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Abstract. We introduce 2-microlocal Besov and Triebel-Lizorkin spaces with
variable smoothness and give characterizations by decompositions in atoms,

molecules and wavelets. These spaces cover the usual Besov and Triebel-

Lizorkin spaces as well as spaces of variable smoothness and integrability. We
emphasize that the spaces F s(·)

p(·),q(·)(Rn) which were defined recently in [12] are

included in this approach.

1. Introduction

We present function spaces of Besov and Triebel-Lizorkin type with variable
smoothness and integrability. We describe the variable smoothness of these spaces
in terms of 2-microlocal weight sequences, see Definition 2.1. This paper can be
seen as a continuation of [22], where a characterization with local means is given
for 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability.
Using the results from [22] we present characterizations of these spaces by decom-
positions in atoms, molecules and wavelets.
2-microlocal function spaces initially appeared in the book of Peetre [34] and have
independently been studied by Bony [7] in connection with pseudodifferential op-
erators. Later on, Jaffard in [19] gave a wavelet characterization of 2-microlocal
Hölder-Zygmund spaces and Jaffard & Meyer [20] elaborated them widely. In [27]
Levy Véhel & Seuret developed the 2-microlocal formalism and it turned out that
2-microlocal function spaces are an useful tool to measure local regularity of func-
tions.
In Lemma 2.6 we will show that spaces of variable smoothness are included in the
scale of 2-microlocal function spaces. Sobolev and Besov spaces of variable smooth-
ness σ(x) have been introduced by Beauzamy in [4]. In [25] and [26] Leopold defined
and elaborated Besov spaces Bs,ap,q (Rn) of variable smoothness for a class of hypoel-

liptic pseudodifferential operators. The symbols a(x, ξ) = 〈ξ〉σ(x) are special cases

in the works of Leopold and correspond to Besov spaces B
σ(·)
p,p (Rn) with variable

smoothness. In [5] Besov gave a characterization by differences for these spaces
Bs,ap,p(Rn). Furthermore, in [6] Besov generalized the result and characterized 2-
microlocal Besov and Triebel-Lizorkin spaces Ba

p,q(Rn) and Fa
p,q(Rn) by differences.

Here a(x) = {ak(x)}k∈N0
is a 2-microlocal weight sequence.

The second concept, we rely on, is the concept of variable exponent spaces Lp(·)(Rn).
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They can be traced back to Orlicz [33] 1931. A good survey of Lp(·)(Rn) spaces and
its fundamental properties is given by Kováčik & Rákosńık in [23]. From the point
of view of harmonic analysis, the breakthrough for variable exponent spaces was
achieved by Diening, when he showed in [10] that the Hardy-Littlewood maximal
operator is bounded on Lp(·)(Rn) for p satisfying some regularity condition inside
a large ball BR and constant outside. Inspired by this work, Cruz-Uribe, Fiorenza
and Neugebauer in [8] and Nekvinda in [32] elaborated the conditions on p.
The spaces Lp(·)(Rn) possess interesting applications in fluid dynamics, image pro-
cessing, PDE and variational calculus (see [12] and references therein). So it was
natural, that several extensions in various more advanced function spaces as Bessel
potential spaces Hs

p(·) and Besov and Triebel-Lizorkin spaces F sp(·),q(Rn), Bsp(·),q(Rn)

were made ([3], [18] and [43]).
The concept of function spaces with variable smoothness and the concept of variable
integrability were firstly mixed up by Diening, Hästö & Roudenko in [12]. They
defined Triebel-Lizorkin spaces F s(·)p(·),q(·)(Rn) and proved a discretization by the so
called ϕ-transform and used it to derive trace results. From the trace theorem on
Rn−1 it became clear, why it is natural to have all parameters variable. Due to

trF s(·)p(·),q(·)(Rn) = F s(·)−1/p(·)
p(·),p(·)(Rn−1)

([12, Theorem 3.13]) we see the necessity of taking s and q variable if p is not
constant.
The main aim of this paper is to present a decomposition by wavelets for Bw

p(·),q(Rn),
Fw
p(·),q(Rn) and Fw

p(·),q(·)(Rn). Since we want to have this characterization with com-
pactly supported Daubechies wavelets as well as with C∞ Meyer wavelets, we also
need characterizations with atoms and molecules as tools. In Section 2 we define
the spaces Bw

p(·),q(Rn) and Fw
p(·),q(Rn) and we prove their basic properties. The

next section contains the needed characterizations by decompositions in atoms and
molecules. Using the results from Section 3 in Section 4 we prove the wavelet char-
acterization for Bw

p(·),q(Rn), Fw
p(·),q(Rn). Finally, in Section 5 we present all previous

results for the most general spaces Fw
p(·),q(·)(Rn) and in Section 6 we collect the

important results for the spaces of variable smoothness as F s(·)p(·),q(·)(Rn), Bs(·)p(·),q(Rn)

and F s(·)p(·),q(Rn).

2. Definitions and basic properties

In this section we present the Fourier analytic definition of 2-microlocal Besov
and Triebel-Lizorkin spaces, Bw

p(·),q(Rn) and Fw
p(·),q(Rn), and we prove the basic

properties in analogy to the classical Besov and Triebel-Lizorkin spaces.
As usual Rn denotes the n−dimensional Euclidean space, N is the collection of all
natural numbers and N0 = N ∪ {0}. The symbols Z and C stand for the sets of
integers and complex numbers, respectively.
The Schwartz space S(Rn) is the space of all complex valued rapidly decreasing
infinitely differentiable functions on Rn. Its topology is generated by the norms
‖ϕ‖k,l = supx∈Rn〈x〉k

∑
|β|≤l |Dβϕ(x)|, where 〈x〉k = (1 + |x|2)k/2. By S ′(Rn) we

denote its dual space. We denote the Fourier transform by F and its inverse by

F−1 on S(Rn) and S ′(Rn) respectively and we use the symbols f̂ and f∨ for Ff
and F−1f .
The constant c stands for unimportant positive constants. So the value of the
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constant c may change from one occurrence to another. By ak ∼ bk we mean that
there are two constants c1, c2 > 0 such that c1ak ≤ bk ≤ c2ak for all admissible k.

2.1. Definition of the spaces. Before introducing the spaces, we define admis-
sible weight sequences w = {wj}j∈N0

, we explain smooth resolutions of unity and
we give the basic knowledge about spaces of variable integrability.

Definition 2.1 (Admissible weight sequence): Let α ≥ 0 and α1, α2 ∈ R with
α1 ≤ α2. A sequence of non-negative measurable functions w = {wj}j∈N0 belongs
to the class Wα

α1,α2
if, and only if,

(i) There exists a constant C > 0 such that

0 < wj(x) ≤ Cwj(y)
(
1 + 2j |x− y|

)α
for all j ∈ N0 and all x, y ∈ Rn.

(ii) For all j ∈ N0 we have

2α1wj(x) ≤ wj+1(x) ≤ 2α2wj(x) for all x ∈ Rn.

Such a system {wj}j∈N0
∈ Wα

α1,α2
is called admissible weight sequence.

A non-negative measurable function % is called an admissible weight function if
there exist constants α% ≥ 0 and C% > 0 such that

0 < %(x) ≤ C%%(y)(1 + |x− y|)α% holds for every x, y ∈ Rn. (1)

If w = {wj}j∈N0
is an admissible weight sequence, each wj is an admissible weight

function, but in general the constant Cwj depends on j ∈ N0. If we use w ∈ Wα
α1,α2

without any restrictions, then α ≥ 0 and α1, α2 ∈ R are arbitrary but fixed numbers.
A fundamental example of an admissible weight sequence is given by the 2-microlocal
weights. For a fixed nonempty set U ⊂ Rn and s, s′ ∈ R they are given by

wj(x) := 2js
(
1 + 2j dist(x, U)

)s′
, (2)

where dist(x, U) = infz∈U |x− z| is the distance of x ∈ Rn from U .
A special case is U = {x0} for x0 ∈ Rn. Then dist(U, x) = |x− x0| and we get the
well known 2-microlocal weights ([20] and [1]) treated by many authors

wj(x) = 2js(1 + 2j |x− x0|)s
′

for j ∈ N0. (3)

If U is an open subset of Rn, we get the weight sequence used by Moritoh and
Yamada in [30].
To give a Fourier analytic definition of these spaces we need smooth decompositions
of unity. We start with an arbitrary function ϕ0 ∈ S(Rn) with ϕ0(x) ≥ 0 and

ϕ0(x) =

{
1 , |x| ≤ 1

0 , |x| ≥ 2.
(4)

Furthermore, we define ϕ(x) = ϕ0(x) − ϕ0(2x) and set ϕj(x) = ϕ(2−jx) for all
j ∈ N. Then {ϕj}j∈N0

is a smooth dyadic resolution of unity and we have

∞∑
j=0

ϕj(x) = 1 for all x ∈ Rn.

Furthermore, we give a short survey on variable exponent spaces Lp(·)(Rn). A very
good resource is [23] for more details. The class of exponents P(Rn) consists of all
measurable functions p : Rn → (0,∞] which are bounded away from zero. For a
set A ⊂ Rn we denote p+

A = ess-supx∈A p(x) and p−A = ess-infx∈A p(x); we use the
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abbreviations p+ = p+
Rn and p− = p−Rn . The Lebesgue space Lp(·)(Rn) of variable

integrability consists of all measurable functions f such that for some λ > 0 the
modular %Lp(·)(Rn)(f/λ) is finite, where

%Lp(·)(Rn)(f) =

∫
Rn0

|f(x)|p(x)dx+ ess-sup
x∈Rn∞

|f(x)| .

Here, Rn∞ denotes the subset of Rn, where p(x) = ∞ and Rn0 = Rn \ Rn∞. The
Luxemburg norm of a function f ∈ Lp(·)(Rn) is given by∥∥f |Lp(·)(Rn)

∥∥ = inf{λ > 0 : %Lp(·)(Rn)(f/λ) ≤ 1} .

Now, we define the spaces under consideration.

Definition 2.2: Let {ϕj}j∈N0
be a resolution of unity and let w = {wj}j∈N0 ∈

Wα
α1,α2

. Further, let 0 < q ≤ ∞ and p(·) ∈ P(Rn), then we define

Bw
p(·),q(Rn) =

{
f ∈ S ′(Rn) :

∥∥f |Bw
p(·),q(Rn)

∥∥
ϕ
<∞

}
, where

∥∥f |Bw
p(·),q(Rn)

∥∥
ϕ

=

 ∞∑
j=0

∥∥∥wj(ϕj f̂)∨
∣∣∣Lp(·)(Rn)

∥∥∥q
1/q

.

For p+ <∞ we define

Fw
p(·),q(Rn) =

{
f ∈ S ′(Rn) :

∥∥f |Fw
p(·),q(Rn)

∥∥
ϕ
<∞

}
, where

∥∥f |Fw
p(·),q(Rn)

∥∥
ϕ

=

∥∥∥∥∥∥∥
 ∞∑
j=0

|wj(x)(ϕj f̂)∨(x)|q
1/q

∣∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥∥ .

The norms get modified as usual, if q equals infinity.

Remark 2.3: (i) We use the notation ‖ · ‖ϕ to indicate that formally our
definition depends on the start function ϕ of the resolution of unity. For-
tunately, from the local means characterization of these spaces [22] we
obtain, that another start function ϕ̃ defines an equivalent norm. There-
fore, we suppress the index ϕ in the notation of the norm for the rest of
the paper.

(ii) Later on, it is sometimes convenient to use another notation for the norms.
We use

∥∥fj | `q(Lp(·)(Rn))
∥∥ =

 ∞∑
j=0

∥∥fj(·)|Lp(·)(Rn)
∥∥q1/q

and

∥∥fj |Lp(·)(`q)∥∥ =

∥∥∥∥∥∥∥
 ∞∑
j=0

|fj(·)|q
1/q

∣∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥∥ .

2.2. Connection to known spaces. For p =const and wj(x) = 2js we get back
to the usual Besov and Triebel-Lizorkin spaces Bspq(Rn) and F spq(Rn).
If p is constant, then the spaces from Definition 2.2 coincide with the spaces in [6]
presented by Besov. He used the theory of ultra-distributions to allow the expo-
nential growth of the weights. Restricted to the usual distributions, our approach
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is more general because negative smoothness is allowed (α1, α2 ∈ R in contrast to
0 ≤ α1 ≤ α2 in [6]).

Regarding p constant the entire literature on 2-microlocal spaces Bs,s
′

pq (Rn, U) with

wj(x) = 2js(1 + 2j dist(x, U))s
′

([1], [7], [19], [20], [21], [29], [30], [27]) is included in this approach.
Moreover, the spaces of generalized smoothness are contained in this approach ([14],
[31]) by taking

wj(x) = 2jsΨ(2−j) , or more general wj(x) = σj .

Here, {σj}j∈N0 is an admissible sequence that means there exist d0, d1 > 0 with
d0σj ≤ σj+1 ≤ d1σj .
If wj(x) = 2jsw0(x) for all j ∈ N, then we obtain the weighted Besov and Triebel-
Lizorkin spaces with constant p ([13, Chapter 4]).

For variable p ∈ P(Rn) and wj(x) = 2js the spaces considered by Xu in [43]
are contained in the above scale.
Moreover, also the classical spaces of variable integrability are contained in Fw

p(·),q(Rn)

for wj(x) = 2js. For example we have F sp(·),2(Rn) = Hs
p(·)(R

n), where Hs
p(·)(R

n)

are the Bessel potential spaces (fractional Sobolev spaces) of variable integrabil-
ity which were introduced in [3] and in [18]. The integrability p has to belong to
C log(Rn) (see Definition 2.4) with 1 < p− ≤ p+ < ∞ and s ≥ 0 ([12, Theorem
4.5]). Especially, we get under these conditions that F kp(·),2(Rn) = W k

p(·)(R
n), where

k ∈ N0.
If in [12] one chooses the parameter q as a constant function, then the spaces from
Definition 2.2 include the Triebel-Lizorkin spaces F s(·)p(·),q(Rn) of [12]. Later on, in
Definition 5.1 we work with the spaces Fw

p(·),q(·)(Rn) where also q(·) is a variable

function. If s : Rn → R is out of L∞(Rn) ∩ C log
loc (Rn) (see Definition 2.4), then

F s(·)p(·),q(·)(Rn) = Fw
p(·),q(·)(Rn) , where wj(x) = 2js(x) .

Our approach is more general since s(·) can be negative, whereas in [12] s(x) ≥ 0.
In Lemma 2.6 we will show that we obtain a 2-microlocal weight sequence by the

construction wj(x) = 2js(x), whenever s ∈ L∞(Rn) ∩ C log
loc (Rn).

2.3. Basic properties. We introduce the Hardy-Littlewood maximal operatorMt

which is defined for a locally integrable function f ∈ Lloc1 (Rn) and for 0 < t ≤ 1 by

Mt(f)(x) =

sup
x∈Q

∫
Q

|f(y)|tdy

1/t

,

and M(f)(x) =M1(f)(x). The Hardy-Littlewood maximal operator is a key tool
in harmonic analysis. It is known that the boundedness of many operators follows
from the boundedness of the maximal operator. So it was a breakthrough, when
Diening discovered in [10], that the maximal operator is bounded on Lp(·)(Rn)
under certain regularity conditions on p(·). Let us define the important classes.
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Definition 2.4: Let g ∈ C(Rn). We say that g is locally log-Hölder continuous,

abbreviated g ∈ C log
loc (Rn), if there exists clog > 0 such that

|g(x)− g(y)| ≤ clog

log(e +1/|x− y|)
(5)

holds for all x, y ∈ Rn.
We say, that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rn), if g is
locally log-Hölder continuous and there exists g∞ ∈ R such that

|g(x)− g∞| ≤
clog

log(e +|x|)
(6)

holds for all x ∈ Rn.

If p(·) ∈ P(Rn) belongs to these classes, then the maximal operator is bounded.

Proposition 2.5 (Theorem 3.6 in [11]): Let p ∈ P(Rn) with 1 < p− ≤ p+ ≤ ∞. If
1
p(·) ∈ C

log(Rn), then M is bounded on Lp(·)(Rn) i.e., there exists c > 0 such that

for all f ∈ Lp(·)(Rn) ∥∥Mf |Lp(·)(Rn)
∥∥ ≤ C ∥∥f |Lp(·)(Rn)

∥∥ .

We write p(·) ∈ P log(Rn), if p(·) ∈ P(Rn) and 1/p(·) ∈ C log(Rn). If p(·) ∈
P log(Rn) then M is bounded on Lp(·)/p0

(Rn) for every p0 < p− or, equivalently,
Mt is bounded on Lp(·)(Rn), where t = min(1, p0).
Furthermore, from [9, Corollary 2.1] we obtain that Mt is bounded on Lp(·)(`q) if

p(·) ∈ P log(Rn) for every p0 < min(p−, q) and t = min(p0, 1).
The next lemma gives the connection between 2-microlocal spaces and spaces of
variable smoothness.

Lemma 2.6: Let s : Rn → R be a measurable function. Then s ∈ C log
loc (Rn) ∩

L∞(Rn) if, and only if, {wj}j∈N0
defined by

wj(x) = 2js(x)

belongs to Wα
α1,α2

.

Proof. In [22] it was already shown that from s ∈ C log
loc (Rn) ∩ L∞(Rn) it follows

{wj}j∈N0 ∈ Wα
α1,α2

for some α ≥ 0 and α1, α2 ∈ R. Only the reverse direction
remains to be proved. It is trivial that the second condition in Definition 2.1 on
wj(x) is equivalent to the boundedness of s(x) and we get α1 ≤ s(x) ≤ α2. Let
x, y ∈ Rn with |x− y| > 1, then we have log(e +1/|x− y|) ≥ 1 and

|s(x)− s(y)| ≤ 2‖s‖∞ ≤
2‖s‖∞

log(e +1/|x− y|)
.

So only the case |x − y| ≤ 1 is open. Without loss of generality we assume that
wj(x) ≥ wj(y), then we have

|s(x)− s(y)| = 1

j
log2

wj(x)

wj(y)
≤ log2 C(1 + 2j |x− y|)α

j

for all j ∈ N. We choose 2−j+2 ≤ |x− y| ≤ 2−j+3 and obtain

|s(x)− s(y)| ≤ log2 C(1 + 23)α

2 + log2 1/|x− y|
≤ log2 C(1 + 23)α

log2(e +1/|x− y|)

≤ clog

log(e +1/|x− y|)
.
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Remark 2.7: (i) There exists also a more local class of exponent functions

called C log
1−loc(Rn) defined in [40]. Here condition (5) has to hold only

locally for |x − y| ≤ 1. This is somewhat weaker than the class C log
loc (Rn)

condition, but we have C log
1−loc(Rn) ∩ L∞(Rn) = C log

loc (Rn) ∩ L∞(Rn).
(ii) Lemma 2.6 does not state the equivalence of spaces of variable smoothness

and 2-microlocal function spaces. Only if the weight sequence {wj}j∈N0

is constructed like wj(x) = 2js(x), then they coincide. For example, the
heavily used ([27], [29] and [20]) weight sequence wj(x) = 2js(1 + 2j |x −
x0|)s

′
with x0 ∈ Rn and s, s′ ∈ R can not be reformulated into a variable

smoothness function for s′ 6= 0.

Let us recall the characterization of Bw
p(·),q(Rn) and Fw

p(·),q(Rn) by local means,
proved in [22, Theorem 2.2]. For {ψk}k∈N0 ∈ S(Rn), f ∈ S ′(Rn) and a > 0 we
define the Peetre maximal operator by

(ψ∗kf)a(x) = sup
y∈Rn

|(ψk ∗ f)(y)|
1 + |2k(y − x)|a

, where k ∈ N0 and x ∈ Rn . (7)

Proposition 2.8: Let w = {wk}k∈N0 ∈ Wα
α1,α2

, 0 < q ≤ ∞, p ∈ P log(Rn) and let
a ∈ R, R ∈ N0 with R > α2. Further, let ψ0, ψ1 belong to S(Rn) with

Dβψ1(0) = 0 , for 0 ≤ |β| < R , (8)

and

|ψ0(x)| > 0 on {x ∈ Rn : |x| < ε} (9)

|ψ1(x)| > 0 on {x ∈ Rn : ε/2 < |x| < 2ε} (10)

for some ε > 0.

(i) For a > n
p− + α and for all f ∈ S ′(Rn) we have∥∥f |Bw

p(·),q(Rn)
∥∥ ∼ ∥∥ (Ψk ∗ f)wk| `q(Lp(·))

∥∥ ∼ ∥∥ (Ψ∗kf)awk| `q(Lp(·))
∥∥ .

(ii) If p+ <∞, then for a > n
min(p−,q) + α∥∥f |Fw

p(·),q(Rn)
∥∥ ∼ ∥∥ (Ψk ∗ f)wk|Lp(·)(`q)

∥∥ ∼ ∥∥ (Ψ∗kf)awk|Lp(·)(`q)
∥∥

holds for all f ∈ S ′(Rn).

If R = 0, then we do not need any moment conditions (8) on ψ1. The local
means characterization gives us that the definition of the spaces Fw

p(·),q(Rn) and
Bw
p(·),q(Rn) is independent on the start function ϕ0 of the resolution of unity. To

this end, we do not need an index ϕ in the notation of the norm.

3. Decomposition by Atoms and Molecules

In this section we present two decomposition theorems. We characterize the
spaces Bw

p(·),q(Rn) and Fw
p(·),q(Rn) via decompositions by atoms and molecules. First

we introduce the basic notation.
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3.1. Preliminaries. For ν ∈ N0 and m ∈ Zn we define the closed cube Qνm with
center in 2−νm and with sides parallel to the axes and length 2−ν . By χνm we
denote the characteristic function of the cube Qνm.

Definition 3.1: Let w = {wk}k∈N0 ∈ Wα
α1,α2

, 0 < q ≤ ∞ and let p(·) ∈ P(Rn).
Then for all complex valued sequences λ = {λνm ∈ C : ν ∈ N0,m ∈ Zn} we define

bwp(·),q =
{
λ :
∥∥∥λ| bwp(·),q∥∥∥ <∞}

where ∥∥∥λ| bwp(·),q∥∥∥ :=

( ∞∑
ν=0

∥∥∥∥∥ ∑
m∈Zn

|λνm|wν(2−νm)χνm(·)

∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
q)1/q

.

Furthermore, for p+ <∞ we define

fwp(·),q =
{
λ :
∥∥∥λ| fwp(·),q∥∥∥ <∞}

where ∥∥∥λ| fwp(·),q∥∥∥ :=

∥∥∥∥∥∥
( ∞∑
ν=0

∑
m∈Zn

|λνm|qwqν(2−νm)χνm(x)

)1/q
∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥ .

We define atoms which are the building blocks for atomic decompositions.

Definition 3.2: Let K,L ∈ N0 and let γ > 1. A K-times continuous differentiable
function a ∈ CK(Rn) is called [K,L]-atom centered at Qνm, ν ∈ N0 and m ∈ Zn,
if

supp a ⊆ γQνm , (11)

|Dβa(x)| ≤ 2|β|ν , for 0 ≤ |β| ≤ K (12)

and if ∫
Rn

xβa(x)dx = 0 for 0 ≤ |β| < L and ν ≥ 1 . (13)

If an atom a is centered at Qνm, that means if it fulfills (11), then we denote it

by aνm. We recall the definition xβ = xβ1

1 · · ·xβnn and point out that for ν = 0 or
L = 0 there are no moment conditions (13) required.

Definition 3.3: Let K,L ∈ N0 and let M > 0. A K-times continuous differentiable
function µ ∈ CK(Rn) is called [K,L,M ]-molecule concentrated in Qνm, if for some
ν ∈ N0 and m ∈ Zn

|Dβµ(x)| ≤ 2|β|ν(1 + 2ν |x− 2−νm|)−M , for 0 ≤ |β| ≤ K (14)

and ∫
Rn

xβµ(x)dx = 0 if 0 ≤ |β| < L and ν ≥ 1 . (15)

Remark 3.4: (i) For L = 0 or ν = 0 there are no moment conditions (15)
required. If a molecule is concentrated in Qνm, that means it satisfies (14),
then it is denoted by µνm.
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(ii) If aνm is a [K,L]-atom, then it is a [K,L,M ]-molecule for every M > 0.

3.2. Basic results. For proving the decomposition by atoms and molecules we
need four basic lemmas. The next lemmas go back to Frazier & Jawerth [15] and a
proof adapted to our setting can be found in [21].

Lemma 3.5 (Lemma 3.3 in [15]): Let {ϕj}j∈N0
be resolution of unity and let

{µνm}ν∈N0,m∈Zn be [K,L,M ] molecules. Then

|(ϕ∨j ∗ µνm)(x)| ≤ c2−(ν−j)(L+n)(1 + 2j |x− 2−νm|)L+n−M , for j ≤ ν

and

|(ϕ∨j ∗ µνm)(x)| ≤ c2−(j−ν)K(1 + 2j |x− 2−νm|)−M , for j ≥ ν.

We also need a partition of unity of Calderon type; a proof can be found in [15].

Lemma 3.6 (Theorem 6 in [15]): Let {ϕj}j∈N0 ∈ Φ(Rn) be a resolution of unity
and let R ∈ N. Then there exist functions θ0, θ ∈ S(Rn) with:

supp θ0, supp θ ⊆ {x ∈ Rn : |x| ≤ 1} , (16)

|θ̂0(ξ)| ≥ c0 > 0 for |ξ| ≤ 2 , (17)

|θ̂(ξ)| ≥ c > 0 for
1

2
≤ |ξ| ≤ 2 , (18)∫

Rn

xγθ(x)dx = 0 for 0 ≤ |γ| ≤ R (19)

such that

θ̂0(ξ)ψ̂0(ξ) +

∞∑
j=1

θ̂(2−jξ)ψ̂(2−jξ) = 1 , for all ξ ∈ Rn , (20)

where the functions ψ0, ψ ∈ S(Rn) are defined via

ψ̂0(ξ) =
ϕ0(ξ)

θ̂0(ξ)
and ψ̂(ξ) =

ϕ1(2ξ)

θ̂(ξ)
. (21)

The next lemma can be found in [24, Lemma 7.1] and a proof in our notation is
postponed to the appendix.

Lemma 3.7: Let 0 < t ≤ 1 and R > n
t . For any j, ν ∈ N0, l ∈ Zn, x ∈ Qjl and

any sequence {hνm}ν∈N0,m∈Zn of complex numbers, we have∑
m∈Zn

|hνm|(1 + 2j |x− 2−νm|)−R ≤ cmax(2(ν−j)nt , 1)Mt

( ∑
m∈Zn

|hνmχνm|

)
(x) .

The next lemma is a Hardy-type inequality which is easy to prove.

Lemma 3.8 (Lemma 3 in [43]): Let 0 < q ≤ ∞, δ > 0 and p ∈ P(Rn) with 0 <
p− ≤ p+ ≤ ∞. Let {gk}k∈N0

be a sequence of non-negative measurable functions
on Rn and denote

Gν(x) =

∞∑
k=0

2−|ν−k|δgk(x) , x ∈ Rn , ν ∈ N0 .
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Then there exist constants C1, C2 ≥ 0 such that∥∥Gk| `q(Lp(·))∥∥ ≤ C1

∥∥gk| `q(Lp(·))∥∥
and ∥∥Gk|Lp(·)(`q)∥∥ ≤ C2

∥∥gk|Lp(·)(`q)∥∥ .

We introduce the numbers σp and σp,q by

σp = n

(
1

min(1, p−)
− 1

)
and σp,q = n

(
1

min(1, p−, q−)
− 1

)
. (22)

If p or q are constant exponent functions, then we get back the usual definitions of
σp and σp,q, see [39].

The last task in this subsection is to clarify the convergence of the sum

f =

∞∑
ν=0

∑
m∈Zn

λνmµνm , (23)

where {µνm}ν∈N0,m∈Zn are [K,L,M ] molecules and {λνm}ν∈N0,m∈Zn belongs to
some sequence space from Definition 3.1. At least, we have to show the convergence
of (23) in S ′(Rn). To this end, we need some embedding theorems between the
sequence spaces. A first result are the Sobolev embeddings, which were recently
proved in [40, Theorem 3.1] and [2, Theorem 6.4] in the variable smoothness setting.
If one looks at the proofs in [40] and [2] it is easy to verify the Sobolev embeddings
with admissible weight sequences. The condition needed in the proof of the F-case
([40, Lemma 2.9]) is

wj(x)

wj(y)
≤ c for |x− y| ≤ 2−j

which is trivially fulfilled by {wj}j∈N0
∈ Wα

α1,α2
. In the B-case the weights have to

fulfill a similar condition ([2, Lemma 4.3]) which is also easy to check.
Now, we state the needed Sobolev embeddings with 2-microlocal weight sequences.
We also use the notation fwp(·),q(·) which gets defined in Section 5. To avoid confu-

sions read the proposition as if 0 < q ≤ ∞ is a fixed parameter.

Proposition 3.9: Let w0,w1 ∈ Wα
α1,α2

with
w0
j (·)

w1
j (·) ≥ 1 and p0(·), p1(·) ∈ P log(Rn)

with

w0
j (x)

w1
j (x)

= 2
j( n
p0(x)

− n
p1(x)

)
for all x ∈ Rn.

(i) Let 0 < p0(x) ≤ p1(x) < ∞ with 0 < p−0 ≤ p−1 ≤ p+
1 < ∞ and let

q(·) ∈ P(Rn) with q(x) =∞ for all x ∈ Rn or 0 < q− ≤ q(x) <∞ for all
x ∈ Rn. Then

fw
0

p0(·),q(·) ↪→ fw
1

p1(·),q(·) .

(ii) If 0 < q ≤ ∞, then

bw
0

p0(·),q ↪→ bw
1

p1(·),q .

Further, we need an embedding between B and F spaces. This was already done
in [2, Theorem 6.1]. Since we only need the case where q is constant, it is easy to
have also q =∞ included.
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Proposition 3.10: Let w ∈ Wα
α1,α2

, p(·) ∈ P log(Rn) and 0 < q ≤ ∞, then

bwp(·),min(p−,q) ↪→ fwp(·),q ↪→ bwp(·),max(p+,q) .

Finally, we can state the lemma on the convergence of (23) in S ′(Rn). The proof
is again postponed to the appendix.

Lemma 3.11: Let w = {wk}k∈N0
∈ Wα

α1,α2
and let p(·) ∈ P log(Rn) and 0 < q ≤

∞. Furthermore, let K,L ∈ N0 and M > 0 with

L > σp − α1 , K arbitrary and M large enough .

If λ ∈ bwp(·),q or λ ∈ fwp(·),q and {µνm}ν∈N0,m∈Zn are [K,L,M ]-molecules concen-

trated in Qνm, then the sum

∞∑
ν=0

∑
m∈Zn

λνmµνm(x) (24)

converges in S ′(Rn).

3.3. Atomic and molecular decompositions. Now we state one direction of
the atomic decomposition theorem.

Theorem 3.12: Let {wν}ν∈N0 ∈ Wα
α1,α2

and 0 < q ≤ ∞. Further, let K,L ∈ N0

and p(·) ∈ P log(Rn) with 0 < p− ≤ p+ ≤ ∞.

(i) If

K > α2 and L > σp − α1 ,

then for each f ∈ Bw
p(·),q(Rn) there exist λ ∈ bwp(·),q and [K,L]-atoms

{aνm}ν∈N0,m∈Zn centered at Qνm such that

f =

∞∑
ν=0

∑
m∈Zn

λνmaνm converging in S ′(Rn), (25)

holds. Moreover ∥∥∥λ| bwp(·),q∥∥∥ ≤ c∥∥f |Bw
p(·),q(Rn)

∥∥
where the constant c > 0 is universal for all f ∈ Bw

p(·),q(Rn).

(ii) If p+ <∞ and

K > α2 and L > σp,q − α1 ,

then for each f ∈ Fw
p(·),q(Rn) there exist λ ∈ fwp(·),q and [K,L]-atoms

{aνm}ν∈N0,m∈Zn centered at Qνm such that (25) holds. Moreover∥∥∥λ| fwp(·),q∥∥∥ ≤ c∥∥f |Fw
p(·),q(Rn)

∥∥
where the constant c > 0 is universal for all f ∈ Fw

p(·),q(Rn).

Proof. The proof follows the ideas in [15] and [14]. Because every [K,L] atom is a
[K,L,M ] molecule for arbitrary M > 0 from Lemma 3.11 we have the convergence
of (25) in S ′(Rn). We use Lemma 3.6 with R = L− 1, the functions θ0, θ ∈ S(Rn)
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with the properties (16)-(20) and the functions ψ0, ψ ∈ S(Rn) with (21). Let
f ∈ S ′(Rn), then from Lemma 3.6 we get

f = f ∗ θ0 ∗ ψ0 +

∞∑
ν=1

2νnθ(2ν ·) ∗ ψν ∗ f ,

where ψν(·) = 2νnψ(2ν ·). Now, splitting the integration with respect to the cubes
Qνm we derive

f(x) =
∑
m∈Zn

∫
Q0m

θ0(x− y)(ψ0 ∗ f)(y)dy +

∞∑
ν=1

∑
m∈Zn

2νn
∫

Qνm

θ(2ν(x− y))(ψν ∗ f)(y)dy .

For each ν ∈ N and all m ∈ Zn we define

λνm = Cθ sup
y∈Qνm

|(ψν ∗ f)(y)| ,

where Cθ = max{sup|x|≤1 |Dβθ(x)| : |β| ≤ K}. If λνm 6= 0, then we define

aνm(x) =
1

λνm
2νn

∫
Qνm

θ(2ν(x− y))(ψν ∗ f)(y)dy ,

otherwise, we set aνm(x) = 0. The a0m atoms and λ0m are defined similarly by
using θ0 and ψ0. Clearly, (25) holds and the properties of θ0, ψ0, θ and ψν ensure
that aνm are [K,L]-atoms. It remains to prove, that there exists a constant c such

that
∥∥∥λ| awp(·),q∥∥∥ ≤ c

∥∥f |Aw
p(·),q(Rn)

∥∥; where a stands for b or f and A for B or F

respectively.
For fixed ν ∈ N0 and a > n

min(p−,q) + α we obtain∑
m∈Zn

wν(x)λνmχνm(x) ≤ c
∑
m∈Zn

wν(x) sup
y∈Qνm

|(ψν ∗ f)(y)|χνm(x)

≤ c′wν(x) sup
|z|≤c2−ν

|(ψν ∗ f)(x− z)|
1 + |2νz|a

(1 + |2νz|a)

≤ c′′wν(x)(ψ∗νf)a(x) , (26)

since |x− y| ≤ c2−ν for x, y ∈ Qνm and
∑
m∈Zn χνm(x) = 1. Here, (ψ∗νf)a denotes

the Peetre maximal operator, defined in (7). In applying the Lp(·)(Rn) and the `q
norm we get∥∥∥λ| bwp(·),q∥∥∥ ≤ c

( ∞∑
ν=0

∥∥∥∥∥ ∑
m∈Zn

|2νswν(x)(ψ∗νf)a(x)|

∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
q)1/q

. (27)

If we apply the Lp(·)(`q) norm on (26), then we obtain∥∥∥λ| fwp(·),q∥∥∥ ≤ c
∥∥∥∥∥∥
( ∞∑
ν=0

∑
m∈Zn

|2νswν(x)(ψ∗νf)a(x)|q
)1/q

∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥ . (28)

Since ψ0 ∈ S(Rn) and ψ ∈ S(Rn) are two kernels which fulfill the moment con-
ditions (8) and the Tauberian conditions (9) and (10), we can use Proposition 2.8
with a > n

min(p−,q) + α and derive from (27) and (28)∥∥∥λ| bwp(·),q∥∥∥ ≤ c∥∥f |Bw
p(·),q(Rn)

∥∥
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and ∥∥∥λ| fwp(·),q∥∥∥ ≤ c∥∥f |Fw
p(·),q(Rn)

∥∥ ,

which prove both parts of the theorem. �

To get the reverse direction of the atomic decomposition theorem we use the more
general molecules. Afterwards the atomic decomposition theorem follows easily.

Theorem 3.13: Let {wν}ν∈N0
∈ Wα

α1,α2
and 0 < q ≤ ∞, p(·) ∈ P log(Rn) with

0 < p− ≤ p+ ≤ ∞.

(i) Let K,L ∈ N0 with

K > α2 and L > σp − α1

and M > 0 large enough. If {µνm}ν∈N0,m∈Zn are [K,L,M ]-molecules and
λ = {λνm}ν∈N0,m∈Zn ∈ bwp(·),q, then

f =

∞∑
ν=0

∑
m∈Zn

λνmµνm , convergence in S ′(Rn), (29)

is an element of Bw
p(·),q(Rn) and∥∥f |Bw

p(·),q(Rn)
∥∥ ≤ c∥∥∥λ| bwp(·),q∥∥∥ . (30)

(ii) Let p+ <∞ and K,L ∈ N0 with

K > α2 and L > σp,q − α1 ,

and M > 0 large enough. If {µνm}ν∈N0,m∈Zn are [K,L,M ]-molecules and
λ = {λνm}ν∈N0,m∈Zn ∈ fwp(·),q, then (29) is an element of Fw

p(·),q(Rn) and∥∥f |Fw
p(·),q(Rn)

∥∥ ≤ c∥∥∥λ| fwp(·),q∥∥∥ . (31)

Proof. The convergence of the sum (29) in S ′(Rn) follows from Lemma 3.11. As
usual we divide the summation (29) in dependence on j ∈ N0 into two parts

f =

∞∑
ν=0

∑
m∈Zn

λνmµνm =

j∑
ν=0

∑
m∈Zn

. . .+

∞∑
ν=j+1

∑
m∈Zn

. . . = fj + f j .

Let {ϕj}j∈N0 be a resolution of unity from (4). Now, let us prove the first part of
the theorem for the Besov spaces. We have∥∥f |Bw

p(·),q(Rn)
∥∥ ≤ c (∥∥fj |Bw

p(·),q(Rn)
∥∥+

∥∥f j∣∣Bw
p(·),q(Rn)

∥∥)
= c

 ∞∑
j=0

∥∥∥∥∥
j∑

ν=0

∑
m∈Zn

λνm(ϕ∨j ∗ µνm)(·)wj(·)

∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
q
1/q

+ c

 ∞∑
j=0

∥∥∥∥∥∥
∞∑

ν=j+1

∑
m∈Zn

λνm(ϕ∨j ∗ µνm)(·)wj(·)

∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥
q1/q

= σ1 + σ2 .
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We estimate σ1. We use Lemma 3.5 with ν ≤ j and by the properties of the weight
sequence we obtain

j∑
ν=0

∑
m∈Zn

|(ϕ∨j ∗ µνm)(x)wj(x)λνm|

≤ c
j∑

ν=0

∑
m∈Zn

2−(j−ν)(K−α2)|λνm|wν(2−νm)(1 + 2j |x− 2−νm|)α−M

and using Lemma 3.7 with t < min(1, p−) and M − α > n/t we can estimate this
from above by

≤ c′
j∑

ν=0

2−(j−ν)(K−α2)Mt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(x) .

Further, using Lemma 3.8 with δ = K − α2 > 0 and the fact that Mt is bounded
on Lp(·)(Rn)

σ1 ≤ c

 ∞∑
j=0

∥∥∥∥∥
j∑

ν=0

2−(j−ν)δMt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(·)

∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
q
1/q

≤ c′
( ∞∑
ν=0

∥∥∥∥∥Mt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(·)

∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
q)1/q

≤ c′′
( ∞∑
ν=0

∥∥∥∥∥ ∑
m∈Zn

|λνm|wν(2−νm)χνm(·)

∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
q)1/q

= c′′
∥∥∥λ| bwp(·),q∥∥∥ . (32)

For σ2 we use Lemma 3.5 with ν ≥ j and obtain

∞∑
ν=j+1

∑
m∈Zn

|(ϕ∨j ∗ µνm)(x)wj(x)λνm|

≤ c
∞∑

ν=j+1

∑
m∈Zn

2−(ν−j)(L+n+α1)|λνm|wν(2−νm)(1 + 2j |x− 2−νm|)α−M+L+n

and using Lemma 3.7 with t < min(1, p−) and M − α − L − n > n/t we estimate
further

≤ c′
∞∑

ν=j+1

2−(ν−j)(L+n+α1−nt )Mt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(x) .
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Finally, using Lemma 3.8 with δ = L+ n+ α1 − n
t > 0 we obtain

σ2 ≤ c

 ∞∑
j=0

∥∥∥∥∥∥
∞∑

ν=j+1

2−(ν−j)δMt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(·)

∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥
q1/q

≤ c′
( ∞∑
ν=0

∥∥∥∥∥Mt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(·)

∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
q)1/q

≤ c′′
( ∞∑
ν=0

∥∥∥∥∥ ∑
m∈Zn

|λνm|wν(2−νm)χνm(·)

∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
q)1/q

= c′′
∥∥∥λ| bwp(·),q∥∥∥ .

(33)

Now, by (32) and (33) we get
∥∥f |Bw

p(·),q(Rn)
∥∥ ≤ c∥∥∥λ| bwp(·),q∥∥∥ .

In the F-case we do the same estimates and calculations as above, use the second
part of Lemma 3.8 and the boundedness ofMt on Lp(·)(`q) for t < min(p−, q, 1) to
obtain (31). �

Remark 3.14: Closer inspection of the proof shows that M > σp + L + 2n + 2α
(σp,q in the F-case) is a sufficient condition for M .

Since every [K,L]-atom is a [K,L,M ]-molecule for every M > 0 we get the
following corollary.

Corollary 3.15: Let {wj}j∈N0 ∈ Wα
α1,α2

and let 0 < q ≤ ∞, p(·) ∈ P log(Rn).

(i) Let K,L ∈ N0 with

K > α2 and L > σp − α1 .

(a) If λ ∈ bwp(·),q and {aνm}ν∈N0,m∈Zn are [K,L]-atoms centered at Qνm,

then

f =

∞∑
ν=0

∑
m∈Zn

λνmaνm ,convergence in S ′(Rn), (34)

belongs to the space Bw
p(·),q(Rn) and there exists a constant c > 0 with∥∥f |Bw

p(·),q(Rn)
∥∥ ≤ c∥∥∥λ| bwp(·),q∥∥∥ .

The constant c > 0 is universal for all λ and aνm.
(b) For every f ∈ Bw

p(·),q(Rn), there exists λ ∈ bwp(·),q and [K,L]-atoms

centered at Qνm such that there exists a representation (34), converg-
ing in S ′(Rn), with∥∥∥λ| bwp(·),q∥∥∥ ≤ c∥∥f |Bw

p(·),q(Rn)
∥∥ ,

where the constant c > 0 is universal for all f ∈ Bw
p(·),q(Rn).

(ii) Let p+ <∞ and K,L ∈ N0 with

K > α2 and L > σp,q − α1 .
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(a) If λ ∈ fwp(·),q and {aνm}ν∈N0,m∈Zn are [K,L]-atoms centered at Qνm,

then f represented by (34) belongs to the space Fw
p(·),q(Rn) and there

exists a constant c > 0 with∥∥f |Fw
p(·),q(Rn)

∥∥ ≤ c∥∥∥λ| fwp(·),q∥∥∥ .

The constant c > 0 is universal for all λ and aνm.
(b) For every f ∈ Fw

p(·),q(Rn), there exists λ ∈ fwp(·),q and [K,L]-atoms

centered at Qνm such that there exists a representation (34), converg-
ing in S ′(Rn), with∥∥∥λ| fwp(·),q∥∥∥ ≤ c∥∥f |Fw

p(·),q(Rn)
∥∥ ,

where the constant c > 0 is universal for all f ∈ Fw
p(·),q(Rn).

4. Wavelet decomposition

In this section we describe the function spaces Bw
p(·),q(Rn) and Fw

p(·),q(Rn) by a
decomposition with wavelets. The proof relies on [21] and [24]. The ingredients are
the local means characterization (Proposition 2.8) and the just proved decomposi-
tions by molecules and atoms.

4.1. Preliminaries. First, we recall some results from wavelet theory.

Proposition 4.1: (i) There are a real scaling function ψF ∈ S(R) and a real
associated wavelet ψM ∈ S(R) such that their Fourier transforms have

compact supports, ψ̂F (0) = (2π)−1/2 and

supp ψ̂M ⊆
[
−8

3
π,−2

3
π

]
∪
[

2

3
π,

8

3
π

]
.

(ii) For any k ∈ N there exist a real compactly supported scaling function ψF ∈
Ck(R) and a real compactly supported associated wavelet ψM ∈ Ck(R) such

that ψ̂F (0) = (2π)−1/2 and∫
R

xlψM (x)dx = 0 for all l ∈ {0, . . . , k − 1} .

In both cases we have, that {ψνm : ν ∈ N0,m ∈ Z} is an orthonormal basis in
L2(R), where

ψνm(t) :=

{
ψF (t−m), if ν = 0,m ∈ Z
2
ν−1

2 ψM (2ν−1t−m), if ν ∈ N,m ∈ Z

and the functions ψM , ψF are according to (i) or (ii).

This proposition is taken over from [39, Theorem 1.61]. The wavelets in the first
part are called Meyer wavelets. They do not have a compact support but they
are fast decaying functions (ψF , ψM ∈ S(R)) and ψM has infinitely many moment
conditions. The wavelets from the second part are called Daubechies wavelets.
Here the functions ψM , ψF do have compact support, but they only have limited
smoothness. Both types of wavelets are well described in [41, Chapters 3 and 4].
This orthonormal basis can be generalized to the n-dimensional case by a tensor
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product procedure. We take over the notation from [39, Section 4.2.1] with l = 0.
Let ψM , ψF be the Meyer or Daubechies wavelets described above. Now, we define

G0 = {F,M}n and Gν = {F,M}n∗ if ν ≥ 1 ,

where the * indicates, that at least one Gi of G = (G1, . . . , Gn) ∈ {F,M}n∗ must
be an M . It is clear from the definition, that the cardinal number of {F,M}n∗ is
2n − 1. Let for x ∈ Rn

Ψν
Gm(x) = 2ν

n
2

n∏
r=1

ψGr (2
νxr −mr) , (35)

where G ∈ Gν , m ∈ Zn and ν ∈ N0. Then {Ψν
Gm : ν ∈ N0, G ∈ Gν ,m ∈ Zn} is an

orthonormal basis in L2(Rn). Finally, we have to adjust the sequence spaces bwp(·),q
and fwp(·),q to our situation.

Definition 4.2: Let w ∈ Wα
α1,α2

, 0 < q ≤ ∞ and p(·) ∈ P(Rn) with 0 < p− ≤
p+ ≤ ∞.

(i) Then

b̃wp(·),q :=
{
λ = {λνGm}ν∈N0,G∈Gν ,m∈Zn⊂ C :

∥∥∥λ| b̃wp(·),q∥∥∥ <∞} where

∥∥∥λ| b̃wp(·),q∥∥∥ =

( ∞∑
ν=0

∑
G∈Gν

∥∥∥∥∥ ∑
m∈Zn

wν(2−νm)|λνGm|χνm(x)

∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥
q)1/q

.

(ii) For p+ <∞ we define

f̃wp(·),q :=
{
λ = {λνGm}ν∈N0,G∈Gν ,m∈Zn⊂ C :

∥∥∥λ| f̃wp(·),q∥∥∥ <∞} where

∥∥∥λ| f̃wp(·),q∥∥∥ =

∥∥∥∥∥∥
( ∞∑
ν=0

∑
G∈Gν

∑
m∈Zn

wqν(2−νm)|λνGm|qχνm(x)

)1/q
∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥ .

To get the wavelet characterization we use local means with kernels which only
have limited smoothness and we use the molecular decomposition described in the
previous section. This idea goes back to [38], [24] and [17]. First, we recall the local
means with kernel k

k(t, f)(x) = t−n
∫
Rn

k

(
y − x
t

)
f(y)dy .

With t = 2−j , x = 2−j l where j ∈ N0 and l ∈ Zn, one gets

k(2−j , f)(2−j l) = 2jn
∫
Rn

k(2jy − l)f(y)dy

=

∫
Rn

kjl(y)f(y)dy (36)

= kjl(f) .

We have that (36) is a dual pairing if kjl are the Meyer wavelets, because they are
S(Rn) functions, and for Daubechies wavelets because of their compact support.
Now the usual properties on k get shifted to the kernels kjl.
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Definition 4.3: Let A,B ∈ N0 and c > 0. Further, let kjl(x) ∈ CA(Rn) with
j ∈ N0 and l ∈ Zn be functions in Rn with

|Dβkjl(x)| ≤ c2j|β|+jn(1 + 2j |x− 2−j l|)−C , |β| ≤ A ,

for all x ∈ Rn, j ∈ N0, l ∈ Zn, and∫
Rn

xβkjl(x)dx = 0 , |β| < B ,

for j ≥ 1 and l ∈ Zn.

From the definition it is clear that {2−jnkjl}j∈N0,l∈Zn are [A,B,C] molecules.

4.2. Wavelet isomorphism. We want to use the molecular decomposition ob-
tained in the last section. We assume that {µνm}ν∈N0,m∈Zn are [K,L,M ] molecules
and that the {kjl}j∈N0,l∈Zn are the above given functions from Definition 4.3.
Before coming to the theorem we recall two fundamental lemmas. First, we have
to give estimates of the quantity | 〈µνm, kjl〉 |.
Lemma 4.4 (Appendix B in [16].): (i) Let ν ≥ j, M > A + n and L ≥ A,

then

| 〈µνm, kjl〉 | ≤ c2−(ν−j)(A+n)(1 + 2j |2−νm− 2−j l|)−min(M−A−n,C) . (37)

(ii) Let ν ≤ j, C > K + n and B ≥ K, then

| 〈µνm, kjl〉 | ≤ c2−(j−ν)K(1 + 2ν |2−νm− 2−j l|)−min(M,C−K−n) . (38)

The second lemma is just a reformulation of Lemma 3.7. For the proof, just take
Lemma 3.7 and remember that x ∈ Qjl, which means 0 ≤ |x− 2−j l| ≤ 2−j .

Lemma 4.5: Let 0 < t ≤ 1 and R > n
t . For any j, ν ∈ N0, any l ∈ Zn and any

sequence {hνm}ν∈N0,m∈Zn of complex numbers, we have with x ∈ Qjl∑
m∈Zn

|hνm|(1 + 2j |2−j l − 2−νm|)−R ≤ cmax(2(ν−j)nt , 1)Mt

( ∑
m∈Zn

|hνmχνm|

)
(x) .

Now, we are ready to state the first theorem, which gives us one direction of the
wavelet decomposition. We define k(f) = {kjl(f) : j ∈ N0, l ∈ Zn}.
Theorem 4.6: Let w ∈ Wα

α1,α2
, 0 < q ≤ ∞ and p(·) ∈ P log(Rn). Further, let

{kjl}j∈N0,l∈Zn be as in Definition 4.3 with C > 0 large enough and A,B ∈ N0.

(i) If

A > σp − α1 and B > α2 ,

then for some c > 0 and all f ∈ Bw
p(·),q(Rn)∥∥∥k(f)| bwp(·),q

∥∥∥ ≤ c∥∥f |Bw
p(·),q(Rn)

∥∥ .

(ii) Let p+ <∞. If

A > σp,q − α1 and B > α2 ,

then for some c > 0 and all f ∈ Fw
p(·),q(Rn)∥∥∥k(f)| fwp(·),q

∥∥∥ ≤ c∥∥f |Fw
p(·),q(Rn)

∥∥ .
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Proof. This time we only prove the F-part of the Theorem. The Besov spaces
part follows the same line of arguments. We apply the decomposition by atoms to
f ∈ Fw

p(·),q(Rn) and get

f =

∞∑
ν=0

∑
m∈Zn

λνmaνm , (39)

where {aνm}ν∈N0,m∈Zn are [K,L]-atoms with K = B > α2 and L = A > σp,q −α1.
By Corollary 3.15 it is sufficient to find a c > 0 with∥∥∥k(f)| fwp(·),q

∥∥∥ ≤ c∥∥∥λ| fwp(·),q∥∥∥ . (40)

As usual, we decompose the sum in (39) in

f =

j∑
ν=0

. . .+

∞∑
ν=j+1

. . . = fj + f j

and derive

kjl(f) =

∫
Rn

kjl(y)fj(y)dy +

∫
Rn

kjl(y)f j(y)dy .

We use Lemma 4.4 where µνm = aνm; that means that M =∞ in the formulation
of the lemma. For ν ≤ j we obtain by Lemma 4.4 with C > K +n and Lemma 4.5
with appropriately chosen t < min(1, p−, q)

wj(x)|kjl(fj)| ≤ c
j∑

ν=0

∑
m∈Zn

|λνm 〈 kjl, aνm〉 |wj(x)

≤ c
j∑

ν=0

2−(j−ν)(K−α2)
∑
m∈Zn

|λνm|wν(2−νm)(1 + 2j |2−νm− 2−j l|)−C+K+n+α

≤ c′
j∑

ν=0

2−(j−ν)(K−α2)Mt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(x)

for x ∈ Qjl and C−K−n−α > n/t. For the norm with δ = K−α2 > 0 we obtain

∥∥∥kjl(fj)| fwp(·),q∥∥∥ =

∥∥∥∥∥∥∥
 ∞∑
j=0

∑
l∈Zn
|kjl(fj)wj(·)χjl(·)|q

1/q
∣∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥∥
 ∞∑
j=0

∑
l∈Zn

[
j∑

ν=0

2−(j−ν)δMt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(·)

]q
χjl(·)

1/q
∣∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥∥ .



20 HENNING KEMPKA

Now apply Lemma 3.8 and use the vector-valued maximal inequality to estimate
further

≤ c′
∥∥∥∥∥∥
( ∞∑
ν=0

[
Mt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(·)

]q)1/q
∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥
≤ c′′

∥∥∥∥∥∥
( ∞∑
ν=0

∑
m∈Zn

|λνm|qwqν(2−νm)χνm(·)

)1/q
∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥ = c′′
∥∥∥λ| fwp(·),q∥∥∥ .

For ν > j we use Lemma 4.4 again and obtain

|wj(x)kjl(f
j)|

≤ c
∞∑

ν=j+1

2−(ν−j)(A+n+α1)
∑
m∈Zn

|λνm|wν(2−νm)(1 + 2j |2−νm− 2−j l|)−C+α .

By Lemma 4.5 with suitably chosen t < min(1, p−, q) and x ∈ Qjl this can be
further estimated to

≤ c′
∞∑

ν=j+1

2−(ν−j)(A+n+α1−n/t)Mt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(x) .

We set δ = A− σp,q + α1 = δ > 0 and get in applying the norm and Lemma 3.8

∥∥∥kjl(f j)∣∣ fwp(·),q∥∥∥ =

∥∥∥∥∥∥∥
 ∞∑
j=0

∑
l∈Zn
|kjl(f j)wj(·)χjl(·)|q

1/q
∣∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥∥
 ∞∑
j=0

∑
l∈Zn

 ∞∑
ν=j+1

2−(ν−j)δMt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(·)

q χjl(·)
1/q

∣∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥∥
≤ c′

∥∥∥∥∥∥∥
 ∞∑
ν=j+1

(
Mt

( ∑
m∈Zn

|λνm|wν(2−νm)χνm

)
(·)

)q1/q
∣∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥∥
≤ c′′

∥∥∥∥∥∥
[ ∞∑
ν=0

∑
m∈Zn

|λνm|qwqν(2−νm)χνm(·)

]1/q
∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥ = c′′
∥∥∥λ| fwp(·),q∥∥∥ .

Finally, we obtain (40) and Corollary 3.15 ensures∥∥∥kjl(f)| fwp(·),q
∥∥∥ ≤ c∥∥f |Fw

p(·),q(Rn)
∥∥ .

�

Remark 4.7: Deeper inspection shows that

C > max(A,B) + 2α+ 2n+ σp,q

is a sufficient condition (C > max(A,B) + 2α+ 2n+ σp in the B-case).

We come to the wavelet decomposition theorem. Let us assume that

ψM ∈ Ck(Rn) and ψF ∈ Ck(Rn) (41)
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are the real compactly supported Daubechies wavelets from Proposition 4.1, with∫
Rn

xβψM (x)dx = 0 for |β| < k. (42)

By the tensor product procedure (35) we have that {Ψν
G,m : ν ∈ N0, G ∈ Gν and m ∈

Zn} is an orthonormal basis in L2(Rn).
Before coming to the theorem we clarify the convergence of

∞∑
ν=0

∑
G∈Gν

∑
m∈Zn

λνGm2−ν
n
2 Ψν

Gm with λ ∈ bwp(·),q . (43)

We say that a series converges unconditionally, if any rearrangement of the series
also converges to the same outcome. We know that {2−ν n2 Ψν

Gm}ν∈N0,G∈Gν ,m∈Zn

are [k, k,M ]-molecules for every M > 0 and therefore we have the unconditional
convergence of (43) in S ′(Rn) from Lemma 1 in [21] with k > σp − α1.
Moreover, the following proof shows the unconditional convergence of (43) in
Bw
p(·),q(Rn) for 0 < q < ∞ and p(·) ∈ P(Rn) with p+ < ∞. If 0 < p+ < ∞ and

0 < q ≤ ∞, then we have unconditional convergence in B%
p(·),q(Rn), where {%j}j∈N0

is an admissible weight sequence with supx∈Rn
%j(x)
wj(x) → 0.

In the case of no restrictions on p(·), q we also have unconditional convergence in

B%
p(·),q(Rn) where {%j}j∈N0 is an admissible weight sequence with supx∈Rn

%j(x)
wj(x) → 0

and lim|x|→∞ supj∈N0

%j(x)
wj(x) = 0. For the Triebel-Lizorkin spaces we have the same

convergence assertions; the last case is missing due to the restriction p+ <∞.

Theorem 4.8: Let w ∈ Wα
α1,α2

, 0 < q ≤ ∞ and p(·) ∈ P log(Rn).

(i) Let f ∈ S ′(Rn) and

k > max(σp − α1, α2) (44)

in (41) and (42). Then f ∈ Bw
p(·),q(Rn) if, and only if, it can be represented

as

f =

∞∑
ν=0

∑
G∈Gν

∑
m∈Zn

λνGm2−ν
n
2 Ψν

Gm with λ ∈ b̃wp(·),q , (45)

with unconditional convergence in S ′(Rn) and in any space B%
p(·),q(Rn) with

%ν(x)
wν(x) → 0 for |x| → ∞ and all ν and also supx∈Rn

%ν(x)
wν(x) → 0 for ν →∞.

The representation (45) is unique, we have

λνGm = λνGm(f) = 2ν
n
2 〈 f,Ψν

Gm〉 (46)

and

I : f 7→
{

2ν
n
2 〈 f,Ψν

Gm〉
}

(47)

is an isomorphic map from Bw
p(·),q(Rn) onto b̃wp(·),q. Moreover, if in addition

max(p+, q) <∞, then {Ψν
Gm}ν∈N0,G∈Gν ,m∈Zn is an unconditional basis in

Bw
p(·),q(Rn).

(ii) Let p+ <∞, f ∈ S ′(Rn) and

k > max(σp,q − α1, α2)
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in (41) and (42). Then f ∈ Fw
p(·),q(Rn) if, and only if, it can be repre-

sented as (45) with λ ∈ f̃wp(·),q with unconditional convergence in S ′(Rn)

and in any space F%
p(·),q(Rn) with supx∈Rn

%j(x)
wj(x) → 0 for j → ∞. The

representation (45) is unique, we have (46) and (47) is an isomorphic

map from Fw
p(·),q(Rn) onto f̃wp(·),q. Moreover, if in addition q < ∞, then

{Ψν
Gm}ν∈N0,G∈Gν ,m∈Zn is an unconditional basis in Fw

p(·),q(Rn).

Proof. First Step: Let f ∈ S ′(Rn) be given by (45). Then by the support properties

we have that {2−ν n2 Ψν
Gm}ν∈N0,G∈Gν ,m∈Zn are [k, k,M ] molecules for every M > 0.

From Theorem 3.13 and (44) we obtain f ∈ Bw
p(·),q(Rn) and∥∥f |Bw

p(·),q(Rn)
∥∥ ≤ c∥∥∥λ| b̃wp(·),q∥∥∥ (48)

with c > 0 independent of λ ∈ b̃wp(·),q.
Second Step: Let f ∈ Bw

p(·),q(Rn) then we can apply Theorem 4.6 with kνm =

2ν
n
2 Ψν

Gm. Since all conditions on kνm are fulfilled by (44) and the compact support
of the wavelets we get ∥∥∥λ(f)| b̃wp(·),q

∥∥∥ ≤ c∥∥f |Bw
p(·),q(Rn)

∥∥ . (49)

Third Step: For max(p+, q) < ∞ we get the unconditional convergence of (45) in

Bw
p(·),q(Rn) by (48) and the properties of the sequence spaces b̃wp(·),q.

Let p+ <∞ and q =∞, then we get the convergence in B%
p(·),∞(Rn) for all {%j}j∈N0

by using (48) again and supx∈Rn
%j(x)
wj(x) → 0 for j →∞.

To obtain the convergence for p+ = ∞ we have to compensate the behavior at

infinity by introducing a weaker weight sequence % with %ν(x)
wν(x) → 0 for |x| → ∞

for all ν ∈ N0 and supx∈Rn
%ν(x)
wν(x) → 0 for ν → ∞. Then we get the unconditional

convergence in B%
p(·),q(Rn) by using (48) again.

A simple example of such a weaker weight sequence is given for every ε > 0 by

%ν(x) = 2−νε(1 + 2ν |x|)−εwν(x) (50)

which belongs to Wα+ε
α1−2ε,α2+ε.

Fourth Step: Now, we want to prove the uniqueness of the coefficients. We define

g =

∞∑
ν=0

∑
G∈Gν

∑
m∈Zn

λνGm2−ν
n
2 Ψν

Gm (51)

where λνGm is given by (46). We want to show that g = f , or

〈 g, ϕ〉 = 〈 f, ϕ〉 for every ϕ ∈ S(Rn).

From the first step we have g ∈ Bw
p(·),q(Rn). The third step tells us that (51)

converges at least in B%
p(·),q(Rn) for all % given by (50) for some ε > 0. Since

k > σp − α1 we can find ε > 0 such that Ψν′

G′m′ still belongs to the dual space
(B%
p(·),q(Rn))′ (that means k > σp − α1 + 2ε).

Because of the convergence in B%
p(·),q(Rn) ,the dual pairing and the orthonormality

of {Ψν
Gm}ν∈N0,G∈Gν ,m∈Zn in L2(Rn) we get〈

g,Ψν′

G′m′

〉
=
〈
f,Ψν′

G′m′

〉
. (52)
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This holds also for finite linear combinations of Ψν′

G′m′ . For a function ϕ ∈ S(Rn)
we have the unique L2(Rn) representation

ϕ =
∑
ν,G,m

2−ν
n
2 〈ϕ,Ψν

Gm〉Ψν
Gm .

Since S(Rn) is a subspace in every Besov space considered this representation con-
verges in (B%

p(·),q(Rn))′ and by (52) we get

〈 g, ϕ〉 = 〈 f, ϕ〉 .

Final Step: Hence, f ∈ S ′(Rn) belongs to Bw
p(·),q(Rn) if, and only if, it can be

represented by (45). This representation is unique with coefficients (46). By (48),
(51), with g = f , and (49) it follows∥∥∥λ(f)| b̃wp(·),q

∥∥∥ ∼ ∥∥f |Bw
p(·),q(Rn)

∥∥ .

Hence, I in (47) is an isomorphic map from Bw
p(·),q(Rn) into b̃wp(·),q. It remains to

prove that this map is onto. Let λ ∈ b̃wp(·),q. Then by the above considerations it

follows that

f =
∑
ν,G,m

λνGm2−ν
n
2 Ψν

Gm ∈ Bw
p(·),q(Rn) .

By the same reasoning as in the fourth step this representation is unique and
λνGm = λνGm(f). This proves that I is a map onto.
The proof for the Triebel-Lizorkin spaces follows the same line of arguments as
the proof for the Besov spaces. We use kνm = 2ν

n
2 Ψν

Gm as kernels of local means
with A = B = k and C > 0 arbitrary and that {2−ν n2 Ψν

Gm}ν∈N0,G∈Gν ,m∈Zn are
[k, k]-atoms. In the proof we replace the used Besov space theorems with the corre-
sponding F-parts in Theorem 3.13 and Theorem 4.6. Also the part on convergence
gets easier, because p(·) is by definition smaller than infinity. �

Now, we present a wavelet decomposition theorem with the help of Meyer wavelets,
described in Proposition 4.1. We have ψM , ψF ∈ S(Rn) and we have infinitely many
moment conditions on ψM . We lose the compact support property for the wavelets
and we use the molecular decomposition. The proof is the same as in Theorem
4.8. We use again our wavelets as molecules and also as kernels from Definition 4.3
where the technicalities turn out to be easier because A,B,C are infinite.

Theorem 4.9: Let {Ψν
Gm}ν∈N0,G∈Gν ,m∈Zn be the Meyer wavelets according to Propo-

sition 4.1. Further, let w ∈ Wα
α1,α2

, 0 < q ≤ ∞, p(·) ∈ P log(Rn) and let
f ∈ S ′(Rn).

(i) We have f ∈ Bw
p(·),q(Rn) if, and only if, it can be represented as

f =

∞∑
ν=0

∑
G∈Gν

∑
m∈Zn

λνGm2−ν
n
2 Ψν

Gm with λ ∈ b̃wp(·),q , (53)

with unconditional convergence in S ′(Rn) and in any space B%
p(·),q(Rn) with

%ν(x)
wν(x) → 0 for |x| → ∞ and all ν and also supx∈Rn

%ν(x)
wν(x) → 0 for ν →∞.

The representation (53) is unique, we have

λνGm = λνGm(f) = 2ν
n
2 〈 f,Ψν

Gm〉 (54)
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and

I : f 7→
{

2ν
n
2 〈 f,Ψν

Gm〉
}

(55)

is an isomorphic map from Bw
p(·),q(Rn) onto b̃wp(·),q. Moreover, if in addition

max(p+, q) <∞, then {Ψν
Gm}ν∈N0,G∈Gν ,m∈Zn is an unconditional basis in

Bw
p(·),q(Rn).

(ii) Let p+ < ∞ then f ∈ Fw
p(·),q(Rn) if, and only if, it can be represented

as (53) with λ ∈ f̃wp(·),q with unconditional convergence in S ′(Rn) and in

any space F%
p(·),q(Rn) with supx∈Rn

%j(x)
wj(x) → 0 for j → ∞. The represen-

tation (53) is unique, we have (54) and (55) is an isomorphic map from

Fw
p(·),q(Rn) onto f̃wp(·),q. Moreover, if in addition q <∞, then {Ψν

Gm}ν∈N0,G∈Gν ,m∈Zn

is an unconditional basis in Fw
p(·),q(Rn).

Remark 4.10: The wavelet characterization of Fw
p(·),q(Rn) is not restricted to

the two wavelet systems presented in Proposition 4.1. The proof of Theorem
4.8 also applies to all wavelet systems {Ψν

Gm}ν∈N0,G∈Gν ,m∈Zn which satisfy that
{2−ν n2 Ψν

Gm}ν∈N0,G∈Gν ,m∈Zn are [K,K,M ] molecules with

K > max(σp − α1, α2) and M > K + σp + 2n+ 2α ,

in the B-case and with σp,q replacing σp in the F-case.
The proofs can easily be extended to bi-orthogonal wavelet bases (see [24] for de-
tails).

5. The case of Fw
p(·),q(·)(Rn)

In this section we present the decomposition of functions in Fw
p(·),q(·)(Rn) by

atoms, molecules and wavelets. The proofs above can be modified to this situation.
First, we define the spaces under consideration.

Definition 5.1: Let w ∈ Wα
α1,α2

, {ϕj}j∈N0
be a resolution of unity. Further, let

p(·), q(·) ∈ P(Rn) with 0 < p− ≤ p+ < ∞ and 0 < q− ≤ q+ ≤ ∞. The space
Fw
p(·),q(·)(Rn) is defined by

Fw
p(·),q(·)(Rn) =

{
f ∈ S′ :

∥∥f |Fw
p(·),q(·)(Rn)

∥∥
ϕ
<∞

}
, where

∥∥f |Fw
p(·),q(·)(Rn)

∥∥
ϕ

=

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣∣(ϕj f̂)∨(x)wj(x)
∣∣∣q(x)

1/q(x)
∣∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥∥ .

This definition was given in [22] where also a characterization by local means
was proved. This local means characterization shows that if p(·), q(·) ∈ P log(Rn)
with p+, q+ < ∞ we have that the definition of the spaces is independent of the
start function ϕ0 of the resolution of unity.
Remark that due to Lemma 2.6 this definition is a generalization of the spaces
F s(·)p(·),q(·)(Rn) from [12].
We also have to define the modified sequence spaces.

Definition 5.2: Let w ∈ Wα
α1,α2

and p(·), q(·) ∈ P(Rn) with 0 < p− ≤ p+ < ∞
and 0 < q− ≤ q+ ≤ ∞.
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(i) We define

fwp(·),q(·) :=
{
λ = {λνm}ν∈N0,m∈Zn ⊂ C :

∥∥∥λ| fwp(·),q(·)∥∥∥ <∞} where

∥∥∥λ| fwp(·),q(·)∥∥∥ =

∥∥∥∥∥∥
( ∞∑
ν=0

∑
m∈Zn

|wν(2−νm)λνm|q(x)χνm(x)

)1/q(x)
∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥ .

(ii) We define

f̃wp(·),q(·) :=
{
λ = {λνGm}ν∈N0,G∈Gν ,m∈Zn ⊂ C :

∥∥∥λ| f̃wp(·),q(·)∥∥∥ <∞} where

∥∥∥λ| f̃wp(·),q(·)∥∥∥ =

∥∥∥∥∥∥
( ∞∑
ν=0

∑
G∈Gν

∑
m∈Zn

|wν(2−νm)λνGm|q(x)χνm(x)

)1/q(x)
∣∣∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥∥ .

Since the maximal operator is not bounded on Lp(·)(`q(·)) (see [12, Section 5])
if q(·) is not constant, we have to work with another tool. We use a convolution
inequality from [12]. Therefore we introduce the functions ην,R(x) = (1 + 2ν |x|)−R
for ν ∈ N0 and R > 0.

Lemma 5.3 (Theorem 3.2 in [12]): Let p(·), q(·) ∈ C log(Rn) with 1 < p− ≤ p+ <∞
and 1 < q− ≤ q+ <∞. Then the inequality∥∥∥∥ην,R ∗ fν | `q(·)∥∥∣∣Lp(·)(Rn)

∥∥ ≤ c∥∥fν |Lp(·)(`q(·))∥∥
holds for every sequence {fν}ν∈N0

of Lloc1 (Rn) functions and constant R > n.

Further we need a generalized version of Lemma 3.8 which is proved in [22].

Lemma 5.4 (Lemma 4.2 in [22]): Let p(·), q(·) ∈ P(Rn) with 0 < q− ≤ q+ ≤ ∞
and 0 < p− ≤ p+ ≤ ∞. For any sequence {gj}j∈N0

of nonnegative measurable
functions on Rn and δ > 0 let

Gj(x) =

∞∑
k=0

2−|k−j|δgk(x) for all x ∈ Rn and j ∈ N0.

Then with constant c = c(p, q, δ) we have∥∥{Gj}j∈N0
|Lp(·)(`q(·))

∥∥ ≤ c∥∥{gj}j∈N0
|Lp(·)(`q(·))

∥∥ .

Since the maximal operator is of no use in the case when q is a variable function,
we have to give a modified version of the heavily used Lemma 3.7, which is not
hard to prove.

Lemma 5.5: Let 0 < t ≤ 1, j, ν ∈ N0 and {hνm}ν∈N0,m∈Zn be positive real numbers
then we have for R > 0 and x ∈ Rn, that∑

m∈Zn
hνm(1 + 2j |x− 2−νm|)−R

≤ cmax(1, 2(ν−j)R)

([
ην,Rt ∗

( ∑
m∈Zn

htνmχνm(·)

)]
(x)

)1/t

.

It is now very easy to follow the proofs on the previous pages and replace Lemma
3.8 by Lemma 5.4, Lemma 3.7 by Lemma 5.5 and instead of the boundedness of
the maximal operator we use Lemma 5.3. Furthermore, we use [22, Corollary 4.7]
as the local means characterization and we obtain the decompositions by atoms,
molecules and wavelets for the Triebel-Lizorkin spaces with variable p(·) and q(·).
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Corollary 5.6: Let {wj}j∈N0
∈ Wα

α1,α2
and let p(·), q(·) ∈ P log(Rn) with 0 < p− ≤

p+ <∞ and 0 < q− ≤ q+ <∞. Furthermore, let K,L ∈ N0 with

K > α2 and L > σp,q − α1 .

(i) If λ ∈ fwp(·),q(·) and {aνm}ν∈N0,m∈Zn are [K,L]-atoms centered at Qνm,

then f represented as

f =

∞∑
ν=0

∑
m∈Zn

λνmaνm ,convergence in S ′(Rn), (56)

belongs to the space Fw
p(·),q(·)(Rn) and there exists a constant c > 0 with∥∥f |Fw

p(·),q(·)(Rn)
∥∥ ≤ c∥∥∥λ| fwp(·),q(·)∥∥∥ .

The constant c > 0 is universal for all λ and aνm.
(ii) For every f ∈ Fw

p(·),q(·)(Rn), there exists λ ∈ fwp(·),q(·) and [K,L]-atoms

centered at Qνm such that there exists a representation (58) converging in
S ′(Rn), with ∥∥∥λ| fwp(·),q(·)∥∥∥ ≤ c∥∥f |Fw

p(·),q(·)(Rn)
∥∥ ,

where the constant c > 0 is universal for all f ∈ Fw
p(·),q(·)(Rn).

Corollary 5.7: Let w ∈ Wα
α1,α2

and let p(·), q(·) ∈ P log(Rn) with 0 < p− ≤ p+ <

∞ and 0 < q− ≤ q+ < ∞. Let f ∈ S ′(Rn) and {Ψν
Gm}ν∈N0,G∈Gν ,m∈Zn be the

Daubechies wavelets with

k > max(σp,q − α1, α2)

in (41) and (42). Then f ∈ Fw
p(·),q(·)(Rn) if, and only if, it can be represented as

f =

∞∑
ν=0

∑
G∈Gν

∑
m∈Zn

λνGm2−ν
n
2 Ψν

Gm with λ ∈ f̃wp(·),q(·) , (57)

with unconditional convergence in S ′(Rn) and in Fw
p(·),q(·)(Rn). The representation

(57) is unique, we have

λνGm = λνGm(f) = 2ν
n
2 〈 f,Ψν

Gm〉

and

I : f 7→
{

2ν
n
2 〈 f,Ψν

Gm〉
}

is an isomorphic map from Fw
p(·),q(·)(Rn) onto f̃wp(·),q(·).

Here the part on convergence gets easier since p+, q+ <∞. The first is natural
but the restriction q+ <∞ comes from the use of Lemma 5.5.
Above we stated explicitly the two most important results but it is also possible
to give analogues of Theorems 3.13 and 4.9 for the spaces Fw

p(·),q(·)(Rn) where the
proofs get modified as described.

Remark 5.8: Quiet recently in [2] Almeida and Hästö introduced Besov spaces
Bs(·)p(·),q(·)(Rn), where all three parameters are variable. To that end they presented
a convolution inequality as Lemma 5.3 for the mixed spaces `q(·)(Lp(·)(Rn)); see [2,
Lemma 4.7] for details.
It seems that it is possible to use this convolution inequality as a replacement for
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the boundedness of the maximal operator and to receive a wavelet characterization
for Bs(·)p(·),q(·)(Rn), also with the smoothness function 2js(·) replaced by an admissible
weight sequence w, as done above in the F-case. Since the definition of the spaces
Bs(·)p(·),q(·)(Rn) is very advanced and directly working with the modular, we leave that
for future research.

6. Results for spaces of variable smoothness

This section collects the important results from the previous sections and we
write it down for the special case of function spaces with variable smoothness. These
spaces were introduced in [12] and attracted a lot of attention. The definition of
the spaces Bs(·)p(·),q(Rn), F s(·)p(·),q(Rn) and F s(·)p(·),q(·)(Rn) and its corresponding sequence

spaces is easy: just use wj(x) = 2js(x) in the previous definitions. Then it is easy
to verify α1 = inf(s(x)) = s− and α2 = sup(s(x)) = s+. Using Lemma 2.6 we get

that s(·) ∈ L∞ ∩ C log
loc (Rn) defines an admissible weight sequence. Therefore, the

following corollaries are covered by the previous results.

Corollary 6.1: Let s : Rn → R be in L∞ ∩ C log
loc (Rn) and p(·) ∈ P log(Rn). The

symbol A stands for B or F and so does a symbolize b or f respectively.

(i) Let 0 < q ≤ ∞ (p+ <∞ in the F-case) and K,L ∈ N0 with

K > s+ and L > σp − s− (σp,q in the F-case).

(a) If λ ∈ as(·)p(·),q and {aνm}ν∈N0,m∈Zn are [K,L]-atoms centered at Qνm,

then

f =

∞∑
ν=0

∑
m∈Zn

λνmaνm ,convergence in S ′(Rn), (58)

belongs to the space As(·)p(·),q(Rn) and there exists a constant c > 0 with∥∥∥f |As(·)p(·),q(Rn)
∥∥∥ ≤ c∥∥∥λ| as(·)p(·),q

∥∥∥ .

The constant c > 0 is universal for all λ and aνm.

(b) For every f ∈ As(·)p(·),q(Rn), there exists λ ∈ a
s(·)
p(·),q and [K,L]-atoms

centered at Qνm such that there exists a representation (58), converg-
ing in S ′(Rn), with∥∥∥λ| as(·)p(·),q

∥∥∥ ≤ c∥∥∥f |As(·)p(·),q(Rn)
∥∥∥ ,

where the constant c > 0 is universal for all f ∈ As(·)p(·),q(Rn).

(ii) Let q(·) ∈ P log(Rn) with q+ < ∞. Further, let p+ < ∞ and K,L ∈ N0

with

K > s+ and L > σp,q − s− .

(a) If λ ∈ fs(·)p(·),q(·) and {aνm}ν∈N0,m∈Zn are [K,L]-atoms centered at Qνm,

then f represented by (58) belongs to the space F s(·)p(·),q(·)(Rn) and there
exists a constant c > 0 with∥∥∥f |F s(·)p(·),q(·)(Rn)

∥∥∥ ≤ c∥∥∥λ| fs(·)p(·),q(·)

∥∥∥ .

The constant c > 0 is universal for all λ and aνm.
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(b) For every f ∈ F s(·)p(·),q(·)(Rn), there exists λ ∈ f
s(·)
p(·),q(·) and [K,L]-

atoms centered at Qνm such that there exists a representation (58),
converging in S ′(Rn), with∥∥∥λ| fs(·)p(·),q(·)

∥∥∥ ≤ c∥∥∥f |F s(·)p(·),q(·)(Rn)
∥∥∥ ,

where the constant c > 0 is universal for all f ∈ F s(·)p(·),q(·)(Rn).

And finally we mention the decomposition with Daubechies wavelets for these
spaces.

Corollary 6.2: Let s(·) ∈ L∞ ∩ C log
loc (Rn) and p(·) ∈ P log(Rn). The symbol A

stands for B or F and so does a symbolize b or f respectively.

(i) Let 0 < q ≤ ∞ (p+ <∞ in the F-case) and

k > max(σp − s−, s+) (σp,q in the F-case)

in (41) and (42). Then f ∈ S ′(Rn) belongs to As(·)p(·),q(Rn) if, and only if,
it can be represented as

f =

∞∑
ν=0

∑
G∈Gν

∑
m∈Zn

λνGm2−ν
n
2 Ψν

Gm with λ ∈ ãs(·)p(·),q , (59)

with unconditional convergence in S ′(Rn) and in any space Aσ(·)
p(·),q(Rn),

where σ(x) < s(x) with inf(s(x) − σ(x)) > 0 and σ(x)/s(x) → 0 for
|x| → ∞. The representation (59) is unique, we have

λνGm = λνGm(f) = 2ν
n
2 〈 f,Ψν

Gm〉

and

I : f 7→
{

2ν
n
2 〈 f,Ψν

Gm〉
}

is an isomorphic map from As(·)p(·),q(Rn) onto ã
s(·)
p(·),q. Moreover, if in addition

max(p+, q) <∞, then {Ψν
Gm}ν∈N0,G∈Gν ,m∈Zn is an unconditional basis in

As(·)p(·),q(Rn).

(ii) Let q(·) ∈ P log(Rn) with 0 < p− ≤ p+ <∞, 0 < q− ≤ q+ <∞ and let

k > max(σp,q − s−, s+)

in (41) and (42). Then f ∈ S ′(Rn) belongs to F s(·)p(·),q(·)(Rn) if, and only

if, it can be represented as (59) with λ ∈ f̃
s(·)
p(·),q(·), with unconditional

convergence in S ′(Rn) and in F s(·)p(·),q(·)(Rn). The representation (59) is
unique, we have

λνGm = λνGm(f) = 2ν
n
2 〈 f,Ψν

Gm〉

and

I : f 7→
{

2ν
n
2 〈 f,Ψν

Gm〉
}

is an isomorphic map from F s(·)p(·),q(·)(Rn) onto f̃
s(·)
p(·),q(·).
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Appendix

In this appendix we present the proofs of Lemmas 3.7, 3.11.

Proof. Remember that 0 < t ≤ 1 and R > n/t. We set δ = R
n −

1
t > 0 and for each

k ∈ N we define

Ωk = {m ∈ Zn : 2k−1 < 2min(ν,j)|2−νm− x| ≤ 2k} (60)

and

Ω0 = {m ∈ Zn : 2min(ν,j)|2−νm− x| ≤ 1} .

First step: ν ≤ j If x ∈ Qjl, then∑
m∈Zn

|hνm|(1 + 2j |x− 2−νm|)−R ≤
∞∑
k=0

∑
m∈Ωk

|hνm|(1 + 2ν |x− 2−νm|)−R

≤ c
∞∑
k=0

∑
m∈Ωk

|hνm|2−δnk−
nk
t ≤ c′ sup

k∈N0

2−
kn
t

∑
m∈Ωk

|hνm|

≤ c′′
(

sup
k∈N0

2−kn
∑
m∈Ωk

|hνm|t
)1/t

= c′′

 sup
k∈N0

2n(ν−k)

∫
⋃
m∈Ωk

( ∑
m∈Ωk

|hνm|χνm(y)

)t
dy


1/t

. (61)

We set Qk =
⋃
{m:2min(ν,j)|2−νm−x|≤2k}Qνm and we have |Qk| ∼ 2(k−ν)n and⋃

m∈Ωk
Qνm = Qk \Qk−1. Then for all k ∈ N0 we obtain

(Mf)(x) = sup
x∈Q

1

|Q|

∫
Q

|f(y)|dy ≥ 1

|Qk|
|Qk \Qk−1|
|Qk \Qk−1|

∫
Qk

|f(y)|dy

≥ c 1

|Qk \Qk−1|

∫
Qk\Qk−1

|f(y)|dy

= c
1

|
⋃
m∈Ωk

Qνm|

∫
⋃
m∈Ωk

Qνm

|f(y)|dy .

Therefore, we get together with (61)

∑
m∈Zn

|hνm|(1 + 2j |x− 2−νm|)−R ≤ c

 sup
k∈N0

[
Mt

( ∑
m∈Ωk

|hνm|χνm

)
(x)

]t1/t

≤ cMt

( ∑
m∈Zn

|hνm|χνm

)
(x) .

Second step: j < ν We use the same decomposition of Rn as in (60) and use the

same δ > 0 as above. The only change is that |
⋃
m∈Ωk

Qνm| ∼ 2n(k−j) and this
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explains∑
m∈Zn

|hνm|(1 + 2j |x− 2−νm|)−R ≤ c2nt (ν−j)Mt

( ∑
m∈Zn

|hνm|χνm

)
(x) .

�

Proof. First, we use the embedding results. We choose t < min(p−, 1) appropriately
and get from Propositions 3.9 and 3.10 that

bwp(·),q ↪→ b%p(·)/t,q ↪→ b%p(·)/t,∞

and

fwp(·),q ↪→ f%p(·)/t,q ↪→ b%p(·)/t,∞ ,

where %j(x) = wj(x)2−j
t

p(x)
σt . We have that 2−j

t
p(x)

σt =: 2−js(x)σt is again a 2-
microlocal weight sequence with s(·) ∈ C log(Rn) and 0 ≤ s(x) < 1. Therefore, % is

also an admissible weight sequence and it is easy to show that % ∈ Wβ
α1−σt,α2

with
β ≥ 0 large enough. We have to prove that the limes

lim
r→∞

r∑
ν=0

∑
m∈Zn

λνmµνm(x) exists in S ′(Rn).

We can assume, that λ ∈ b%p(·)/t,∞, see the above embeddings. For ϕ ∈ S(Rn) we

get from the moment conditions (15) for fixed ν ∈ N0∫
Rn

∑
m∈Zn

λνmµνm(y)ϕ(y)dy

=

∫
Rn

∑
m∈Zn

λνmµνm(y)%ν(y)×

×

ϕ(y)−
∑
|β|<L

Dβϕ(2−νm)

β!
(y − 2−νm)β

 %−1
ν (y)

〈y〉κ

〈y〉κ
dy ,

(62)

where κ > 0 will be specified later on. We use Taylor expansion of ϕ up to the order
L and get with ξ on the line segment joining y and 2−νm. By using the properties
of the weight sequence and 〈y〉κ ≤ 〈y − 2−νm〉κ〈ξ〉κ we derive

|µνm(y)|

∣∣∣∣∣∣ϕ(y)−
∑
|γ|<L

Dγϕ(2−νm)

γ!
(y − 2−νm)γ

∣∣∣∣∣∣ %−1
ν (y)

〈y〉κ

〈y〉κ

≤ c′2−ν(L+α1−σt)(1 + 2ν |y − 2−νm|)L+κ−M 〈y〉β−κ sup
ξ∈Rn
〈ξ〉κ

∑
|γ|=L

|Dγϕ(ξ)|
γ!

,

where M > 0 and κ > 0 are at our disposal. Hence, we derive from (62)∣∣∣∣∣∣
∫
Rn

∑
m∈Zn

λνmµνm(y)ϕ(y)dy

∣∣∣∣∣∣
≤ c2−ν(L+α1−σt)‖ϕ‖κ,L

∫
Rn

∑
m∈Zn

|λνm|%ν(2−νm)(1 + 2ν |y − 2−νm|)L+β+κ−M 〈y〉β−κdy .
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We estimate now the integral and from the Hölder’s inequality for Lp(·)(Rn) (see
[23]) we get with p(·)/t > 1 and choosing κ large enough∫

Rn

∑
m∈Zn

|λνm|%ν(2−νm)(1 + 2ν |y − 2−νm|)L+β+κ−M 〈y〉β−κdy

≤ c′
∥∥∥∥∥ ∑
m∈Zn

|λνm|%ν(2−νm)(1 + 2ν |y − 2−νm|)L+β+κ−M

∣∣∣∣∣Lp(·)/t(Rn)

∥∥∥∥∥ .

Finally, we use Lemma 3.7 with M large enough and the boundedness of the max-
imal operator and obtain∣∣∣∣∣∣

∫
Rn

∑
m∈Zn

λνmµνm(y)ϕ(y)dy

∣∣∣∣∣∣
≤ c′′‖ϕ‖κ,L2−ν(L+α1−σt)

∥∥∥∥∥M
( ∑
m∈Zn

|λνm|%ν(2−νm)χνm(·)

)∣∣∣∣∣Lp(·)/t(Rn)

∥∥∥∥∥
≤ c′′′‖ϕ‖κ,L2−ν(L+α1−σt)

∥∥∥λ| b%p(·)/t,∞∥∥∥ .

Since L > σt − α1 > σp − α1 and λ ∈ b%p(·)/t,∞, the convergence of (24) in S ′(Rn)

follows. �
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