Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of group number 154751 of order 1152
General information on the group
- The group order factors as 27 · 32.
- It is non-abelian.
- It has 2-Rank 4.
- The centre of a Sylow 2-subgroup has rank 1.
- Its Sylow 2-subgroup has 5 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3, 4, 4 and 4, respectively.
Structure of the cohomology ring
The computation was based on 2 stability conditions for H*(Syl2(S8); GF(2)).
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
1 + 2·t2 + t3 + t5 |
| (1 + t) · ( − 1 + t)4 · (1 + t2) · (1 + t + t2) |
- The a-invariants are -∞,-∞,-∞,-6,-4. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Ring generators
The cohomology ring has 8 minimal generators of maximal degree 4:
- b_1_1, an element of degree 1
- b_1_0, an element of degree 1
- b_2_4, an element of degree 2
- b_2_3, an element of degree 2
- b_3_9, an element of degree 3
- b_3_1, an element of degree 3
- b_3_0, an element of degree 3
- c_4_15, a Duflot element of degree 4
Ring relations
There are 10 minimal relations of maximal degree 6:
- b_2_3·b_1_1
- b_1_0·b_3_9
- b_1_1·b_3_0 + b_1_0·b_3_1
- b_1_1·b_3_9
- b_2_3·b_3_1
- b_2_4·b_3_9
- b_3_02 + b_2_4·b_1_0·b_3_0 + b_2_3·b_2_42 + c_4_15·b_1_02
- b_3_0·b_3_1 + b_2_4·b_1_0·b_3_1 + c_4_15·b_1_0·b_1_1
- b_3_0·b_3_9
- b_3_1·b_3_9
Data used for the Hilbert-Poincaré test
- We proved completion in degree 9 using the Hilbert-Poincaré criterion.
- However, the last relation was already found in degree 6 and the last generator in degree 4.
- The following is a filter regular homogeneous system of parameters:
- c_4_15, an element of degree 4
- b_1_1·b_3_1 + b_1_14 + b_1_0·b_3_0 + b_1_02·b_1_12 + b_1_04 + b_2_4·b_1_0·b_1_1
+ b_2_4·b_1_02 + b_2_42 + b_2_32, an element of degree 4
- b_3_92 + b_3_12 + b_1_13·b_3_1 + b_1_0·b_1_12·b_3_1 + b_1_02·b_1_14
+ b_1_03·b_3_1 + b_1_03·b_3_0 + b_1_04·b_1_12 + b_2_4·b_1_1·b_3_1 + b_2_4·b_1_0·b_1_13 + b_2_4·b_1_04 + b_2_42·b_1_12 + b_2_42·b_1_0·b_1_1 + b_2_42·b_1_02 + b_2_3·b_1_0·b_3_0 + b_2_3·b_2_4·b_1_02 + b_2_3·b_2_42 + b_2_32·b_1_02 + c_4_15·b_1_12, an element of degree 6
- b_1_1 + b_1_0, an element of degree 1
- A Duflot regular sequence is given by c_4_15.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, 8, 11].
- We found that there exists some HSOP over a finite extension field, in degrees 4,4,1,3.
Restriction maps
Expressing the generators as elements of H*(Syl2(S8); GF(2))
- b_1_1 → b_1_1
- b_1_0 → b_1_2
- b_2_4 → b_2_6 + b_2_4
- b_2_3 → b_1_02 + b_2_5
- b_3_9 → b_2_5·b_1_0
- b_3_1 → b_3_11
- b_3_0 → b_3_12 + b_2_4·b_1_0
- c_4_15 → c_4_21
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- b_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- b_3_9 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_15 → c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_2_4 → c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_2_3 → c_1_22, an element of degree 2
- b_3_9 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- c_4_15 → c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2
+ c_1_02·c_1_12 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_3 → c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_9 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_15 → c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2
+ c_1_02·c_1_12 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_1 → c_1_2, an element of degree 1
- b_1_0 → c_1_3, an element of degree 1
- b_2_4 → c_1_1·c_1_3 + c_1_12 + c_1_0·c_1_3 + c_1_0·c_1_2, an element of degree 2
- b_2_3 → 0, an element of degree 2
- b_3_9 → 0, an element of degree 3
- b_3_1 → c_1_1·c_1_2·c_1_3 + c_1_12·c_1_2 + c_1_0·c_1_2·c_1_3 + c_1_02·c_1_2, an element of degree 3
- b_3_0 → c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
- c_4_15 → c_1_0·c_1_1·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_2·c_1_3
+ c_1_02·c_1_1·c_1_3 + c_1_02·c_1_12 + c_1_03·c_1_3 + c_1_03·c_1_2 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_1 → c_1_2, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_2_4 → c_1_32 + c_1_2·c_1_3 + c_1_1·c_1_3 + c_1_12 + c_1_0·c_1_2, an element of degree 2
- b_2_3 → 0, an element of degree 2
- b_3_9 → 0, an element of degree 3
- b_3_1 → c_1_1·c_1_32 + c_1_1·c_1_2·c_1_3 + c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_02·c_1_2, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_15 → c_1_0·c_1_1·c_1_32 + c_1_0·c_1_1·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_3
+ c_1_0·c_1_12·c_1_2 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_1·c_1_3 + c_1_02·c_1_12 + c_1_03·c_1_2 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_1 → 0, an element of degree 1
- b_1_0 → c_1_2, an element of degree 1
- b_2_4 → c_1_1·c_1_3 + c_1_1·c_1_2 + c_1_12 + c_1_0·c_1_2, an element of degree 2
- b_2_3 → c_1_32 + c_1_2·c_1_3, an element of degree 2
- b_3_9 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_0·c_1_22
+ c_1_02·c_1_2, an element of degree 3
- c_4_15 → c_1_0·c_1_1·c_1_32 + c_1_0·c_1_1·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_3
+ c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_1·c_1_3 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_03·c_1_2 + c_1_04, an element of degree 4
|