
2-microlocal Besov spaces

Henning Kempka

Mathematical Institute, Friedrich Schiller University, 07737 Jena, Germany
khenning@minet.uni-jena.de?

Summary. We introduce 2-microlocal Besov spaces which generalize the 2-microlocal
spaces Cs,s′

x0 (Rn) by Bony. We give a unified Fourier-analytic approach to define gen-
eralized 2-microlocal Besov spaces and we present a wavelet characterization of them.
Wavelets provide a powerful tool for studying global and local regularity properties
of functions.
Further, we prove a characterization with wavelets for the local version of the 2-
microlocal Besov spaces and we give first connections and generalizations to local
regularity theory.
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1 Introduction & preliminaries

In this paper we introduce 2-microlocal Besov spaces which generalize the
2-microlocal spaces Cs,s

′

x0
(Rn) introduced by Bony [4] and Jaffard [8] in two

directions. For these spaces, which we call Bs,mlocp,q (Rn,w), we give a charac-
terization with wavelets and use this result to describe the local 2-microlocal
Besov spaces.
2-microlocal spaces initially appeared in the book of Peetre [21] and have
been studied by Bony [4] in the context of non-linear hyperbolic equations
and were widely elaborated by Jaffard & Meyer [9]. In [16] Lévy Véhel &
Seuret developed the 2-microlocal formalism, which is similar to the multi-
fractal formalism. It turned out, that the 2-microlocal spaces are an useful
tool to measure local regularity of functions. The approach is Fourier analytic
and the spaces Cs,s

′

x0
(Rn) are defined by size estimates of the Littlewood-Paley

decomposition.
More precisely, let ϕ0 be a positive function from the Schwartz space S(Rn)
of infinitely differentiable and rapidly decreasing functions with
? This work was supported by the DFG grant SCHM 969/7-1.
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ϕ0(x) =

{
1 , if |x| ≤ 1 ,
0 , if |x| ≥ 2 .

(1)

We set ϕ(x) = ϕ0(x) − ϕ0(2x) and define ϕj(x) = ϕ(2−jx) for j = 1, 2, . . . .
Then we have

∑∞
j=0 ϕj(x) = 1 and {ϕj}j∈N0 is called a smooth dyadic reso-

lution of unity.
The dual space of S(Rn) is the space of tempered distributions which we
denote by S ′(Rn). By F and F−1 we denote the Fourier transform and its
inverse on S(Rn) and S ′(Rn), respectively. We will use also the symbols f̂ and
f∨ for Ff and F−1f .
For f ∈ S ′(Rn) and a smooth resolution of unity {ϕj}j∈N0 we have the fun-
damental decomposition

f =
∞∑
j=0

(ϕj f̂)∨ , convergence in S ′(Rn).

A distribution f ∈ S ′(Rn) does belong to the space Cs,s
′

x0
(Rn), if the estimates

|(ϕj f̂)∨(x)| ≤ c2−js(1 + 2j |x− x0|)−s
′

(2)

hold for all x ∈ Rn and all j ∈ N0. We can reformulate (2) as

sup
x∈Rn

wj(x)|(ϕj f̂)∨(x)| < c2−js , (3)

with the weight sequence

wj(x) = (1 + 2j |x− x0|)s
′

. (4)

With the same weight functions wj from (4) the spaces Hs,s′

x0
(Rn) are defined

as the collection of all f ∈ S ′(Rn) with

c2j =
∫

Rn

w2
j (x)|(ϕj f̂)∨(x)|2dx and

∑
j∈N0

22jsc2j <∞ . (5)

Spaces of this type have been introduced by Bony [4]. A characterization of
Cs,s

′

x0
(Rn) by wavelets has been given by Jaffard in [8]. Wavelets provide a

powerful tool to study regularity properties of functions, as can be seen in
Lévy Véhel & Seuret [16].
They used the wavelet characterization of Cs,s

′

x0
(Rn) and developed the 2-

microlocal formalism. It turned out, that 2-microlocal spaces provide a fine
way of measuring local smoothness of distributions. Many regularity expo-
nents, as the local and pointwise Hölder exponent, the chirp exponent, the
oscillating exponent and the weak scaling exponent, can be derived just by
calculating the 2-microlocal domain (see [17] and [16] for details). This 2-
microlocal domain is the set
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E(f, x0) =
{

(s, s′) ∈ R2 : f belongs to Cs,s
′

x0
(Rn) locally around x0

}
.

We will introduce a more general 2-microlocal domain in Section 3 based on
the 2-microlocal Besov spaces Bs,mlocp,q (Rn,w) which are defined below.
Conditions (3) and (5) suggest to consider Cs,s

′

x0
(Rn) and Hs,s′

x0
(Rn) as a kind

of weighted Besov spaces. In general a distribution f ∈ S ′(Rn) belongs to
Bsp,q(Rn, w) for s ∈ R and 0 < p, q ≤ ∞, if the (quasi-)norm of f satisfies

∥∥f |Bsp,q(Rn, w)
∥∥ =

 ∞∑
j=0

2jsq
∥∥∥ (ϕj f̂)∨

∣∣∣Lp(Rn, w)
∥∥∥q
1/q

<∞ , (6)

where w is an admissible weight function (see [6]). Here, Lp(Rn) denotes the
usual Lebesgue space and its weighted version Lp(Rn, w) is normed by

‖f |Lp(Rn, w)‖ = ‖wf |Lp(Rn)‖ =

∫
Rn

|w(x)f(x)|pdx

1/p

. (7)

Now, it becomes obvious how to modify the definition of the Besov space norm
(6) to obtain generalized 2-microlocal Besov spaces. We replace w in (6) by
the special weights wj from (4), depending also on j ∈ N0.
We will deal with a further generalization with respect to the weight sequence.
Instead of the weights from (4) we introduce the notion of admissible weight
sequences.

Definition 1 (Admissible weight sequence). Let α ≥ 0 and let α1, α2 ∈
R, α1 ≤ α2. A sequence of non-negative measurable functions w = {wj}∞j=0

belongs to the class Wα
α1,α2

if, and only if,

(i) There exists a constant C > 0 such that

0 < wj(x) ≤ Cwj(y)
(
1 + 2j |x− y|

)α
for all j ∈ N0 and all x, y ∈ Rn.

(ii) For all j ∈ N0 and all x ∈ Rn we have

2α1wj(x) ≤ wj+1(x) ≤ 2α2wj(x) .

Such a system {wj}∞j=0 ∈ Wα
α1,α2

is called admissible weight sequence.

For U ⊂ Rn we denote dist(x, U) = infy∈U |x − y| and we define for s′ ∈ R
the 2-microlocal weights by

wj(x) = (1 + 2j dist(x, U))s
′

. (8)

These weights are an admissible weight sequence with α1 = min(0, s′),
α2 = max(0, s′) and α = |s′|. Note that for U = {x0} we get the 2-microlocal
weights (4) from the beginning. Further examples of admissible weight se-
quences can be found in [11].
Now, we are able to give the definition of generalized 2-microlocal Besov
spaces.
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Definition 2. Let w = {wj}j∈N0 ∈ Wα
α1,α2

and let {ϕj}j∈N0
be a smooth

resolution of unity. Further, let 0 < p, q ≤ ∞ and s ∈ R, then

Bs,mlocp,q (Rn,w) =
{
f ∈ S ′(Rn) :

∥∥f |Bs,mlocp,q (Rn,w)
∥∥ <∞} , where

∥∥f |Bs,mlocp,q (Rn,w)
∥∥ =

 ∞∑
j=0

2jsq
∥∥∥ (ϕj f̂)∨

∣∣∣Lp(Rn, wj)∥∥∥q
1/q

.

These spaces have been introduced in [11]. Using a Fourier multiplier theorem
for weighted Lebesgue spaces of entire analytic functions ([22, Theorem 1.7.5])
it is easy to show that the definition is independent of the chosen resolution
of unity (see Theorem 2.13 in [11]).
If wj(x) = 1 for j ∈ N0, then we obtain the usual Besov spaces from (6),
studied in detail by Triebel in [24] and [25]. If we set

wj(x) = w0(x)

for all j ∈ N0, then we derive weighted Besov spaces Bsp,q(Rn, w0) which were
studied in [6, Chapter 4].
Regarding the 2-microlocal weight sequence

wj(x) = (1 + 2j |x− x0|)s
′

,

we get for p = q = ∞ the spaces Cs,s
′

x0
(Rn) introduced by Jaffard [8] and

for p = q = 2 we obtain the spaces Hs,s′

x0
(Rn) introduced by Bony [4]. With

these weight functions, Xu studied in [28] 2-microlocal Besov spaces with
1 ≤ p, q ≤ ∞ and in [18] Meyer & Xu used these spaces to characterize chirps
by means of their wavelet transforms.
Using as admissible weight sequence the weights from (8) with open U ⊂ Rn,
Moritoh & Yamada introduced in [19] 2-microlocal Besov spaces of homoge-
neous type and studied local properties of functions.
Taking wj(x) = σj for j ∈ N0 where σj ∈ R satisfies c1σj ≤ σj+1 ≤ c2σj for
some c1, c2 > 0, we derive so called Besov spaces of generalized smoothness
introduced by Kalyabin [10] and studied in [7] and [20]. More generally, we
can set

wj(x) = 2js(x)

with suitable conditions on s(x) : Rn → R ([14]) and we obtain spaces of vari-
able smoothness introduced by Underberger & Bokobza [26] and Beauzamy
[2] and more recent results are due to Leopold [15] and Besov [3].
The above definition with weights satisfying Definition 1 was given in [11]
by Kempka and characterizations by local means, atoms and wavelets have
been established ([11], [13]). Moreover, there exists also a characterization by
differences of Bs,mlocp,q (Rn,w) proved by Besov in [3].
To this end, we define by ∆hf(x) = f(x+h)− f(x) and ∆M

h = ∆M−1
h ∆h the
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iterated differences for x, h ∈ Rn and M ∈ N. Two norms (‖ · ‖1, ‖ · ‖2) are
called equivalent on a space X, if there exists a constant c > 0 such that

1
c
‖x‖1 ≤ ‖x‖2 ≤ c‖x‖1 for all x ∈ X.

Proposition 1 (Besov 2003). Let 1 < p, q ≤ ∞, s > 0 and w ∈ Wα
α1,α2

. If
M > s+ α2, then( ∞∑

k=1

2ks sup
|h|≤1

∥∥wk∆M
2−khf

∣∣Lp(Rn)
∥∥q)1/q

+ ‖w0f |Lp(Rn)‖

is an equivalent norm on Bs,mlocp,q (Rn,w).

This corresponds to the time domain characterization of the local version of
Cs,s

′

x0
(Rn) presented in [23] by Seuret & Lévy Véhel.

Another approach, which is not covered by Definition 2, is to generalize
Hs,s′

x0
(Rn) as weighted Triebel-Lizorkin spaces. This has been done by An-

dersson in [1] for the 2-microlocal weights from (4). In a more general context
these spaces have been studied with admissible weight sequences from Defini-
tion 1 in [14] and local means characterizations have been established.

In the next section we present an adapted wavelet characterization based on
Daubechies wavelets for Bs,mlocp,q (Rn,w) with weights from (8). Section 3 deals
with the local version of these spaces and we use the results from the previous
section to describe them with wavelet decompositions as in [9, Proposition
1.4] and [16, Theorem 1] for U = {x0} and p = q = 2 or p = q =∞.
Although we do not develop a full regularity theory of functions as in [16] our
results seem to be promising for further research.

2 Characterization with wavelets

In this section we will present a wavelet characterization for Bs,mlocp,q (Rn,w)
with the weight sequence from (8). In comparison to Cs,s

′

x0
(Rn) we will denote

them by Bs,s
′

p,q (Rn, U).
The most important characterization of the local spaces Cs,s

′

x0
(Rn) is due to

the wavelet characterization. To this end, we have to give a modified version
of the wavelet characterization in Theorem 4 in [13]. We adopt the notation
from [25, 4.2.1]. For sufficiently large k ∈ N0, let us assume that

ψM , ψF ∈ Ck(R) (9)

are real, compactly supported Daubechies wavelets (see [5],[27]) with∫
R

xβψM (x)dx = 0 for |β| < k (10)
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and suppψM , suppψF ⊂ B2J (0), with J ∈ N. Here, Br(x) denotes the open
ball around x ∈ Rn with radius r > 0. Let l ∈ N0 then

G = Gl,l = {F,M}n and Gν,l = {F,M}n∗ for ν > l,

where the * indicates that at least one Gi of G = (G1, . . . , Gn) ∈ {F,M}n∗
must be an M . It is well known that {Ψν,lGm:ν ≥ l, G ∈ Gν,l and m ∈ Zn} is
an orthonormal basis of L2(Rn) for fixed l ∈ N0 with

Ψν,lGm(x) = 2ν
n
2

n∏
r=1

ψGr (2
νxr −mr) where G = (G1, . . . , Gn) ∈ Gν,l.

We have to adapt our sequence spaces to the new situation. A sequence of
complex-valued numbers {λν,lGm} belongs to bs,s

′

p,q;l(U) if, and only if,∥∥∥λ| bs,s′p,q;l(U)
∥∥∥ = ∞∑

ν=l

2ν(s−n/p)q
∑

G∈Gν,l

( ∑
m∈Zn

|λν,lGm|
p(1 + 2ν dist(2−νm,U))s

′p

)q/p1/q

<∞ .

We introduce the number σp = max(0, n(1/p− 1)) which is zero if p ≥ 1. By
unconditional convergence of a sum we mean that each rearrangement of the
sum converges to the same limit. The next corollary follows from Theorem 4
in [13].

Corollary 1. Let U ⊂ Rn bounded, s, s′ ∈ R and l ∈ N0. Further, let 0 <
p, q ≤ ∞ and

k > max(σp − s−min(0, s′), s+ max(0, s′)) (11)

in (9) and (10). Then f ∈ S ′(Rn) belongs to Bs,s
′

p,q (Rn, U) if, and only if, it
can be represented as

f =
∞∑
ν=l

∑
G∈Gν,l

∑
m∈Zn

λν,lGm2−ν
n
2 Ψν,lGm with λ ∈ bs,s

′

p,q;l(U) , (12)

with unconditional convergence in S ′(Rn) and in any Bt,t
′

p,q (Rn, U) with t < s
and t′ < s′. The representation (12) is unique,

λν,lGm = λν,lGm(f) = 2ν
n
2

〈
f, Ψν,lGm

〉
(13)

and

I : f 7→ {2ν n2
〈
f, Ψν,lGm

〉
} (14)

is an isomorphic map from Bs,s
′

p,q (Rn, U) onto bs,s
′

p,q;l(U). Moreover, if in addi-
tion max(p, q) <∞ then {Ψν,lGm} is in unconditional basis in Bs,s

′

p,q (Rn, U).
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The advantage of this representation with additional index l ∈ N0 is that the
size of the support of the wavelets on the zero level ν = l is suppΨ l,lGm ⊂
B2J−l(2−lm) and can be minimized by taking large l ∈ N0.

Remark 1. We assume in the following that the Daubechies wavelets have
enough regularity, which means k > max(σp − s−min(0, s′), s+ max(0, s′)).
Note that in the case p ≥ 1 this means k > max(|s|, |s+ s′|).

3 The local spaces Bs,s′

p,q (U)loc

This section is devoted to the study of the local spaces Bs,s
′

p,q (U)loc. They are
an appropriate instrument for measuring local regularity of functions as has
been done intensively by Jaffard & Meyer, Seuret & Lévy Véhel and many
others ([9], [16], [18]). We would like to point out some connections to the
known case, p = q =∞ and U = {x0}, and give first results.
For the rest of the paper we fix U ⊂ Rn as a compact subset and s, s′ ∈ R
and 0 < p, q ≤ ∞ are arbitrary but fixed numbers.

3.1 Definition and wavelet characterization

In this subsection we define the local version of Bs,s
′

p,q (Rn, U) for compact
U ⊂ Rn and give a characterization by wavelets for them.

Definition 3. Let f ∈ S ′(Rn), then f belongs to the local space Bs,s
′

p,q (U)loc if
there exists an open neighborhood V0 ⊃ U and g ∈ Bs,s′p,q (Rn, U) globally such
that f = g on V0.

From a pointwise multiplier statement for the global spaces Bs,s
′

p,q (Rn, U) (The-
orem 4.10 in [11]) we obtain the following.

Lemma 1. Let f ∈ S ′(Rn). Then f ∈ Bs,s′p,q (U)loc if, and only if, there exists
an open neighborhood V0 ⊃ U and ϕ ∈ C∞0 (Rn) with ϕ(x) = 1 on V0 and
ϕf ∈ Bs,s′p,q (Rn, U).

Now, we are able to characterize the local spaces Bs,s
′

p,q (U)loc in terms of
wavelets.

Theorem 1. Let f ∈ S ′(Rn), then f belongs to Bs,s
′

p,q (U)loc if, and only if,
there exists an l ∈ N0 and an A > 0 with ∞∑

ν=l

2ν(s−n/p)q
∑

G∈Gν,l

( ∑
m∈Uν

|λν,lGm(f)|p(1 + 2ν dist(2−νm,U))s
′p

)q/p1/q

<∞ ,

(15)
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where

Uν = {m ∈ Zn : dist(2−νm,U) ≤ A} and λν,lGm(f) = 2νn/2
〈
f, Ψν,lGm

〉
.

Proof. First Step: We have f ∈ Bs,s
′

p,q (U)loc, which means that we can find
open sets V0, V such that U ⊂ V0 ⊂ V and ϕ ∈ C∞0 (Rn) with ϕ(x) = 1 on
V0, suppϕ ⊂ V and ϕf ∈ Bs,s′p,q (Rn, U). We choose a number, −h ∈ N0 such
that U2h ⊂ V0, where U2h = {x ∈ Rn : dist(x, U) ≤ 2h}. We would like to
take these Ψν,lGm which fulfill〈

ϕf, Ψν,lGm

〉
=
〈
f, Ψν,lGm

〉
, (16)

which means that suppΨν,lGm ⊂ U2h ⊂ V0. This is fulfilled if dist(2−jm,U) ≤
2h − 2J−ν . To have a positive number on the right hand side we have to
demand ν > J − h. Now, we fix l = J − h+ 1 and A > 0 by A = 2h − 2J−l.
From Corollary 1 we derive that ∞∑
ν=l

2ν(s−n/p)q
∑

G∈Gν,l

( ∑
m∈Zn

|λν,lGm(ϕf)|p(1 + 2ν dist(2−νm,U))s
′p

)q/p1/q

<∞

and that finally gives us with (16) and Uν = {m ∈ Zn : dist(2−νm,U) ≤ A}
with A > 0 as above ∞∑
ν=l

2ν(s−n/p)q
∑

G∈Gν,l

( ∑
m∈Uν

|λν,lGm(f)|p(1 + 2ν dist(2−νm,U))s
′p

)q/p1/q

<∞ .

Second step: If we have (15) for some l ∈ N0 and A > 0, then we can define

λ̃ν,lGm =

{
λν,lGm , for m ∈ Uν
0 , otherwise.

Then f =
∑
ν,G,m λ̃

ν,l
Gm2−ν

n
2 Ψν,lGm belongs to Bs,s

′

p,q (Rn, U) by Corollary 1 and
this implies f ∈ Bs,s′p,q (U)loc. ut

Remark 2. Let us emphasize that this theorem is similar to [9, Proposition
1.4] and [16, Theorem 1] in the cases p = q =∞, p = q = 2 and U = {x0}.

3.2 Embeddings

The aim of this subsection is to present some embedding theorems for the
local spaces. These embeddings are well known in the case p = q = ∞ and
U = {x0}.
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Lemma 2. Let f ∈ Bs,s′p,q (U)loc, then f belongs to Bs−ε,s
′+ε

pq (U)loc for all ε >
0.

The proof is a simple application of the theorem above. More generally we
can prove the following embedding.

Theorem 2.

Bs,s
′

p,q (U)loc ↪→ Bt,t
′

p,q (U)loc if, and only if, t ≤ s and t+ t′ ≤ s+ s′ .

Proof. The sufficiency of the conditions with respect to the parameters
s, t, s′, t′ ∈ R is proved again using Theorem 1. To get the necessity we have
to be more careful. The embedding is equivalent to the fact that we can find
l ∈ N0, A > 0 and c > 0 such that

2(t−s)ν ≤ c(1 + 2ν dist(2−νm,U))s
′−t′ holds for all ν ≥ l and m ∈ Uν . (17)

We have to distinguish two cases. First, we assume that s < t, then for ν ≥ l
large enough, we can find mν ∈ Uν with dist(2−νmν , U) ∼ 2−ν . This implies
that the left hand side of (17) is increasing in ν. But, the right hand side is
independent of ν which is a contradiction to (17).
In the second case we assume that t+ t′ > s+ s′. Then we take for all ν ≥ l
an mν ∈ Uν with dist(2−νmν , U) ∼ A. We can estimate the right hand side
of (17) by

(1 + 2ν dist(2−νmν , U))s
′−t′ ≤ c2ν(s

′−t′) where c > 0 is independent of ν.

This gives us a contradiction to (17), because there does not exist c > 0 with
2ν(t−s) ≤ c2ν(s′−t′) for all ν ≥ l. ut

Remark 3. This embedding theorem is in contrast to the global spaces, where
we have (Remark 2.3.4 in [12])

Bs,s
′

p,q (Rn, U) ↪→ Bt,t
′

p,q (Rn, U) if, and only if, t ≤ s and t′ ≤ s′ .

These results are well known in the case of the local spaces Cs,s
′

x0
(Rn) ([17,

Corollary III/3.4]). Moreover, this theorem is the starting point for the def-
inition of the so-called 2-microlocal frontier, see [17, III.5] and [16, Chapter
2].

3.3 The 2-microlocal domain

Similary as in [17] we give in this subsection a generalized approach to define
a 2-microlocal domain for a given function f ∈ S ′(Rn).

Definition 4. Let f ∈ S ′(Rn), then for fixed 0 < p, q ≤ ∞

Ep,q(f, U) = {(s, s′) ∈ R2 : f ∈ Bs,s
′

p,q (U)loc}

defines the 2-microlocal domain.
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We have generalized the 2-microlocal domain from [17] and [16] where case
p = q = ∞ has been considered. We get from the embedding Theorem 2 the
following.

Lemma 3. Let (s, s′) ∈ Ep,q(f, U) and let

t ≤ s and t+ t′ ≤ s+ s′ ,

then (t, t′) ∈ Ep,q(f, U).

Moreover, an easy application of Theorem 1 shows that this domain is convex.

Lemma 4. The 2-microlocal domain is convex. This means if (s, s′) ∈ Ep,q(f, U)
and (t, t′) ∈ Ep,q(f, U) then (λs+ (1−λ)t, λs′+ (1−λ)t′) ∈ Ep,q(f, U) for all
λ ∈ [0, 1].

Remark 4. This 2-microlocal domain clearly gives us new information about
the local regularity of functions (distributions). As a first example we take
the delta distribution and U ⊂ Rn compact with 0 ∈ U . Then we have for
0 < q <∞

δ ∈ Bs,s
′

p,q (U)loc ⇔ s <
n

p
− n

and for q =∞

δ ∈ Bs,s
′

p,∞(U)loc ⇔ s ≤ n

p
− n .

Hence, one easily recognizes the role played by the parameter p and, less
important, q.
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Sci. Paris (Ser.A) 274 (1972), 1935-1938.

3. O. V. Besov: Equivalent normings of spaces of functions of variable smoothness.
(Russian) Tr. Mat. Inst. Steklova 243 (2003), Funkts. Prostran., Priblizh., Differ.
Uravn., 87-95. [Translation in Proc. Steklov Inst. Math. 243 (2003), no. 4, 80-88.]

4. J.-M. Bony: Second microlocalization and propagation of singularities for semi-
linear hyperbolic equations. Taniguchi Symp. HERT. Katata (1984), 11-49.

5. I. Daubechies: Ten lectures on wavelets. SIAM (1992).
6. D. E. Edmunds, H. Triebel: Function Spaces, entropy numbers, differential op-

erators. Cambridge Univ. Press (1996).
7. W. Farkas, H.-G. Leopold: Characterisations of function spaces of generalised

smoothness. Annali di Mathematica 185 (2006), 1-62.



2-microlocal Besov spaces 11

8. S. Jaffard: Pointwise smoothness, two-microlocalisation and wavelet coefficients.
Publications Mathematiques 35 (1991), 155-168.

9. S. Jaffard, Y. Meyer: Wavelet methods for pointwise regularity and local oscil-
lations of functions. Memoirs of the AMS, vol. 123 (1996).

10. G. A. Kalyabin: Characterization of spaces of generalized Liouville differentia-
tion. Mat. Sb. Nov. Ser. 104 (1977), 42-48.

11. H. Kempka: Local characterization of generalized 2-microlocal spaces. Jenaer
Schriften zur Math. & Inf. 20/06 (2006).

12. H. Kempka: Generalized 2-microlocal Besov spaces. Dissertation, Jena (2008).
13. H. Kempka: Atomic, molecular and wavelet decomposition of generalized 2-

microlocal Besov spaces. to appear in J. Function Spaces and Appl. (2008).
14. H. Kempka: 2-microlocal Besov and Triebel-Lizorkin spaces of variable integra-

bility. Rev. Mat. Complut. vol. 22 num. 1 (2009),227-251.
15. H.-G. Leopold: On function spaces of variable order of differentiation. Forum

Math. 3 (1991), 633-644.
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