Mod-17-Cohomology of group number 12 of order 136
General information on the group
- The group order factors as 23 · 17.
- It is non-abelian.
- It has 17-Rank 1.
- The centre of a Sylow 17-subgroup has rank 1.
- Its Sylow 17-subgroup has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 1.
Structure of the cohomology ring
The computation was based on 7 stability conditions for H*(SmallGroup(17,1); GF(17)).
General information
- The cohomology ring is of dimension 1 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1)·((1 − t + t2) · (1 − t + t2 − t3 + t4) · (1 + t − t3 − t4 − t5 + t7 + t8)) |
| ( − 1 + t) · (1 + t2) · (1 + t4) · (1 + t8) |
- The a-invariants are -∞,-1. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -1].
Ring generators
The cohomology ring has 2 minimal generators of maximal degree 16:
- a_15_0, a nilpotent element of degree 15
- c_16_0, a Duflot element of degree 16
Ring relations
There is one "obvious" relation:
a_15_02
Apart from that, there are no relations.
Data used for the Hilbert-Poincaré test
- We proved completion in degree 16 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_16_0, an element of degree 16
- The above filter regular HSOP forms a Duflot regular sequence.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, 15].
Restriction maps
- a_15_0 → c_2_07·a_1_0
- c_16_0 → c_2_08
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_15_0 → c_2_07·a_1_0, an element of degree 15
- c_16_0 → c_2_08, an element of degree 16
|