Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-3-Cohomology of group number 2895 of order 1296
General information on the group
- The group order factors as 24 · 34.
- It is non-abelian.
- It has 3-Rank 3.
- The centre of a Sylow 3-subgroup has rank 1.
- Its Sylow 3-subgroup has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 2 and 3, respectively.
Structure of the cohomology ring
The computation was based on 4 stability conditions for H*(Syl3(A9); GF(3)).
General information
- The cohomology ring is of dimension 3 and depth 3.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1)·(1 − t + t2 − t3 + t4) |
| ( − 1 + t)3 · (1 + t2) · (1 + t + t2) |
- The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Ring generators
The cohomology ring has 6 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- b_2_0, an element of degree 2
- a_3_0, a nilpotent element of degree 3
- b_4_0, an element of degree 4
- a_5_0, a nilpotent element of degree 5
- c_6_4, a Duflot element of degree 6
Ring relations
There are 3 "obvious" relations:
a_1_02, a_3_02, a_5_02
Apart from that, there are no relations.
Data used for the Hilbert-Poincaré test
- We proved completion in degree 10 using the Hilbert-Poincaré criterion.
- However, the last relation was already found in degree 0 and the last generator in degree 6.
- The following is a filter regular homogeneous system of parameters:
- − b_4_09 + b_2_06·b_4_06 + b_2_018 + b_2_04·b_4_04·c_6_42
+ b_2_06·b_4_03·c_6_42 + b_2_08·b_4_02·c_6_42 − b_2_05·b_4_02·c_6_43 + b_2_07·b_4_0·c_6_43 − b_2_09·c_6_43 + b_2_02·b_4_02·c_6_44 − b_2_04·b_4_0·c_6_44 + b_2_06·c_6_44 + b_2_03·c_6_45 + c_6_46, an element of degree 36
- b_2_06·b_4_09 − b_2_012·b_4_06 + b_2_04·b_4_07·c_6_42
+ b_2_010·b_4_04·c_6_42 − b_2_012·b_4_03·c_6_42 − b_2_014·b_4_02·c_6_42 − b_2_05·b_4_05·c_6_43 − b_2_011·b_4_02·c_6_43 − b_2_013·b_4_0·c_6_43 + b_2_015·c_6_43 + b_2_02·b_4_05·c_6_44 + b_2_04·b_4_04·c_6_44 − b_2_06·b_4_03·c_6_44 − b_2_010·b_4_0·c_6_44 − b_2_012·c_6_44 + b_2_03·b_4_03·c_6_45 − b_2_07·b_4_0·c_6_45 + b_4_03·c_6_46 − b_2_02·b_4_02·c_6_46 + b_2_03·c_6_47, an element of degree 48
- b_2_0, an element of degree 2
- A Duflot regular sequence is given by c_6_4.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, 83].
- Modifying the above filter regular HSOP, we obtained the following parameters:
- − b_4_09 + b_2_06·b_4_06 + b_2_018 + b_2_04·b_4_04·c_6_42
+ b_2_06·b_4_03·c_6_42 + b_2_08·b_4_02·c_6_42 − b_2_05·b_4_02·c_6_43 + b_2_07·b_4_0·c_6_43 − b_2_09·c_6_43 + b_2_02·b_4_02·c_6_44 − b_2_04·b_4_0·c_6_44 + b_2_06·c_6_44 + b_2_03·c_6_45 + c_6_46, an element of degree 36
- b_4_0, an element of degree 4
- b_2_0, an element of degree 2
- We found that there exists some HSOP over a finite extension field, in degrees 4,2,6.
Restriction maps
Expressing the generators as elements of H*(Syl3(A9); GF(3))
- a_1_0 → a_1_1
- b_2_0 → b_2_2
- a_3_0 → a_3_4 − b_2_0·a_1_0
- b_4_0 → b_4_6 − b_2_02
- a_5_0 → a_5_8 + b_2_0·a_3_3
- c_6_4 → c_6_11
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_2_0 → 0, an element of degree 2
- a_3_0 → 0, an element of degree 3
- b_4_0 → 0, an element of degree 4
- a_5_0 → 0, an element of degree 5
- c_6_4 → c_2_03, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_1_0 → 0, an element of degree 1
- b_2_0 → 0, an element of degree 2
- a_3_0 → − c_2_2·a_1_1, an element of degree 3
- b_4_0 → − c_2_22, an element of degree 4
- a_5_0 → − c_2_22·a_1_0 + c_2_1·c_2_2·a_1_1, an element of degree 5
- c_6_4 → − c_2_1·c_2_22 + c_2_13, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- a_1_0 → a_1_2, an element of degree 1
- b_2_0 → c_2_5, an element of degree 2
- a_3_0 → − c_2_5·a_1_1 + c_2_5·a_1_0 − c_2_4·a_1_2 − c_2_4·a_1_1 + c_2_3·a_1_2, an element of degree 3
- b_4_0 → c_2_4·c_2_5 − c_2_42 − c_2_3·c_2_5, an element of degree 4
- a_5_0 → c_2_4·c_2_5·a_1_0 − c_2_42·a_1_0 + c_2_3·c_2_5·a_1_1 − c_2_3·c_2_5·a_1_0
+ c_2_3·c_2_4·a_1_2 + c_2_3·c_2_4·a_1_1 + c_2_32·a_1_2, an element of degree 5
- c_6_4 → c_2_3·c_2_4·c_2_5 − c_2_3·c_2_42 + c_2_32·c_2_5 + c_2_33, an element of degree 6
|