| 
            
      Simon King′s home page:
      
     
      
     
     
     
      
     
      
     
      
     
      
    
      
      Mathematics:
     
      Cohomology
      
        →Theory
        →Implementation
      
      
     
      
    
      Jena:
     
          
     
      
      Faculty
      
     
      
      David Green
      
     
      
    
    
      
      External links:
      
     
       
     
    Singular
     
    Gap
      
    
     | 
    
            
       
          
         
      
  
  Mod-2-Cohomology of group number 43 of order 168
 
 
  General information on the group
  - The group order factors as 23 · 3 · 7.
  
   -  It is non-abelian.
  
 
  -  It has 2-Rank 3.
  
 
  -  The centre of a Sylow 2-subgroup has rank 3.
  
 
  -  Its Sylow 2-subgroup has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
  
 
 
 
  Structure of the cohomology ring
The computation was based on 20 stability conditions for H*(SmallGroup(8,5); GF(2)).
  General information
  -  The cohomology ring is of dimension 3 and depth 3.
  
 
  -  The depth coincides with the Duflot bound.
  
 
  -  The Poincaré series is    
| ( − 1)·((1  −  t  +  t2  −  t3  +  t4) · (1  −  t2  +  t4)) |        
  |  | ( − 1  +  t)3 · (1  +  t  +  t2) · (1  +  t  +  t2  +  t3  +  t4  +  t5  +  t6) |  
     
     -  The a-invariants are -∞,-∞,-∞,-3.  They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
  
 
  -  The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
  
 
 
  
  
 
  Ring generators
 The cohomology ring has 5 minimal generators of maximal degree 7:
 
  -  c_3_0, a Duflot element of degree 3
  
 
  -  c_4_0, a Duflot element of degree 4
  
 
  -  c_5_0, a Duflot element of degree 5
  
 
  -  c_6_1, a Duflot element of degree 6
  
 
  -  c_7_1, a Duflot element of degree 7
  
 
 
  
 
  Ring relations
There are 2 minimal relations of maximal degree 12:
 
  -  c_5_02 + c_3_0·c_7_1 + c_4_0·c_6_1 + c_4_0·c_3_02
  
 
  -  c_5_0·c_7_1 + c_6_12 + c_6_1·c_3_02 + c_4_03 + c_3_04
  
 
 
 
  
 
  Data used for the Hilbert-Poincaré test
   
    -  We proved completion in degree 12 using the Hilbert-Poincaré criterion.
    
 
    -  The completion test was perfect: It applied in the last degree in which a generator or relation was found.
    
 
    -  The following is a filter regular homogeneous system of parameters:
    
      - c_3_0, an element of degree 3
      
 
      - c_4_0, an element of degree 4
      
 
      - c_7_1, an element of degree 7
      
 
     
         -  The above filter regular HSOP forms a Duflot regular sequence.
    
 
    -  The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, 11].
    
 
   
  
 
  Restriction maps
  
    
      -  c_3_0 → c_1_23 + c_1_12·c_1_2 + c_1_13 + c_1_0·c_1_1·c_1_2 + c_1_0·c_1_12 + c_1_02·c_1_2
    + c_1_03
       
      -  c_4_0 → c_1_24 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
    + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04
       
      -  c_5_0 → c_1_25 + c_1_14·c_1_2 + c_1_15 + c_1_0·c_1_12·c_1_22 + c_1_0·c_1_14
    + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_2 + c_1_05
       
      -  c_6_1 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2
    + c_1_02·c_1_24 + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_22    + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12
       
      -  c_7_1 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
    + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2
       
     
  
    Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 3
  
    
      -  c_3_0 → c_1_23 + c_1_12·c_1_2 + c_1_13 + c_1_0·c_1_1·c_1_2 + c_1_0·c_1_12 + c_1_02·c_1_2
    + c_1_03, an element of degree 3
       
      -  c_4_0 → c_1_24 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
    + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
       
      -  c_5_0 → c_1_25 + c_1_14·c_1_2 + c_1_15 + c_1_0·c_1_12·c_1_22 + c_1_0·c_1_14
    + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_2 + c_1_05, an element of degree 5
       
      -  c_6_1 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2
    + c_1_02·c_1_24 + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_22    + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
       
      -  c_7_1 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
    + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
       
     
 
 
               
              
              
                
               
               |