Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-3-Cohomology of group number 17 of order 108
General information on the group
- The group order factors as 22 · 33.
- It is non-abelian.
- It has 3-Rank 2.
- The centre of a Sylow 3-subgroup has rank 1.
- Its Sylow 3-subgroup has 4 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
The computation was based on 3 stability conditions for H*(E27; GF(3)).
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
1 − 2·t + 3·t2 − t3 + 2·t4 − 2·t5 + 2·t6 − 2·t7 + 2·t8 − t9 + 3·t10 − 2·t11 + t12 |
| ( − 1 + t)2 · (1 − t + t2) · (1 + t + t2) · (1 + t2)2 · (1 − t2 + t4) |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Ring generators
The cohomology ring has 16 minimal generators of maximal degree 12:
- a_3_2, a nilpotent element of degree 3
- a_3_1, a nilpotent element of degree 3
- a_3_0, a nilpotent element of degree 3
- a_4_3, a nilpotent element of degree 4
- b_4_2, an element of degree 4
- b_4_1, an element of degree 4
- b_4_0, an element of degree 4
- a_5_0, a nilpotent element of degree 5
- a_9_1, a nilpotent element of degree 9
- a_10_2, a nilpotent element of degree 10
- b_10_1, an element of degree 10
- a_10_0, a nilpotent element of degree 10
- a_11_5, a nilpotent element of degree 11
- a_11_4, a nilpotent element of degree 11
- a_11_1, a nilpotent element of degree 11
- c_12_4, a Duflot element of degree 12
Ring relations
There are 8 "obvious" relations:
a_3_02, a_3_12, a_3_22, a_5_02, a_9_12, a_11_12, a_11_42, a_11_52
Apart from that, there are 96 minimal relations of maximal degree 22:
- a_3_0·a_3_1
- a_3_0·a_3_2
- a_3_1·a_3_2
- a_4_3·a_3_0
- a_4_3·a_3_1
- a_4_3·a_3_2
- b_4_0·a_3_1
- b_4_1·a_3_0 + b_4_0·a_3_2
- b_4_1·a_3_1
- b_4_1·a_3_2 + b_4_0·a_3_2
- b_4_2·a_3_0 − b_4_0·a_3_2
- b_4_2·a_3_2 − b_4_2·a_3_1 − b_4_0·a_3_2
- a_4_32
- a_3_1·a_5_0
- a_3_2·a_5_0
- a_4_3·b_4_0 − a_3_0·a_5_0
- a_4_3·b_4_1
- a_4_3·b_4_2
- b_4_0·b_4_2 + b_4_0·b_4_1
- b_4_12 + b_4_0·b_4_1
- b_4_1·b_4_2 − b_4_0·b_4_1
- a_4_3·a_5_0
- b_4_1·a_5_0
- b_4_2·a_5_0
- a_3_0·a_9_1
- a_3_1·a_9_1
- a_3_2·a_9_1
- a_4_3·a_9_1
- a_10_0·a_3_0
- a_10_0·a_3_1
- a_10_0·a_3_2
- a_10_2·a_3_0
- a_10_2·a_3_1
- a_10_2·a_3_2
- b_4_1·a_9_1
- b_4_2·a_9_1
- b_10_1·a_3_0 − b_4_0·a_9_1
- b_10_1·a_3_1
- b_10_1·a_3_2
- a_4_3·a_10_0
- a_4_3·a_10_2
- a_3_0·a_11_5
- a_3_1·a_11_4 − a_3_1·a_11_1
- a_3_1·a_11_5 + a_3_1·a_11_1
- a_3_2·a_11_1 − a_3_1·a_11_1 − a_3_0·a_11_1
- a_3_2·a_11_4 − a_3_1·a_11_1
- a_3_2·a_11_5 + a_3_1·a_11_1
- a_5_0·a_9_1 + a_3_0·a_11_4
- a_4_3·b_10_1 − a_3_0·a_11_4
- b_4_0·a_10_0 − a_3_0·a_11_1
- b_4_0·a_10_2 − a_3_0·a_11_4
- b_4_1·a_10_0 + a_3_0·a_11_1
- b_4_1·a_10_2
- b_4_2·a_10_0 − a_3_1·a_11_1 − a_3_0·a_11_1
- b_4_2·a_10_2 − a_3_1·a_11_1
- b_4_1·b_10_1
- b_4_2·b_10_1
- a_4_3·a_11_1
- a_4_3·a_11_4
- a_4_3·a_11_5
- a_10_0·a_5_0
- a_10_2·a_5_0
- b_4_0·a_11_5
- b_4_1·a_11_1 + b_4_0·a_11_1
- b_4_1·a_11_4
- b_4_1·a_11_5
- b_4_2·a_11_4 − b_4_2·a_11_1 + b_4_0·a_11_1
- b_4_2·a_11_5 + b_4_2·a_11_1 − b_4_0·a_11_1
- b_10_1·a_5_0 − b_4_0·a_11_4
- a_5_0·a_11_1
- a_5_0·a_11_4
- a_5_0·a_11_5
- a_10_0·a_9_1
- a_10_2·a_9_1
- b_10_1·a_9_1 + b_4_0·c_12_4·a_3_2 − b_4_0·c_12_4·a_3_0
- a_10_02
- a_10_0·a_10_2
- a_10_22
- a_9_1·a_11_1
- a_9_1·a_11_4 − c_12_4·a_3_0·a_5_0
- a_9_1·a_11_5
- a_10_0·b_10_1
- a_10_2·b_10_1 − c_12_4·a_3_0·a_5_0
- b_10_12 − b_4_0·b_4_1·c_12_4 − b_4_02·c_12_4
- a_10_0·a_11_1
- a_10_0·a_11_4
- a_10_0·a_11_5
- a_10_2·a_11_1
- a_10_2·a_11_4
- a_10_2·a_11_5
- b_10_1·a_11_1
- b_10_1·a_11_4 − b_4_0·c_12_4·a_5_0
- b_10_1·a_11_5
- a_11_1·a_11_4
- a_11_1·a_11_5
- a_11_4·a_11_5
Data used for the Hilbert-Poincaré test
- We proved completion in degree 22 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_12_4, an element of degree 12
- b_4_2 + b_4_0, an element of degree 4
- A Duflot regular sequence is given by c_12_4.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 14].
Restriction maps
Expressing the generators as elements of H*(E27; GF(3))
- a_3_2 → b_2_0·a_1_1 − b_2_0·a_1_0
- a_3_1 → b_2_1·a_1_1 − b_2_0·a_1_0
- a_3_0 → b_2_3·a_1_1
- a_4_3 → a_1_1·a_3_5
- b_4_2 → b_2_0·b_2_1 − b_2_02 + a_1_0·a_3_4
- b_4_1 → b_2_0·b_2_2 − a_1_0·a_3_5
- b_4_0 → b_2_32
- a_5_0 → b_2_3·a_3_5 + b_2_0·b_2_1·a_1_1 − b_2_02·a_1_1
- a_9_1 → b_2_3·c_6_8·a_1_1 + b_2_0·c_6_8·a_1_1
- a_10_2 → c_6_8·a_1_1·a_3_5 + c_6_8·a_1_0·a_3_5
- b_10_1 → b_2_32·c_6_8 + b_2_0·b_2_1·c_6_8 + c_6_8·a_1_0·a_3_4
- a_10_0 → b_2_03·a_1_1·a_3_5 + b_2_03·a_1_0·a_3_5 − b_2_03·a_1_0·a_3_4 − c_6_8·a_1_0·a_3_5
− c_6_8·a_1_0·a_3_4
- a_11_5 → b_2_1·c_6_8·a_3_5 − b_2_0·c_6_8·a_3_5 − b_2_0·b_2_1·c_6_8·a_1_1 + b_2_02·c_6_8·a_1_1
- a_11_4 → b_2_3·c_6_8·a_3_5 + b_2_0·c_6_8·a_3_5
- a_11_1 → b_2_03·b_2_1·a_3_5 + b_2_04·a_3_5 − b_2_04·a_3_4 − b_2_0·c_6_8·a_3_5
− b_2_0·c_6_8·a_3_4
- c_12_4 → b_2_04·a_1_1·a_3_5 + b_2_04·a_1_0·a_3_5 − b_2_04·a_1_0·a_3_4 + b_2_02·b_2_2·c_6_8
− b_2_0·c_6_8·a_1_1·a_3_5 − b_2_0·c_6_8·a_1_0·a_3_5 − b_2_0·c_6_8·a_1_0·a_3_4 + c_6_82
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_3_2 → 0, an element of degree 3
- a_3_1 → 0, an element of degree 3
- a_3_0 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- b_4_2 → 0, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_5_0 → 0, an element of degree 5
- a_9_1 → 0, an element of degree 9
- a_10_2 → 0, an element of degree 10
- b_10_1 → 0, an element of degree 10
- a_10_0 → 0, an element of degree 10
- a_11_5 → 0, an element of degree 11
- a_11_4 → 0, an element of degree 11
- a_11_1 → 0, an element of degree 11
- c_12_4 → c_2_06, an element of degree 12
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_2 → − c_2_2·a_1_1, an element of degree 3
- a_3_1 → − c_2_2·a_1_1, an element of degree 3
- a_3_0 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- b_4_2 → − c_2_22, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_5_0 → 0, an element of degree 5
- a_9_1 → 0, an element of degree 9
- a_10_2 → c_2_1·c_2_23·a_1_0·a_1_1 − c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- b_10_1 → 0, an element of degree 10
- a_10_0 → c_2_1·c_2_23·a_1_0·a_1_1 − c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- a_11_5 → c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_4 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_1 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- c_12_4 → c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_2 → 0, an element of degree 3
- a_3_1 → 0, an element of degree 3
- a_3_0 → c_2_2·a_1_1, an element of degree 3
- a_4_3 → c_2_2·a_1_0·a_1_1, an element of degree 4
- b_4_2 → 0, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → c_2_22, an element of degree 4
- a_5_0 → − c_2_22·a_1_0 + c_2_1·c_2_2·a_1_1, an element of degree 5
- a_9_1 → c_2_1·c_2_23·a_1_1 − c_2_13·c_2_2·a_1_1, an element of degree 9
- a_10_2 → c_2_1·c_2_23·a_1_0·a_1_1 − c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- b_10_1 → c_2_1·c_2_24 − c_2_13·c_2_22, an element of degree 10
- a_10_0 → 0, an element of degree 10
- a_11_5 → 0, an element of degree 11
- a_11_4 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_1 → 0, an element of degree 11
- c_12_4 → c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_2 → 0, an element of degree 3
- a_3_1 → 0, an element of degree 3
- a_3_0 → c_2_2·a_1_1, an element of degree 3
- a_4_3 → − c_2_2·a_1_0·a_1_1, an element of degree 4
- b_4_2 → 0, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → c_2_22, an element of degree 4
- a_5_0 → c_2_22·a_1_0 − c_2_1·c_2_2·a_1_1, an element of degree 5
- a_9_1 → − c_2_1·c_2_23·a_1_1 + c_2_13·c_2_2·a_1_1, an element of degree 9
- a_10_2 → c_2_1·c_2_23·a_1_0·a_1_1 − c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- b_10_1 → − c_2_1·c_2_24 + c_2_13·c_2_22, an element of degree 10
- a_10_0 → 0, an element of degree 10
- a_11_5 → 0, an element of degree 11
- a_11_4 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_1 → 0, an element of degree 11
- c_12_4 → c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_2 → c_2_2·a_1_1, an element of degree 3
- a_3_1 → 0, an element of degree 3
- a_3_0 → c_2_2·a_1_1, an element of degree 3
- a_4_3 → 0, an element of degree 4
- b_4_2 → c_2_22, an element of degree 4
- b_4_1 → − c_2_22, an element of degree 4
- b_4_0 → c_2_22, an element of degree 4
- a_5_0 → 0, an element of degree 5
- a_9_1 → 0, an element of degree 9
- a_10_2 → 0, an element of degree 10
- b_10_1 → 0, an element of degree 10
- a_10_0 → − c_2_1·c_2_23·a_1_0·a_1_1 + c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- a_11_5 → 0, an element of degree 11
- a_11_4 → 0, an element of degree 11
- a_11_1 → − c_2_25·a_1_1 + c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- c_12_4 → − c_2_26 + c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
|