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Summary; ‘We introduce 2-microlocal Besov spaces which generalize the 2-microlocal
spaces Cz’ (R™) by Bony. We give a unified Fourier-analytic approach to define gen-
eralized 2-microlocal Besov spaces and we present a wavelet characterization of them.
Wavelets provide a powerful tool for studying global and local regularity properties
of functions.

Further, we prove a characterization with wavelets for the local version of the 2-
microlocal Besov spaces and we give first connections and generalizations to local
regularity theory.
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1 Introduction & preliminaries

In this paper we introduce 2-microlocal Besov spaces which generalize the
2-microlocal spaces Cﬁ;}sl (R™) introduced by Bony [4] and Jaffard [8] in two
directions. For these spaces, which we call B;;;’”"C(R", w), we give a charac-
terization with wavelets and use this result to describe the local 2-microlocal
Besov spaces.

2-microlocal spaces initially appeared in the book of Peetre [21] and have
been studied by Bony [4] in the context of non-linear hyperbolic equations
and were widely elaborated by Jaffard & Meyer [9]. In [16] Lévy Véhel &
Seuret developed the 2-microlocal formalism, which is similar to the multi-
fractal formalism. It turned out, that the 2-microlocal spaces are an useful
tool to measure local regularity of functions. The approach is Fourier analytic
and the spaces C;;f/ (R™) are defined by size estimates of the Littlewood-Paley
decomposition.

More precisely, let ¢q be a positive function from the Schwartz space S(R™)
of infinitely differentiable and rapidly decreasing functions with
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oolz) = {1’ iz <1 1)

0, iflzx]>2.

We set p(z) = po(z) — @o(2x) and define p;(z) = p(277z) for j = 1,2,....
Then we have E;io @;(x) =1 and {¢;}en, is called a smooth dyadic reso-
lution of unity.

The dual space of S(R™) is the space of tempered distributions which we
denote by S'(R"). By F and F~! we denote the Fourier transform and its
inverse on S(R™) and &’ (R™), respectively. We will use also the symbols fand
fY for Ff and F~1f.

For f € §'(R™) and a smooth resolution of unity {¢;};en, we have the fun-
damental decomposition

f= Z(gojf)v , convergence in S’ (R™).
=0

A distribution f € S'(R™) does belong to the space C;E)s/ (R™), if the estimates

(93.))" (2)] < 277°(1+ 2|z — o)™ (2)

hold for all x € R™ and all j € Ny. We can reformulate (2) as

sup w; (@)l(p ) (@) < 27 (3)

with the weight sequence
wy(@) = (L+2[e — wol)* . (4)

With the same weight functions w; from (4) the spaces H. jf,(R”) are defined
as the collection of all f € §'(R™) with

cfz/wj?(x)|(<pjf)wx)|2dx and 37 2272 < o0 | (5)
R™ j€Np

Spaces of this type have been introduced by Bony [4]. A characterization of
C’;[’)S/ (R™) by wavelets has been given by Jaffard in [8]. Wavelets provide a
powerful tool to study regularity properties of functions, as can be seen in
Lévy Véhel & Seuret [16].

They used the wavelet characterization of Cjés,(R") and developed the 2-
microlocal formalism. It turned out, that 2-microlocal spaces provide a fine
way of measuring local smoothness of distributions. Many regularity expo-
nents, as the local and pointwise Hélder exponent, the chirp exponent, the
oscillating exponent and the weak scaling exponent, can be derived just by
calculating the 2-microlocal domain (see [17] and [16] for details). This 2-
microlocal domain is the set
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E(f,x0) = {(s, s') € R? : f belongs to Cj(’f/ (R™) locally around xg } .

We will introduce a more general 2-microlocal domain in Section 3 based on
the 2-microlocal Besov spaces B 7"°¢(R™,w) which are defined below.
Conditions (3) and (5) suggest to consider C’;f,(R") and H;gf,(]R") as a kind
of weighted Besov spaces. In general a distribution f € S’(R™) belongs to
B; (R™ w) for s € R and 0 < p,q < oo, if the (quasi-)norm of f satisfies

1/q

(@il LEw)|'] <o, (©

| £ By (R w)|| = | > 27

where w is an admissible weight function (see [6]). Here, L,(R™) denotes the
usual Lebesgue space and its weighted version L,(R™, w) is normed by

1/p

[ 1 Lp(R™, w)[| = [Jwf] Lp(R™) || = /Iw(fr)f(ff)lpdff - (M

Now, it becomes obvious how to modify the definition of the Besov space norm
(6) to obtain generalized 2-microlocal Besov spaces. We replace w in (6) by
the special weights w; from (4), depending also on j € Ny.

We will deal with a further generalization with respect to the weight sequence.
Instead of the weights from (4) we introduce the notion of admissible weight
sequences.

Definition 1 (Admissible weight sequence). Let « > 0 and let aq, a9 €
R, a1 < as. A sequence of non-negative measurable functions w = {wj};?‘;o
belongs to the class W if, and only if,

1,02

(i) There exists a constant C > 0 such that
0 < w;(z) < Cw;(y) (14 27|z — y|)a for all j € Ny and all z,y € R".
(i) For all j € Ny and all x € R™ we have
2%%5(x) < wjq(x) < 2%w;(z) .

Such a system {w;}32, € Wg, ,, 15 called admissible weight sequence.

For U C R™ we denote dist(z,U) = infy ey |z — y| and we define for s’ € R
the 2-microlocal weights by

wj(x) = (1+ 27 dist(z,U))* . (8)

These weights are an admissible weight sequence with «; = min(0,s’),
az = max(0,s) and o = |$'|. Note that for U = {xo} we get the 2-microlocal
weights (4) from the beginning. Further examples of admissible weight se-
quences can be found in [11].

Now, we are able to give the definition of generalized 2-microlocal Besov
spaces.



4 Henning Kempka

Definition 2. Let w = {w;}jen, € WS be a smooth

e ond let {oj}icy

resolution of unity. Further, let 0 < p,q < oo and s € R, then
st):;nloc(IRn7 {f e S/ Rn Hf' B;:;nloc(Rn’w)H < OO} ) where

1/q

Hf|Bs mloc( n,w)H _ Z2j8q (90]]5)\/

L@

These spaces have been introduced in [11]. Using a Fourier multiplier theorem
for weighted Lebesgue spaces of entire analytic functions ([22, Theorem 1.7.5])
it is easy to show that the definition is independent of the chosen resolution
of unity (see Theorem 2.13 in [11]).

If wj(z) = 1 for j € Ny, then we obtain the usual Besov spaces from (6),
studied in detail by Triebel in [24] and [25]. If we set

wj(x) = wo(x)

for all j € No, then we derive weighted Besov spaces B ,(R™, wg) which were
studied in [6, Chapter 4].
Regarding the 2-microlocal weight sequence

wy(@) = (14 2|z — zo|)*

we get for p = q¢ = oo the spaces C;’E)s/ (R™) introduced by Jaffard [8] and
for p = ¢ = 2 we obtain the spaces H,j(’f/ (R™) introduced by Bony [4]. With
these weight functions, Xu studied in [28] 2-microlocal Besov spaces with
1 < p,q < oo and in [18] Meyer & Xu used these spaces to characterize chirps
by means of their wavelet transforms.

Using as admissible weight sequence the weights from (8) with open U C R",
Moritoh & Yamada introduced in [19] 2-microlocal Besov spaces of homoge-
neous type and studied local properties of functions.

Taking w;(z) = o; for j € Ny where 0; € R satisfies ¢10; < 041 < ¢o0; for
some c1,cy > 0, we derive so called Besov spaces of generalized smoothness
introduced by Kalyabin [10] and studied in [7] and [20]. More generally, we
can set

wj(z) = 27°)

with suitable conditions on s(z) : R™ — R ([14]) and we obtain spaces of vari-
able smoothness introduced by Underberger & Bokobza [26] and Beauzamy
[2] and more recent results are due to Leopold [15] and Besov [3].

The above definition with weights satisfying Definition 1 was given in [11]
by Kempka and characterizations by local means, atoms and wavelets have
been established ([11], [13]). Moreover, there exists also a characterization by
differences of Bo¢(R™, w) proved by Besov in [3].

To this end, we define by A f(z) = f(x+h) — f(x) and AM = AV 1A, the
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iterated differences for x,h € R™ and M € N. Two norms (|| - ||1, || - [|]2) are
called equivalent on a space X, if there exists a constant ¢ > 0 such that

1
E||3:||1 <|lz|l2 < ¢||z||1 for all x € X.

Proposition 1 (Besov 2003). Let 1 < p,q < o0, s >0 and w € W, ,,- If
M > s+ asg, then

oo 1/q
(Z 2% sup || we A, | %(R”)Hq) + o | Ly (&)

k=1 [h|<1

is an equivalent norm on BTo¢(R™, w).
;

This corresponds to the time domain characterization of the local version of
C;;)s/ (R™) presented in [23] by Seuret & Lévy Véhel.

Another approach, which is not covered by Definition 2, is to generalize
H;’Usl (R™) as weighted Triebel-Lizorkin spaces. This has been done by An-
dersson in [1] for the 2-microlocal weights from (4). In a more general context
these spaces have been studied with admissible weight sequences from Defini-
tion 1 in [14] and local means characterizations have been established.

In the next section we present an adapted wavelet characterization based on
Daubechies wavelets for B °¢(R", w) with weights from (8). Section 3 deals
with the local version of these spaces and we use the results from the previous
section to describe them with wavelet decompositions as in [9, Proposition
1.4] and [16, Theorem 1] for U = {xp} and p=¢g=2o0r p =g = 0.
Although we do not develop a full regularity theory of functions as in [16] our
results seem to be promising for further research.

2 Characterization with wavelets

In this section we will present a wavelet characterization for B5¢(R"™, w)
with the weight sequence from (8). In comparison to C’;[’)Sl (R™) we will denote
them by B3 (R",U).

The most important characterization of the local spaces C’;;}S/(R”) is due to
the wavelet characterization. To this end, we have to give a modified version
of the wavelet characterization in Theorem 4 in [13]. We adopt the notation
from [25, 4.2.1]. For sufficiently large k € Ny, let us assume that

U, r € CH(R) (9)

are real, compactly supported Daubechies wavelets (see [5],[27]) with

/x%M<x)dx —0 for|f <k (10)

R
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and supp ¥as, supp¢¥r C Bys(0), with J € N. Here, B,(x) denotes the open
ball around x € R™ with radius r > 0. Let [ € Ny then

G=GM={F,M}" and G"'={F M} forv>I,

where the * indicates that at least one G; of G = (Gy,...,G,) € {F,M}"*
must be an M. It is well known that {Wéfnz/ >1,G e G and m € Z"} is
an orthonormal basis of La(R™) for fixed [ € Ny with

wgn () =2"% [[ e, (2“2, —my)  where G = (Gi,...,Gy) € G

r=1

We have to adapt our sequence spaces to the new situation. A sequence of
complex-valued numbers {\4! } belongs to be ., (U) if, and only if,

o]
o a/p\ V4
Sz (S gz aseomoyt) ) <o
v=l GeGvl \mezn

We introduce the number ¢, = max(0,n(1/p — 1)) which is zero if p > 1. By
unconditional convergence of a sum we mean that each rearrangement of the
sum converges to the same limit. The next corollary follows from Theorem 4
in [13].

Corollary 1. Let U C R™ bounded, s,s' € R and | € Ng. Further, let 0 <
p,q < 00 and

k > max(o, — s — min(0, s'), s + max(0, ")) (11)
in (9) and (10). Then f € S'(R™) belongs to B;;g,(R”,U) if, and only if, it
can be represented as

=33 S aberEwgl withae vt (U) (12)
v=l GEGV:! meZL™

with unconditional convergence in S'(R™) and in any B;ﬁ; (R™,U) witht < s
and t' < s'. The representation (12) is unique,

N = N () = 2% (1050, ) (13)
and
I fe {208 (£ )} (14)

is an isomorphic map from BZjZ'(R”, U) onto b;’zl_l(U), Moreover, if in addi-

tion max(p, q) < oo then {Wéfn} is in unconditional basis in B;;;/ (R™,U).
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The advantage of this representation with additional index [ € Ny is that the
size of the support of the wavelets on the zero level v = [ is supp W(l;lm -
Bys-1(27'm) and can be minimized by taking large [ € Ny.

Remark 1. We assume in the following that the Daubechies wavelets have
enough regularity, which means k¥ > max(o, — s — min(0, '), s + max(0, s)).
Note that in the case p > 1 this means k > max(|s|, |s + §|).

s,s’ loc
3 The local spaces B2 (U)

This section is devoted to the study of the local spaces B;:Z,(U )lo¢. They are
an appropriate instrument for measuring local regularity of functions as has
been done intensively by Jaffard & Meyer, Seuret & Lévy Véhel and many
others ([9], [16], [18]). We would like to point out some connections to the
known case, p = ¢ = oo and U = {x¢}, and give first results.

For the rest of the paper we fix U C R™ as a compact subset and s,s’ € R
and 0 < p,q < oo are arbitrary but fixed numbers.

3.1 Definition and wavelet characterization

In this subsection we define the local version of B;;Z,(R",U ) for compact
U C R™ and give a characterization by wavelets for them.

Definition 3. Let f € §'(R"™), then f belongs to the local space B;:;/(U)l"c if
there exists an open neighborhood Vo D U and g € Bgzj/ (R™,U) globally such
that f =g on Vj.

From a pointwise multiplier statement for the global spaces B;;fll (R™,U) (The-
orem 4.10 in [11]) we obtain the following.

Lemma 1. Let f € S'(R™). Then f € B;:;l(U)loc if, and only if, there exists
an open neighborhood Vo D U and ¢ € CFP(R™) with p(x) =1 on Vy and
of € BsS (R, U).

Now, we are able to characterize the local spaces B;:;/(U )¢ in terms of
wavelets.

Theorem 1. Let f € S'(R™), then f belongs to B;;s (U)loc if, and only if,
there exists an | € Ny and an A > 0 with

1/q

a/p
22”(5 n/p)a Z ( Z (HIPQ + 27 dist(277m, U))° ) <00,

Gear\meU,
(15)
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where
U,={mez": dist(2"m,U) < A} and 4L (f)=2v"/2 < 1, wgﬁn> ,

Proof. First Step: We have f € B;:;;,(U)loc, which means that we can find
open sets Vo, V' such that U C Vo C V and ¢ € C5°(R") with ¢(z) = 1 on
Vo, suppp C V and pf € By (R, U). We choose a number, —h € Ny such
that Uyn C Vo, where Uy = {z € R™ : dist(x,U) < 2"}. We would like to
take these W' which fulfill

(erwh) = (£.95,) . (16)

which means that supp Wérln C Uy C Vp. This is fulfilled if dist(279m, U) <
2" — 27=¥ To have a positive number on the right hand side we have to
demand v > J — h. Now, we fix | =J —h+1and A>0by A=2"—-2/-1
From Corollary 1 we derive that

1/q

[ee] lI/p
S grtenima 3 ( S NG (eh)IP(L + 27 dist(2m, U>>s’p> =
v=l|

GeGvl\mezn

and that finally gives us with (16) and U, = {m € Z™ : dist(27"m,U) < A}
with A > 0 as above

1/q

00 q/p
Doy ( 2 |>\éfn(f)|p(1+2ydiSt(2_Vm»U))S/p> =

v=l GeGvt\meU,
Second step: If we have (15) for some I € Ny and A > 0, then we can define

¥
. A , form e U,
Gm 0 , otherwise.

Then f =3, o m ;\8;}2_"%!175’7[” belongs to Bzzg/ (R™,U) by Corollary 1 and
this implies f € B;;Z/(U)loc. O
Remark 2. Let us emphasize that this theorem is similar to [9, Proposition
1.4] and [16, Theorem 1] in the cases p =g =00, p=¢ =2 and U = {x¢}.
3.2 Embeddings

The aim of this subsection is to present some embedding theorems for the
local spaces. These embeddings are well known in the case p = ¢ = co and

U= {1‘0}
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Lemma 2. Let f € B;:Z,(U)loc, then f belongs to B;;q_s*s/“(U)loc for all e >
0.

The proof is a simple application of the theorem above. More generally we
can prove the following embedding.

Theorem 2.
B;ﬁ(U)loc — B;’f; (U)o if, and only if, t<sandt+t <s+s .

Proof. The sufficiency of the conditions with respect to the parameters
s,t,8',t" € R is proved again using Theorem 1. To get the necessity we have
to be more careful. The embedding is equivalent to the fact that we can find
l € Ng, A >0 and ¢ > 0 such that

20— < (1 4 2V dist(27¥m, U))* ~* holds for all v > and m € U,.. (17)

We have to distinguish two cases. First, we assume that s < ¢, then for v > [
large enough, we can find m, € U, with dist(27“m,,U) ~ 27%. This implies
that the left hand side of (17) is increasing in v. But, the right hand side is
independent of v which is a contradiction to (17).

In the second case we assume that ¢t +t' > s + s’. Then we take for all v > [
an m, € U, with dist(27¥m,,,U) ~ A. We can estimate the right hand side
of (17) by

(142" dist(27m,, U))* =" < 2"'=") where ¢ > 0 is independent of v.

This gives us a contradiction to (17), because there does not exist ¢ > 0 with
ov(t=s) < c2v(s' =) for all v > 1. O

Remark 3. This embedding theorem is in contrast to the global spaces, where
we have (Remark 2.3.4 in [12])

B‘;:;l (R™,U) — B;:Z (R™,U) if, and only if, t<sandt <s.

These results are well known in the case of the local spaces C;Z;)Sl (R™) ([17,
Corollary 11I/3.4]). Moreover, this theorem is the starting point for the def-
inition of the so-called 2-microlocal frontier, see [17, II1.5] and [16, Chapter
2].

3.3 The 2-microlocal domain

Similary as in [17] we give in this subsection a generalized approach to define
a 2-microlocal domain for a given function f € S&'(R™).

Definition 4. Let f € S'(R"), then for fized 0 < p,q < 00
Epq(£,U) ={(s,s) € R?: f € Bys (U)"°}

defines the 2-microlocal domain.
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We have generalized the 2-microlocal domain from [17] and [16] where case
p = q = oo has been considered. We get from the embedding Theorem 2 the
following.

Lemma 3. Let (s,s') € E, o(f,U) and let
t<s and t+t <s+5,

then (ta t/) € EP,Q(f7 U)
Moreover, an easy application of Theorem 1 shows that this domain is convex.

Lemma 4. The 2-microlocal domain is convezx. This means if (s,s') € E, (f,U)
and (¢, t') € Ep o(f,U) then (As+ (1= Nt, A’ + (L= \)t') € E, ((f,U) for all
A €[0,1].

Remark 4. This 2-microlocal domain clearly gives us new information about
the local regularity of functions (distributions). As a first example we take
the delta distribution and U C R™ compact with 0 € U. Then we have for
0<g<oo

7 n
§e By (U)”’C@s<57n
and for ¢ = o0
SEBLU) o<t —n.
’ p

Hence, one easily recognizes the role played by the parameter p and, less
important, q.
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