Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of group number 43 of order 168
General information on the group
- The group order factors as 23 · 3 · 7.
- It is non-abelian.
- It has 2-Rank 3.
- The centre of a Sylow 2-subgroup has rank 3.
- Its Sylow 2-subgroup has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
The computation was based on 20 stability conditions for H*(SmallGroup(8,5); GF(2)).
General information
- The cohomology ring is of dimension 3 and depth 3.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1)·((1 − t + t2 − t3 + t4) · (1 − t2 + t4)) |
| ( − 1 + t)3 · (1 + t + t2) · (1 + t + t2 + t3 + t4 + t5 + t6) |
- The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Ring generators
The cohomology ring has 5 minimal generators of maximal degree 7:
- c_3_0, a Duflot element of degree 3
- c_4_0, a Duflot element of degree 4
- c_5_0, a Duflot element of degree 5
- c_6_1, a Duflot element of degree 6
- c_7_1, a Duflot element of degree 7
Ring relations
There are 2 minimal relations of maximal degree 12:
- c_5_02 + c_3_0·c_7_1 + c_4_0·c_6_1 + c_4_0·c_3_02
- c_5_0·c_7_1 + c_6_12 + c_6_1·c_3_02 + c_4_03 + c_3_04
Data used for the Hilbert-Poincaré test
- We proved completion in degree 12 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_3_0, an element of degree 3
- c_4_0, an element of degree 4
- c_7_1, an element of degree 7
- The above filter regular HSOP forms a Duflot regular sequence.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, 11].
Restriction maps
- c_3_0 → c_1_23 + c_1_12·c_1_2 + c_1_13 + c_1_0·c_1_1·c_1_2 + c_1_0·c_1_12 + c_1_02·c_1_2
+ c_1_03
- c_4_0 → c_1_24 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
+ c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04
- c_5_0 → c_1_25 + c_1_14·c_1_2 + c_1_15 + c_1_0·c_1_12·c_1_22 + c_1_0·c_1_14
+ c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_2 + c_1_05
- c_6_1 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2
+ c_1_02·c_1_24 + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12
- c_7_1 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 3
- c_3_0 → c_1_23 + c_1_12·c_1_2 + c_1_13 + c_1_0·c_1_1·c_1_2 + c_1_0·c_1_12 + c_1_02·c_1_2
+ c_1_03, an element of degree 3
- c_4_0 → c_1_24 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
+ c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
- c_5_0 → c_1_25 + c_1_14·c_1_2 + c_1_15 + c_1_0·c_1_12·c_1_22 + c_1_0·c_1_14
+ c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_2 + c_1_05, an element of degree 5
- c_6_1 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2
+ c_1_02·c_1_24 + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
- c_7_1 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
|