Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-3-Cohomology of group number 19 of order 162
General information on the group
- The group order factors as 2 · 34.
- It is non-abelian.
- It has 3-Rank 3.
- The centre of a Sylow 3-subgroup has rank 1.
- Its Sylow 3-subgroup has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 2 and 3, respectively.
Structure of the cohomology ring
The computation was based on 1 stability condition for H*(Syl3(A9); GF(3)).
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1)·(1 − 2·t + 2·t2 + t3 − 2·t5 + t6 + t7 + t8 − 2·t9 + t10) |
| ( − 1 + t)3 · (1 + t + t2) · (1 + t2)2 · (1 − t2 + t4) |
- The a-invariants are -∞,-∞,-5,-3. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Ring generators
The cohomology ring has 24 minimal generators of maximal degree 13:
- a_3_3, a nilpotent element of degree 3
- a_3_2, a nilpotent element of degree 3
- a_3_1, a nilpotent element of degree 3
- a_3_0, a nilpotent element of degree 3
- a_4_4, a nilpotent element of degree 4
- a_4_3, a nilpotent element of degree 4
- b_4_2, an element of degree 4
- b_4_1, an element of degree 4
- b_4_0, an element of degree 4
- a_5_1, a nilpotent element of degree 5
- a_5_0, a nilpotent element of degree 5
- a_6_1, a nilpotent element of degree 6
- b_6_0, an element of degree 6
- a_7_10, a nilpotent element of degree 7
- a_7_9, a nilpotent element of degree 7
- a_7_1, a nilpotent element of degree 7
- a_8_11, a nilpotent element of degree 8
- b_8_10, an element of degree 8
- b_8_9, an element of degree 8
- a_9_6, a nilpotent element of degree 9
- a_11_13, a nilpotent element of degree 11
- c_12_20, a Duflot element of degree 12
- a_12_16, a nilpotent element of degree 12
- a_13_10, a nilpotent element of degree 13
Ring relations
There are 12 "obvious" relations:
a_3_02, a_3_12, a_3_22, a_3_32, a_5_02, a_5_12, a_7_12, a_7_92, a_7_102, a_9_62, a_11_132, a_13_102
Apart from that, there are 208 minimal relations of maximal degree 25:
- a_3_0·a_3_1
- a_3_0·a_3_3
- a_3_1·a_3_2
- a_3_2·a_3_3
- a_4_3·a_3_1
- a_4_3·a_3_3
- a_4_4·a_3_0 − a_4_3·a_3_2
- a_4_4·a_3_1
- a_4_4·a_3_2
- a_4_4·a_3_3
- b_4_0·a_3_1 − a_4_3·a_3_0
- b_4_0·a_3_3
- b_4_1·a_3_1 − a_4_3·a_3_2
- b_4_1·a_3_3
- b_4_2·a_3_0
- b_4_2·a_3_2
- a_4_32
- a_4_3·a_4_4
- a_4_42
- a_3_1·a_5_0
- a_3_1·a_5_1
- a_3_3·a_5_0
- a_3_3·a_5_1
- a_4_3·b_4_1 − a_3_2·a_5_0 + a_3_0·a_5_1
- a_4_3·b_4_2
- a_4_4·b_4_0 − a_3_2·a_5_0
- a_4_4·b_4_1 − a_3_2·a_5_1
- a_4_4·b_4_2
- b_4_0·b_4_2
- b_4_1·b_4_2
- a_4_3·a_5_1
- a_4_4·a_5_0
- a_4_4·a_5_1
- a_6_1·a_3_0 − a_4_3·a_5_0
- a_6_1·a_3_1
- a_6_1·a_3_2
- a_6_1·a_3_3
- b_4_2·a_5_0
- b_4_2·a_5_1
- b_6_0·a_3_1 − a_4_3·a_5_0
- b_6_0·a_3_2 − b_4_1·a_5_0 + b_4_0·a_5_1
- b_6_0·a_3_3
- a_4_3·a_6_1
- a_4_4·a_6_1
- a_3_0·a_7_10
- a_3_1·a_7_1
- a_3_1·a_7_9
- a_3_2·a_7_9
- a_3_2·a_7_10
- a_3_3·a_7_1
- a_3_3·a_7_9
- a_3_3·a_7_10
- a_5_0·a_5_1 − a_3_2·a_7_1 − b_4_0·a_3_0·a_3_2
- a_4_4·b_6_0 − a_3_2·a_7_1 − b_4_0·a_3_0·a_3_2
- b_4_0·a_6_1 − a_4_3·b_6_0 − a_3_0·a_7_1
- b_4_1·a_6_1 − a_3_2·a_7_1
- b_4_2·a_6_1
- b_4_2·b_6_0
- a_4_3·a_7_1
- a_4_3·a_7_10
- a_4_4·a_7_1 − a_3_0·a_3_2·a_5_0
- a_4_4·a_7_9
- a_4_4·a_7_10
- a_6_1·a_5_0 + a_4_3·b_4_0·a_3_0
- a_6_1·a_5_1 + a_3_0·a_3_2·a_5_0
- a_8_11·a_3_0 − a_4_3·a_7_9
- a_8_11·a_3_1
- a_8_11·a_3_2
- a_8_11·a_3_3
- b_4_0·a_7_10
- b_4_1·a_7_10
- b_4_2·a_7_1
- b_4_2·a_7_9
- b_6_0·a_5_0 + b_4_1·a_7_9 − b_4_0·a_7_1 − b_4_02·a_3_2 + b_4_02·a_3_0
- b_6_0·a_5_1 − b_4_1·a_7_1 + b_4_0·b_4_1·a_3_0 − b_4_02·a_3_2
- b_8_9·a_3_1 − a_4_3·a_7_9
- b_8_9·a_3_2 − b_4_1·a_7_9
- b_8_9·a_3_3
- b_8_10·a_3_0
- b_8_10·a_3_2
- b_8_10·a_3_3 − b_4_2·a_7_10
- a_4_3·a_8_11
- a_4_4·a_8_11
- a_6_12
- a_3_1·a_9_6
- a_3_3·a_9_6
- a_5_0·a_7_1 + a_3_2·a_9_6 − b_4_0·a_3_2·a_5_0 + b_4_0·a_3_0·a_5_0
- a_5_0·a_7_10
- a_5_1·a_7_1 − b_4_0·a_3_2·a_5_0 + b_4_0·a_3_0·a_5_1
- a_5_1·a_7_9 + a_3_2·a_9_6
- a_5_1·a_7_10
- a_4_3·b_8_9 + a_5_0·a_7_9 + a_3_0·a_9_6
- a_4_3·b_8_10
- a_4_4·b_8_9 − a_3_2·a_9_6
- a_4_4·b_8_10
- b_4_0·a_8_11 + a_5_0·a_7_9
- b_4_1·a_8_11 − a_3_2·a_9_6
- b_4_2·a_8_11
- a_6_1·b_6_0 + a_4_3·b_4_02 + a_3_2·a_9_6 − b_4_0·a_3_2·a_5_0 + b_4_0·a_3_0·a_5_0
- b_4_0·b_8_10
- b_4_1·b_8_10
- b_4_2·b_8_9
- b_6_02 + b_4_1·b_8_9 − b_4_02·b_4_1 + b_4_03
- a_4_3·a_9_6
- a_4_4·a_9_6
- a_6_1·a_7_1
- a_6_1·a_7_9
- a_6_1·a_7_10
- a_8_11·a_5_0
- a_8_11·a_5_1
- b_4_2·a_9_6
- b_6_0·a_7_1 + b_4_1·a_9_6 − b_4_0·b_6_0·a_3_0 − b_4_02·a_5_1 + b_4_02·a_5_0
- b_6_0·a_7_10
- b_8_9·a_5_0 − b_6_0·a_7_9 − b_4_0·a_9_6
- b_8_9·a_5_1 − b_4_1·a_9_6
- b_8_10·a_5_0
- b_8_10·a_5_1
- a_6_1·a_8_11
- a_3_1·a_11_13
- a_3_3·a_11_13
- a_5_0·a_9_6 − a_3_2·a_11_13 − b_4_0·a_3_0·a_7_9
- a_5_1·a_9_6
- a_7_1·a_7_9 + a_3_2·a_11_13
- a_7_1·a_7_10
- a_7_9·a_7_10
- a_6_1·b_8_9 − a_3_2·a_11_13
- a_6_1·b_8_10
- b_6_0·a_8_11 − a_3_2·a_11_13 − b_4_0·a_3_0·a_7_9
- b_6_0·b_8_10
- a_4_3·a_11_13
- a_4_4·a_11_13 + a_3_0·a_5_0·a_7_9
- a_6_1·a_9_6 − a_3_0·a_5_0·a_7_9
- a_8_11·a_7_1 + a_3_0·a_5_0·a_7_9
- a_8_11·a_7_9
- a_8_11·a_7_10
- a_12_16·a_3_0 + a_3_0·a_5_0·a_7_9
- a_12_16·a_3_1
- a_12_16·a_3_2 + a_3_0·a_5_0·a_7_9
- a_12_16·a_3_3
- b_4_2·a_11_13
- b_6_0·a_9_6 − b_4_1·a_11_13 + b_4_0·b_8_9·a_3_0 − b_4_02·a_7_9
- b_8_9·a_7_1 − b_4_1·a_11_13
- b_8_9·a_7_9 − c_12_20·a_3_2
- b_8_9·a_7_10
- b_8_10·a_7_1
- b_8_10·a_7_9
- b_8_10·a_7_10 − c_12_20·a_3_3
- a_4_3·a_12_16
- a_4_4·a_12_16
- a_8_112
- a_3_1·a_13_10
- a_3_2·a_13_10 + b_6_0·a_3_0·a_7_9 − b_4_0·a_5_0·a_7_9 − b_4_0·a_3_2·a_9_6
- a_3_3·a_13_10
- a_5_0·a_11_13 − a_3_0·a_13_10 + b_4_0·a_5_0·a_7_9 + b_4_0·a_3_0·a_9_6 + a_4_4·c_12_20
- a_5_1·a_11_13 + b_4_0·a_5_0·a_7_9 + b_4_0·a_3_0·a_9_6
- a_7_1·a_9_6 − b_4_0·a_5_0·a_7_9 − b_4_0·a_3_0·a_9_6
- a_7_9·a_9_6 − a_4_4·c_12_20
- a_7_10·a_9_6
- b_4_0·a_12_16 − a_3_0·a_13_10 + b_4_0·a_5_0·a_7_9 + b_4_0·a_3_0·a_9_6
- b_4_1·a_12_16 + b_6_0·a_3_0·a_7_9 − b_4_0·a_3_2·a_9_6 + b_4_0·a_3_0·a_9_6
- b_4_2·a_12_16
- a_8_11·b_8_9 − a_4_4·c_12_20
- a_8_11·b_8_10
- b_8_92 − b_4_1·c_12_20
- b_8_9·b_8_10
- b_8_102 − b_4_2·c_12_20
- a_4_3·a_13_10
- a_4_4·a_13_10 − a_3_0·a_3_2·a_11_13
- a_6_1·a_11_13
- a_8_11·a_9_6
- a_12_16·a_5_0
- a_12_16·a_5_1 + a_3_0·a_3_2·a_11_13
- b_4_2·a_13_10
- b_6_0·b_8_9·a_3_0 − b_4_1·a_13_10 − b_4_0·b_6_0·a_7_9 + b_4_0·b_4_1·a_9_6
− b_4_02·a_9_6
- b_6_0·a_11_13 − b_4_0·a_13_10 + c_12_20·a_5_1
- b_8_9·a_9_6 − c_12_20·a_5_1
- b_8_10·a_9_6
- a_6_1·a_12_16
- a_5_0·a_13_10 − b_4_0·a_3_2·a_11_13 + b_4_0·a_3_0·a_11_13 − c_12_20·a_3_0·a_3_2
- a_5_1·a_13_10 + b_4_1·a_3_0·a_11_13 − b_4_0·a_3_2·a_11_13
- a_7_1·a_11_13
- a_7_9·a_11_13 − a_6_1·c_12_20
- a_7_10·a_11_13
- b_6_0·a_12_16 − b_4_0·a_3_2·a_11_13 + b_4_0·a_3_0·a_11_13 − c_12_20·a_3_0·a_3_2
- a_6_1·a_13_10 + a_4_3·c_12_20·a_3_2
- a_8_11·a_11_13 − a_4_3·c_12_20·a_3_0
- a_12_16·a_7_1 − a_4_3·c_12_20·a_3_2
- a_12_16·a_7_9 − a_4_3·c_12_20·a_3_0
- a_12_16·a_7_10
- b_6_0·a_13_10 − b_4_0·b_4_1·a_11_13 + b_4_02·a_11_13 + b_4_1·c_12_20·a_3_0
− b_4_0·c_12_20·a_3_2
- b_8_9·a_11_13 − c_12_20·a_7_1
- b_8_10·a_11_13
- a_8_11·a_12_16
- a_7_1·a_13_10 + c_12_20·a_3_2·a_5_0 − c_12_20·a_3_0·a_5_1
- a_7_9·a_13_10 + a_4_3·b_4_0·c_12_20 − c_12_20·a_3_2·a_5_0 + c_12_20·a_3_0·a_5_0
- a_7_10·a_13_10
- a_9_6·a_11_13 − a_4_3·b_4_0·c_12_20
- b_8_9·a_12_16 − c_12_20·a_3_2·a_5_0 + c_12_20·a_3_0·a_5_0
- b_8_10·a_12_16
- a_8_11·a_13_10 − a_4_3·c_12_20·a_5_0
- a_12_16·a_9_6 + a_4_3·c_12_20·a_5_0
- b_8_9·a_13_10 − b_6_0·c_12_20·a_3_0 − b_4_0·c_12_20·a_5_1 + b_4_0·c_12_20·a_5_0
- b_8_10·a_13_10
- a_9_6·a_13_10 − a_4_3·b_6_0·c_12_20
- a_12_16·a_11_13 − a_4_3·c_12_20·a_7_9
- a_12_162
- a_11_13·a_13_10 − c_12_20·a_5_0·a_7_9 − c_12_20·a_3_0·a_9_6
- a_12_16·a_13_10
Data used for the Hilbert-Poincaré test
- We proved completion in degree 25 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_12_20, an element of degree 12
- − b_4_23 + b_4_1·b_8_9 − b_4_13 − b_4_02·b_4_1 + b_4_03, an element of degree 12
- b_4_1, an element of degree 4
- A Duflot regular sequence is given by c_12_20.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 19, 25].
- Modifying the above filter regular HSOP, we obtained the following parameters:
- c_12_20, an element of degree 12
- b_4_2 + b_4_0, an element of degree 4
- b_4_1, an element of degree 4
Restriction maps
Expressing the generators as elements of H*(Syl3(A9); GF(3))
- a_3_3 → b_2_0·a_1_0
- a_3_2 → b_2_2·a_1_1
- a_3_1 → a_3_3
- a_3_0 → a_3_4
- a_4_4 → a_1_1·a_3_2
- a_4_3 → a_4_5
- b_4_2 → b_2_02
- b_4_1 → b_2_22
- b_4_0 → b_4_6
- a_5_1 → b_2_2·a_3_2
- a_5_0 → a_5_7 − b_4_6·a_1_1
- a_6_1 → a_1_1·a_5_8
- b_6_0 → b_6_10 − b_2_2·b_4_6
- a_7_10 → c_6_11·a_1_0
- a_7_9 → c_6_11·a_1_1
- a_7_1 → b_2_2·a_5_8
- a_8_11 → a_2_1·c_6_11
- b_8_10 → b_2_0·c_6_11
- b_8_9 → b_2_2·c_6_11
- a_9_6 → c_6_11·a_3_2
- a_11_13 → c_6_11·a_5_8
- c_12_20 → c_6_112
- a_12_16 → a_6_9·c_6_11 − c_6_11·a_1_1·a_5_8
- a_13_10 → c_6_11·a_7_14 − b_2_2·c_6_11·a_5_8
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_3_3 → 0, an element of degree 3
- a_3_2 → 0, an element of degree 3
- a_3_1 → 0, an element of degree 3
- a_3_0 → 0, an element of degree 3
- a_4_4 → 0, an element of degree 4
- a_4_3 → 0, an element of degree 4
- b_4_2 → 0, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_5_1 → 0, an element of degree 5
- a_5_0 → 0, an element of degree 5
- a_6_1 → 0, an element of degree 6
- b_6_0 → 0, an element of degree 6
- a_7_10 → 0, an element of degree 7
- a_7_9 → 0, an element of degree 7
- a_7_1 → 0, an element of degree 7
- a_8_11 → 0, an element of degree 8
- b_8_10 → 0, an element of degree 8
- b_8_9 → 0, an element of degree 8
- a_9_6 → 0, an element of degree 9
- a_11_13 → 0, an element of degree 11
- c_12_20 → c_2_06, an element of degree 12
- a_12_16 → 0, an element of degree 12
- a_13_10 → 0, an element of degree 13
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_3 → c_2_2·a_1_1, an element of degree 3
- a_3_2 → 0, an element of degree 3
- a_3_1 → − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_3_0 → 0, an element of degree 3
- a_4_4 → 0, an element of degree 4
- a_4_3 → 0, an element of degree 4
- b_4_2 → c_2_22, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_5_1 → 0, an element of degree 5
- a_5_0 → 0, an element of degree 5
- a_6_1 → 0, an element of degree 6
- b_6_0 → 0, an element of degree 6
- a_7_10 → − c_2_1·c_2_22·a_1_1 + c_2_13·a_1_1, an element of degree 7
- a_7_9 → 0, an element of degree 7
- a_7_1 → 0, an element of degree 7
- a_8_11 → 0, an element of degree 8
- b_8_10 → − c_2_1·c_2_23 + c_2_13·c_2_2, an element of degree 8
- b_8_9 → 0, an element of degree 8
- a_9_6 → 0, an element of degree 9
- a_11_13 → 0, an element of degree 11
- c_12_20 → c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
- a_12_16 → 0, an element of degree 12
- a_13_10 → 0, an element of degree 13
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- a_3_3 → 0, an element of degree 3
- a_3_2 → c_2_4·a_1_1, an element of degree 3
- a_3_1 → − a_1_0·a_1_1·a_1_2, an element of degree 3
- a_3_0 → − c_2_5·a_1_2 − c_2_5·a_1_1 − c_2_4·a_1_2 + c_2_4·a_1_0 + c_2_3·a_1_1, an element of degree 3
- a_4_4 → − c_2_4·a_1_1·a_1_2, an element of degree 4
- a_4_3 → − c_2_5·a_1_0·a_1_1 + c_2_4·a_1_0·a_1_2 − c_2_3·a_1_1·a_1_2, an element of degree 4
- b_4_2 → 0, an element of degree 4
- b_4_1 → c_2_42, an element of degree 4
- b_4_0 → − c_2_52 + c_2_4·c_2_5 − c_2_3·c_2_4, an element of degree 4
- a_5_1 → c_2_4·c_2_5·a_1_1 − c_2_42·a_1_2, an element of degree 5
- a_5_0 → c_2_52·a_1_2 + c_2_52·a_1_1 − c_2_4·c_2_5·a_1_2 − c_2_4·c_2_5·a_1_1
− c_2_3·c_2_5·a_1_1 + c_2_3·c_2_4·a_1_2, an element of degree 5
- a_6_1 → c_2_52·a_1_0·a_1_1 − c_2_4·c_2_5·a_1_0·a_1_1 + c_2_3·c_2_5·a_1_1·a_1_2
+ c_2_3·c_2_4·a_1_1·a_1_2 + c_2_3·c_2_4·a_1_0·a_1_1, an element of degree 6
- b_6_0 → c_2_53 − c_2_42·c_2_5, an element of degree 6
- a_7_10 → 0, an element of degree 7
- a_7_9 → − c_2_3·c_2_52·a_1_1 + c_2_3·c_2_4·c_2_5·a_1_1 + c_2_32·c_2_4·a_1_1 + c_2_33·a_1_1, an element of degree 7
- a_7_1 → − c_2_4·c_2_52·a_1_0 + c_2_42·c_2_5·a_1_0 + c_2_3·c_2_4·c_2_5·a_1_2
+ c_2_3·c_2_4·c_2_5·a_1_1 + c_2_3·c_2_42·a_1_2 − c_2_3·c_2_42·a_1_0 + c_2_32·c_2_4·a_1_1, an element of degree 7
- a_8_11 → c_2_3·c_2_52·a_1_1·a_1_2 − c_2_3·c_2_4·c_2_5·a_1_1·a_1_2
− c_2_32·c_2_4·a_1_1·a_1_2 − c_2_33·a_1_1·a_1_2, an element of degree 8
- b_8_10 → 0, an element of degree 8
- b_8_9 → − c_2_3·c_2_4·c_2_52 + c_2_3·c_2_42·c_2_5 + c_2_32·c_2_42 + c_2_33·c_2_4, an element of degree 8
- a_9_6 → − c_2_3·c_2_53·a_1_1 + c_2_3·c_2_4·c_2_52·a_1_2 + c_2_3·c_2_4·c_2_52·a_1_1
− c_2_3·c_2_42·c_2_5·a_1_2 + c_2_32·c_2_4·c_2_5·a_1_1 − c_2_32·c_2_42·a_1_2 + c_2_33·c_2_5·a_1_1 − c_2_33·c_2_4·a_1_2, an element of degree 9
- a_11_13 → c_2_3·c_2_54·a_1_0 + c_2_3·c_2_4·c_2_53·a_1_0 + c_2_3·c_2_42·c_2_52·a_1_0
− c_2_32·c_2_53·a_1_2 − c_2_32·c_2_53·a_1_1 + c_2_32·c_2_4·c_2_52·a_1_1 + c_2_32·c_2_42·c_2_5·a_1_2 − c_2_33·c_2_52·a_1_1 − c_2_33·c_2_52·a_1_0 + c_2_33·c_2_4·c_2_5·a_1_2 − c_2_33·c_2_4·c_2_5·a_1_1 + c_2_33·c_2_4·c_2_5·a_1_0 + c_2_33·c_2_42·a_1_2 − c_2_33·c_2_42·a_1_0 + c_2_34·c_2_5·a_1_2 + c_2_34·c_2_5·a_1_1 + c_2_34·c_2_4·a_1_2 + c_2_34·c_2_4·a_1_1 − c_2_34·c_2_4·a_1_0 + c_2_35·a_1_1, an element of degree 11
- c_12_20 → c_2_32·c_2_54 + c_2_32·c_2_4·c_2_53 + c_2_32·c_2_42·c_2_52
+ c_2_33·c_2_4·c_2_52 − c_2_33·c_2_42·c_2_5 + c_2_34·c_2_52 − c_2_34·c_2_4·c_2_5 + c_2_34·c_2_42 − c_2_35·c_2_4 + c_2_36, an element of degree 12
- a_12_16 → c_2_3·c_2_54·a_1_0·a_1_2 + c_2_3·c_2_54·a_1_0·a_1_1
+ c_2_3·c_2_4·c_2_53·a_1_0·a_1_2 + c_2_3·c_2_4·c_2_53·a_1_0·a_1_1 + c_2_3·c_2_42·c_2_52·a_1_0·a_1_2 + c_2_3·c_2_42·c_2_52·a_1_0·a_1_1 − c_2_32·c_2_53·a_1_0·a_1_1 − c_2_32·c_2_4·c_2_52·a_1_1·a_1_2 + c_2_32·c_2_42·c_2_5·a_1_1·a_1_2 + c_2_32·c_2_42·c_2_5·a_1_0·a_1_1 + c_2_33·c_2_52·a_1_1·a_1_2 − c_2_33·c_2_52·a_1_0·a_1_2 − c_2_33·c_2_52·a_1_0·a_1_1 − c_2_33·c_2_4·c_2_5·a_1_1·a_1_2 + c_2_33·c_2_4·c_2_5·a_1_0·a_1_2 − c_2_33·c_2_4·c_2_5·a_1_0·a_1_1 + c_2_33·c_2_42·a_1_1·a_1_2 − c_2_33·c_2_42·a_1_0·a_1_2 + c_2_34·c_2_5·a_1_0·a_1_1 − c_2_34·c_2_4·a_1_0·a_1_2 − c_2_35·a_1_1·a_1_2, an element of degree 12
- a_13_10 → − c_2_3·c_2_55·a_1_0 + c_2_3·c_2_4·c_2_54·a_1_0 + c_2_3·c_2_42·c_2_53·a_1_0
− c_2_3·c_2_43·c_2_52·a_1_0 + c_2_32·c_2_54·a_1_2 + c_2_32·c_2_54·a_1_1 + c_2_32·c_2_4·c_2_53·a_1_2 − c_2_32·c_2_4·c_2_53·a_1_1 + c_2_32·c_2_4·c_2_53·a_1_0 + c_2_32·c_2_43·c_2_5·a_1_2 − c_2_32·c_2_43·c_2_5·a_1_0 + c_2_33·c_2_53·a_1_1 + c_2_33·c_2_53·a_1_0 + c_2_33·c_2_4·c_2_52·a_1_2 + c_2_33·c_2_4·c_2_52·a_1_1 − c_2_33·c_2_42·c_2_5·a_1_2 − c_2_33·c_2_42·c_2_5·a_1_0 + c_2_33·c_2_43·a_1_2 − c_2_34·c_2_52·a_1_2 − c_2_34·c_2_52·a_1_1 + c_2_34·c_2_4·c_2_5·a_1_2 − c_2_34·c_2_4·c_2_5·a_1_1 − c_2_34·c_2_42·a_1_2 − c_2_35·c_2_5·a_1_1 + c_2_35·c_2_4·a_1_2, an element of degree 13
|