö, Besov spaces with variable smoothness and integrability, J. Funct. Anal. (5) 258 (2010), 1628-1655.
[2] L. Diening, P. Hästö, S. Roudenko: Function spaces of variable smoothness and integrability, J. Funct. Anal. (6) 256 (2009), 1731-1768.
[3] L. Diening, P. Harjulehto, P. Hästö, M. Růžička: Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Lecture Notes in Mathematics 2017 (2011).
[4] O. Kováčik, J. Rákosník: On spaces $L^{p(x)}$ and $W^{1, p(x)}$, Czechoslovak Math. J. 41 (116) (1991), 592-618.
[5] W. Orlicz: Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200-212.

[^0]: *Mathematical Institute, Friedrich-Schiller-University, D-07737 Jena, Germany; E-mail address: henning.kempka@uni-jena.de
 ${ }^{\dagger}$ RICAM, Austrian Academy of Sciences, Altenbergstrasse 69, A-4040 Linz, Austria; E-mail address: jan.vybiral@oeaw.ac.at

