Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of group number 241004 of order 1920
General information on the group
- The group order factors as 27 · 3 · 5.
- It is non-abelian.
- It has 2-Rank 4.
- The centre of a Sylow 2-subgroup has rank 1.
- Its Sylow 2-subgroup has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 2 and 4, respectively.
Structure of the cohomology ring
The computation was based on 5 stability conditions for H*(Syl2(J2); GF(2)).
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
(1 − t + t2) · (1 − t + t2 + 2·t4 + t9) |
| (1 + t) · ( − 1 + t)4 · (1 + t + t2) · (1 + t2)2 · (1 + t4) |
- The a-invariants are -∞,-∞,-5,-8,-4. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Ring generators
The cohomology ring has 21 minimal generators of maximal degree 10:
- b_2_0, an element of degree 2
- a_3_2, a nilpotent element of degree 3
- b_3_1, an element of degree 3
- b_3_0, an element of degree 3
- b_4_3, an element of degree 4
- b_4_1, an element of degree 4
- b_4_0, an element of degree 4
- a_5_4, a nilpotent element of degree 5
- b_5_1, an element of degree 5
- b_5_0, an element of degree 5
- b_6_1, an element of degree 6
- b_6_0, an element of degree 6
- a_7_10, a nilpotent element of degree 7
- b_7_4, an element of degree 7
- b_7_0, an element of degree 7
- c_8_2, a Duflot element of degree 8
- b_8_1, an element of degree 8
- b_8_0, an element of degree 8
- b_9_1, an element of degree 9
- b_9_0, an element of degree 9
- b_10_15, an element of degree 10
Ring relations
There are 158 minimal relations of maximal degree 20:
- b_2_0·a_3_2
- a_3_22
- a_3_2·b_3_0
- a_3_2·b_3_1
- b_3_12 + b_3_0·b_3_1 + b_3_02 + b_2_03
- b_2_0·a_5_4
- b_4_1·a_3_2
- b_4_3·a_3_2 + b_4_0·a_3_2
- b_4_3·b_3_0 + b_4_1·b_3_1 + b_4_0·b_3_0 + b_2_0·b_5_0
- b_4_3·b_3_1 + b_4_1·b_3_1 + b_4_1·b_3_0 + b_4_0·b_3_1 + b_2_0·b_5_1 + b_2_02·b_3_1
- a_3_2·a_5_4
- a_3_2·b_5_0
- a_3_2·b_5_1
- b_3_0·a_5_4
- b_3_1·a_5_4
- b_4_32 + b_4_1·b_4_3 + b_4_12 + b_4_0·b_4_1 + b_4_02 + b_2_0·b_3_0·b_3_1
+ b_2_0·b_3_02 + b_2_0·b_6_1 + b_2_0·b_6_0 + b_2_04
- b_3_0·b_5_0 + b_4_1·b_4_3 + b_4_0·b_4_1 + b_2_0·b_3_0·b_3_1 + b_2_0·b_3_02 + b_2_0·b_6_0
+ b_2_02·b_4_0 + b_2_04
- b_3_0·b_5_1 + b_4_1·b_4_3 + b_4_12 + b_4_0·b_4_1 + b_2_0·b_3_02 + b_2_0·b_6_0
+ b_2_02·b_4_1 + b_2_04
- b_3_1·b_5_0 + b_4_1·b_4_3 + b_4_12 + b_4_0·b_4_1 + b_2_0·b_3_0·b_3_1 + b_2_0·b_3_02
+ b_2_0·b_6_0 + b_2_04
- b_3_1·b_5_1 + b_4_12 + b_2_0·b_3_0·b_3_1 + b_2_0·b_3_02 + b_2_02·b_4_3 + b_2_04
- b_2_0·a_7_10
- b_4_1·a_5_4
- b_4_3·a_5_4 + b_4_0·a_5_4
- b_6_0·a_3_2
- b_6_1·a_3_2
- b_4_3·b_5_0 + b_4_1·b_5_1 + b_4_0·b_5_0 + b_2_0·b_7_0 + b_2_0·b_4_0·b_3_0 + b_2_02·b_5_0
- b_4_3·b_5_1 + b_4_1·b_5_1 + b_4_1·b_5_0 + b_4_0·b_5_1 + b_2_0·b_7_4 + b_2_0·b_4_1·b_3_0
+ b_2_02·b_5_1 + b_2_03·b_3_1
- b_6_1·b_3_0 + b_2_0·b_7_0 + b_2_0·b_4_1·b_3_1 + b_2_0·b_4_0·b_3_1
- b_6_1·b_3_1 + b_2_0·b_7_4 + b_2_0·b_4_0·b_3_0 + b_2_02·b_5_0
- b_3_03 + b_6_0·b_3_1 + b_4_1·b_5_1 + b_2_0·b_4_1·b_3_1 + b_2_0·b_4_0·b_3_0
+ b_2_02·b_5_0 + b_2_03·b_3_1 + b_2_03·b_3_0
- b_3_02·b_3_1 + b_6_0·b_3_1 + b_6_0·b_3_0 + b_4_1·b_5_1 + b_4_1·b_5_0 + b_2_0·b_4_1·b_3_1
+ b_2_0·b_4_0·b_3_1 + b_2_03·b_3_1
- a_3_2·a_7_10
- a_5_42
- a_3_2·b_7_0
- a_3_2·b_7_4
- b_3_0·a_7_10
- b_3_1·a_7_10
- a_5_4·b_5_0
- a_5_4·b_5_1
- b_4_1·b_6_1 + b_2_0·b_8_1 + b_2_0·b_8_0 + b_2_0·b_4_1·b_4_3 + b_2_0·b_4_12
+ b_2_0·b_4_0·b_4_3 + b_2_0·b_4_02 + b_2_02·b_3_0·b_3_1 + b_2_02·b_3_02 + b_2_02·b_6_0 + b_2_05
- b_4_3·b_6_1 + b_4_0·b_6_1 + b_2_0·b_8_0 + b_2_0·b_4_1·b_4_3 + b_2_0·b_4_0·b_4_3
+ b_2_0·b_4_0·b_4_1 + b_2_02·b_6_1 + b_2_02·b_6_0
- b_3_0·b_7_0 + b_4_3·b_6_0 + b_4_1·b_3_0·b_3_1 + b_4_1·b_3_02 + b_4_0·b_3_02
+ b_4_0·b_6_0 + b_2_0·b_8_1 + b_2_0·b_8_0 + b_2_0·b_4_12 + b_2_0·b_4_0·b_4_1 + b_2_03·b_4_3 + b_2_03·b_4_1 + b_2_03·b_4_0
- b_3_0·b_7_4 + b_4_3·b_6_0 + b_4_1·b_3_0·b_3_1 + b_4_1·b_6_0 + b_4_0·b_6_0 + b_2_0·b_8_1
+ b_2_0·b_8_0 + b_2_0·b_4_12 + b_2_0·b_4_0·b_4_3 + b_2_0·b_4_02 + b_2_02·b_3_0·b_3_1 + b_2_02·b_3_02 + b_2_02·b_6_0 + b_2_03·b_4_3 + b_2_05
- b_3_1·b_7_0 + b_4_3·b_6_0 + b_4_1·b_3_02 + b_4_1·b_6_0 + b_4_0·b_3_0·b_3_1 + b_4_0·b_6_0
+ b_2_0·b_8_1 + b_2_0·b_8_0 + b_2_0·b_4_1·b_4_3 + b_2_0·b_4_12 + b_2_0·b_4_0·b_4_3 + b_2_0·b_4_0·b_4_1 + b_2_0·b_4_02 + b_2_03·b_4_3 + b_2_03·b_4_1
- b_3_1·b_7_4 + b_4_1·b_3_0·b_3_1 + b_4_1·b_3_02 + b_4_1·b_6_0 + b_2_0·b_4_12
+ b_2_0·b_4_0·b_4_3 + b_2_0·b_4_0·b_4_1 + b_2_0·b_4_02 + b_2_02·b_3_0·b_3_1 + b_2_02·b_3_02 + b_2_02·b_6_1 + b_2_02·b_6_0 + b_2_03·b_4_1 + b_2_05
- b_5_02 + b_4_3·b_6_0 + b_4_1·b_3_02 + b_4_0·b_6_0 + b_2_0·b_8_1 + b_2_0·b_8_0
+ b_2_0·b_4_1·b_4_3 + b_2_02·b_3_0·b_3_1 + b_2_02·b_3_02 + b_2_02·b_6_0 + b_2_03·b_4_3 + b_2_03·b_4_1 + b_2_05
- b_5_0·b_5_1 + b_4_3·b_6_0 + b_4_1·b_3_0·b_3_1 + b_4_1·b_6_0 + b_4_0·b_6_0 + b_2_0·b_8_1
+ b_2_0·b_8_0 + b_2_0·b_4_12 + b_2_0·b_4_0·b_4_3 + b_2_0·b_4_02 + b_2_03·b_4_3
- b_5_12 + b_4_1·b_3_0·b_3_1 + b_4_1·b_3_02 + b_4_1·b_6_0 + b_2_0·b_4_0·b_4_3
+ b_2_0·b_4_0·b_4_1 + b_2_0·b_4_02 + b_2_02·b_6_1 + b_2_02·b_6_0 + b_2_03·b_4_1
- b_4_1·a_7_10
- b_4_3·a_7_10 + b_4_0·a_7_10
- b_6_0·a_5_4
- b_6_1·a_5_4
- b_8_0·a_3_2 + b_4_02·a_3_2
- b_8_1·a_3_2 + b_4_02·a_3_2
- b_4_3·b_7_0 + b_4_1·b_7_4 + b_4_12·b_3_1 + b_4_12·b_3_0 + b_4_0·b_7_0
+ b_4_0·b_4_1·b_3_1 + b_2_0·b_9_0 + b_2_0·b_4_1·b_5_0 + b_2_0·b_4_0·b_5_1 + b_2_0·b_4_0·b_5_0 + b_2_02·b_7_0 + b_2_02·b_4_1·b_3_1 + b_2_02·b_4_0·b_3_1 + b_2_02·b_4_0·b_3_0 + b_2_03·b_5_0
- b_4_3·b_7_4 + b_4_1·b_7_4 + b_4_1·b_7_0 + b_4_12·b_3_1 + b_4_0·b_7_4 + b_4_0·b_4_1·b_3_0
+ b_2_0·b_9_1 + b_2_0·b_6_0·b_3_0 + b_2_0·b_4_1·b_5_1 + b_2_02·b_4_1·b_3_0 + b_2_02·b_4_0·b_3_0 + b_2_03·b_5_1 + b_2_03·b_5_0 + b_2_04·b_3_1
- b_6_0·b_5_0 + b_4_1·b_7_0 + b_4_12·b_3_1 + b_4_12·b_3_0 + b_4_0·b_4_1·b_3_0
+ b_2_0·b_4_1·b_5_1 + b_2_0·b_4_0·b_5_1 + b_2_0·b_4_0·b_5_0 + b_2_02·b_7_0 + b_2_02·b_4_0·b_3_1
- b_6_0·b_5_1 + b_4_1·b_7_4 + b_4_12·b_3_1 + b_2_0·b_6_0·b_3_1 + b_2_0·b_4_1·b_5_1
+ b_2_0·b_4_0·b_5_0 + b_2_02·b_7_0 + b_2_02·b_4_1·b_3_1 + b_2_02·b_4_1·b_3_0 + b_2_02·b_4_0·b_3_1 + b_2_02·b_4_0·b_3_0 + b_2_03·b_5_1 + b_2_03·b_5_0 + b_2_04·b_3_1
- b_6_1·b_5_0 + b_2_0·b_9_0 + b_2_0·b_4_1·b_5_1 + b_2_0·b_4_0·b_5_0 + b_2_02·b_7_0
+ b_2_02·b_4_0·b_3_0 + b_2_03·b_5_0
- b_6_1·b_5_1 + b_2_0·b_9_1 + b_2_0·b_6_0·b_3_0 + b_2_0·b_4_1·b_5_0 + b_2_0·b_4_0·b_5_0
+ b_2_02·b_7_4 + b_2_02·b_7_0 + b_2_02·b_4_1·b_3_0 + b_2_02·b_4_0·b_3_0 + b_2_03·b_5_1 + b_2_03·b_5_0 + b_2_04·b_3_1
- b_8_0·b_3_0 + b_4_1·b_7_4 + b_4_12·b_3_1 + b_4_0·b_4_1·b_3_1 + b_4_0·b_4_1·b_3_0
+ b_4_02·b_3_0 + b_2_0·b_9_0 + b_2_0·b_6_0·b_3_0 + b_2_0·b_4_1·b_5_1 + b_2_02·b_4_1·b_3_1 + b_2_02·b_4_0·b_3_1 + b_2_02·b_4_0·b_3_0 + b_2_03·b_5_0
- b_8_0·b_3_1 + b_4_1·b_7_4 + b_4_1·b_7_0 + b_4_12·b_3_0 + b_4_02·b_3_1 + b_2_0·b_9_1
+ b_2_0·b_6_0·b_3_1 + b_2_0·b_6_0·b_3_0 + b_2_0·b_4_1·b_5_1 + b_2_0·b_4_0·b_5_1 + b_2_0·b_4_0·b_5_0 + b_2_02·b_7_4 + b_2_02·b_7_0 + b_2_02·b_4_1·b_3_1 + b_2_02·b_4_1·b_3_0 + b_2_02·b_4_0·b_3_1 + b_2_02·b_4_0·b_3_0 + b_2_03·b_5_1 + b_2_03·b_5_0 + b_2_04·b_3_1
- b_8_1·b_3_0 + b_4_1·b_7_4 + b_4_1·b_7_0 + b_4_12·b_3_1 + b_4_12·b_3_0
+ b_4_0·b_4_1·b_3_1 + b_4_02·b_3_0 + b_2_0·b_9_0 + b_2_0·b_6_0·b_3_0 + b_2_0·b_4_1·b_5_1 + b_2_0·b_4_0·b_5_0 + b_2_02·b_4_1·b_3_1
- b_8_1·b_3_1 + b_4_1·b_7_0 + b_4_02·b_3_1 + b_2_0·b_9_1 + b_2_0·b_6_0·b_3_1
+ b_2_0·b_6_0·b_3_0 + b_2_0·b_4_1·b_5_1 + b_2_0·b_4_1·b_5_0 + b_2_0·b_4_0·b_5_0 + b_2_02·b_7_4 + b_2_02·b_7_0 + b_2_02·b_4_1·b_3_1 + b_2_02·b_4_1·b_3_0 + b_2_03·b_5_1 + b_2_04·b_3_1
- a_5_4·a_7_10
- a_3_2·b_9_0
- a_3_2·b_9_1
- a_5_4·b_7_0
- a_5_4·b_7_4
- b_5_0·a_7_10
- b_5_1·a_7_10
- b_4_3·b_8_0 + b_4_1·b_8_1 + b_4_12·b_4_3 + b_4_0·b_8_0 + b_4_0·b_4_1·b_4_3
+ b_4_0·b_4_12 + b_4_02·b_4_3 + b_4_03 + b_2_0·b_10_15 + b_2_0·b_4_3·b_6_0 + b_2_0·b_4_1·b_3_0·b_3_1 + b_2_0·b_4_1·b_3_02 + b_2_0·b_4_1·b_6_0 + b_2_0·b_4_0·b_3_0·b_3_1 + b_2_0·b_4_0·b_6_0 + b_2_02·b_8_1 + b_2_02·b_4_02 + b_2_03·b_6_0 + b_2_04·b_4_1 + b_2_02·c_8_2
- b_4_3·b_8_1 + b_4_1·b_8_1 + b_4_1·b_8_0 + b_4_13 + b_4_0·b_8_1 + b_4_0·b_4_12
+ b_4_02·b_4_3 + b_4_03 + b_2_0·b_10_15 + b_2_0·b_4_1·b_3_02 + b_2_0·b_4_1·b_6_0 + b_2_0·b_4_0·b_3_02 + b_2_0·b_4_0·b_6_1 + b_2_0·b_4_0·b_6_0 + b_2_02·b_8_1 + b_2_02·b_4_12 + b_2_02·b_4_02 + b_2_03·b_6_0 + b_2_04·b_4_3 + b_2_04·b_4_1 + b_2_04·b_4_0 + b_2_02·c_8_2
- b_6_0·b_6_1 + b_2_0·b_10_15 + b_2_0·b_4_1·b_6_0 + b_2_0·b_4_0·b_3_0·b_3_1
+ b_2_0·b_4_0·b_3_02 + b_2_0·b_4_0·b_6_0 + b_2_02·b_8_1 + b_2_02·b_4_1·b_4_3 + b_2_02·b_4_12 + b_2_02·b_4_0·b_4_1 + b_2_02·b_4_02 + b_2_03·b_3_0·b_3_1 + b_2_03·b_3_02 + b_2_04·b_4_0 + b_2_06
- b_6_0·b_3_0·b_3_1 + b_6_0·b_3_02 + b_6_02 + b_4_1·b_8_1 + b_4_1·b_8_0 + b_4_12·b_4_3
+ b_4_0·b_4_12 + b_2_0·b_4_3·b_6_0 + b_2_0·b_4_1·b_3_0·b_3_1 + b_2_0·b_4_1·b_6_0 + b_2_0·b_4_0·b_3_02 + b_2_02·b_8_1 + b_2_02·b_8_0 + b_2_02·b_4_1·b_4_3 + b_2_02·b_4_12 + b_2_02·b_4_0·b_4_1 + b_2_02·b_4_02 + b_2_03·b_6_0 + b_2_04·b_4_3 + b_2_04·b_4_0
- b_6_12 + b_2_0·b_4_0·b_6_1 + b_2_02·b_8_0 + b_2_02·b_4_1·b_4_3 + b_2_02·b_4_12
+ b_2_02·b_4_02 + b_2_03·b_3_0·b_3_1 + b_2_03·b_3_02 + b_2_06 + b_2_02·c_8_2
- b_3_0·b_9_0 + b_4_1·b_8_0 + b_4_13 + b_4_02·b_4_1 + b_2_0·b_10_15 + b_2_0·b_4_3·b_6_0
+ b_2_0·b_4_1·b_3_02 + b_2_0·b_4_0·b_3_0·b_3_1 + b_2_0·b_4_0·b_6_1 + b_2_0·b_4_0·b_6_0 + b_2_02·b_8_1 + b_2_02·b_4_0·b_4_1 + b_2_03·b_3_0·b_3_1 + b_2_03·b_3_02 + b_2_03·b_6_1 + b_2_04·b_4_3 + b_2_04·b_4_1 + b_2_06
- b_3_0·b_9_1 + b_6_0·b_3_02 + b_4_1·b_8_1 + b_4_12·b_4_3 + b_4_13 + b_4_0·b_4_1·b_4_3
+ b_2_0·b_10_15 + b_2_0·b_4_3·b_6_0 + b_2_0·b_4_1·b_3_02 + b_2_0·b_4_1·b_6_0 + b_2_0·b_4_0·b_3_0·b_3_1 + b_2_0·b_4_0·b_3_02 + b_2_0·b_4_0·b_6_0 + b_2_02·b_8_0 + b_2_02·b_4_1·b_4_3 + b_2_02·b_4_12 + b_2_02·b_4_0·b_4_3 + b_2_02·b_4_02 + b_2_03·b_6_1 + b_2_03·b_6_0 + b_2_04·b_4_3 + b_2_04·b_4_1 + b_2_04·b_4_0
- b_3_1·b_9_0 + b_4_1·b_8_1 + b_4_0·b_4_1·b_4_3 + b_2_0·b_10_15 + b_2_0·b_4_3·b_6_0
+ b_2_0·b_4_1·b_3_0·b_3_1 + b_2_0·b_4_1·b_6_0 + b_2_0·b_4_0·b_3_0·b_3_1 + b_2_0·b_4_0·b_6_0 + b_2_02·b_8_1 + b_2_02·b_4_0·b_4_3 + b_2_02·b_4_0·b_4_1 + b_2_03·b_3_0·b_3_1 + b_2_03·b_3_02 + b_2_03·b_6_1 + b_2_04·b_4_3 + b_2_06
- b_3_1·b_9_1 + b_6_0·b_3_02 + b_6_02 + b_4_12·b_4_3 + b_4_0·b_4_12
+ b_2_0·b_4_1·b_3_02 + b_2_0·b_4_0·b_6_1 + b_2_02·b_8_0 + b_2_02·b_4_1·b_4_3 + b_2_02·b_4_12 + b_2_02·b_4_0·b_4_1 + b_2_03·b_6_1 + b_2_04·b_4_3 + b_2_04·b_4_1
- b_5_0·b_7_0 + b_4_1·b_8_0 + b_4_13 + b_4_0·b_4_12 + b_4_02·b_4_1 + b_2_0·b_10_15
+ b_2_0·b_4_0·b_3_0·b_3_1 + b_2_0·b_4_0·b_6_1 + b_2_02·b_8_0 + b_2_02·b_4_1·b_4_3 + b_2_02·b_4_0·b_4_1 + b_2_02·b_4_02 + b_2_03·b_6_1 + b_2_03·b_6_0
- b_5_0·b_7_4 + b_4_1·b_8_1 + b_4_13 + b_4_0·b_4_1·b_4_3 + b_4_0·b_4_12 + b_2_0·b_10_15
+ b_2_0·b_4_3·b_6_0 + b_2_0·b_4_1·b_3_02 + b_2_0·b_4_0·b_3_0·b_3_1 + b_2_0·b_4_0·b_6_0 + b_2_02·b_8_1 + b_2_02·b_4_0·b_4_1 + b_2_03·b_3_0·b_3_1 + b_2_03·b_3_02 + b_2_03·b_6_1 + b_2_04·b_4_3 + b_2_04·b_4_1 + b_2_06
- b_5_1·b_7_0 + b_4_1·b_8_1 + b_4_02·b_4_1 + b_2_0·b_10_15 + b_2_0·b_4_3·b_6_0
+ b_2_0·b_4_1·b_3_02 + b_2_0·b_4_1·b_6_0 + b_2_0·b_4_0·b_3_0·b_3_1 + b_2_0·b_4_0·b_3_02 + b_2_02·b_8_0 + b_2_02·b_4_0·b_4_3 + b_2_02·b_4_02 + b_2_03·b_3_0·b_3_1 + b_2_03·b_3_02 + b_2_03·b_6_1 + b_2_04·b_4_3 + b_2_04·b_4_1 + b_2_04·b_4_0 + b_2_06
- b_5_1·b_7_4 + b_4_1·b_8_1 + b_4_1·b_8_0 + b_4_12·b_4_3 + b_4_13 + b_4_0·b_4_12
+ b_2_0·b_4_3·b_6_0 + b_2_0·b_4_1·b_3_0·b_3_1 + b_2_0·b_4_1·b_6_0 + b_2_0·b_4_0·b_3_0·b_3_1 + b_2_0·b_4_0·b_3_02 + b_2_0·b_4_0·b_6_1 + b_2_02·b_8_1 + b_2_02·b_4_12 + b_2_02·b_4_0·b_4_3 + b_2_03·b_6_0 + b_2_04·b_4_3 + b_2_04·b_4_0
- b_6_0·a_7_10
- b_6_1·a_7_10
- b_8_0·a_5_4 + b_4_02·a_5_4
- b_8_1·a_5_4 + b_4_02·a_5_4
- b_10_15·a_3_2
- b_4_3·b_9_0 + b_4_1·b_9_1 + b_4_1·b_6_0·b_3_0 + b_4_12·b_5_1 + b_4_0·b_9_0
+ b_4_0·b_4_1·b_5_1 + b_4_0·b_4_1·b_5_0 + b_2_0·b_4_1·b_7_4 + b_2_0·b_4_1·b_7_0 + b_2_0·b_4_12·b_3_1 + b_2_0·b_4_0·b_7_4 + b_2_0·b_4_0·b_7_0 + b_2_0·b_4_0·b_4_1·b_3_1 + b_2_02·b_9_0 + b_2_02·b_4_1·b_5_1 + b_2_02·b_4_1·b_5_0 + b_2_02·b_4_0·b_5_1 + b_2_02·b_4_0·b_5_0 + b_2_03·b_7_0 + b_2_03·b_4_0·b_3_1 + b_2_03·b_4_0·b_3_0 + b_2_04·b_5_0 + b_2_0·c_8_2·b_3_0
- b_4_3·b_9_1 + b_4_1·b_9_1 + b_4_1·b_9_0 + b_4_1·b_6_0·b_3_1 + b_4_1·b_6_0·b_3_0
+ b_4_12·b_5_0 + b_4_0·b_9_1 + b_4_0·b_4_1·b_5_1 + b_2_0·b_4_1·b_7_0 + b_2_0·b_4_12·b_3_1 + b_2_0·b_4_12·b_3_0 + b_2_0·b_4_0·b_7_4 + b_2_0·b_4_0·b_4_1·b_3_1 + b_2_0·b_4_0·b_4_1·b_3_0 + b_2_0·b_4_02·b_3_1 + b_2_02·b_9_1 + b_2_02·b_6_0·b_3_0 + b_2_02·b_4_1·b_5_1 + b_2_02·b_4_1·b_5_0 + b_2_02·b_4_0·b_5_1 + b_2_03·b_4_1·b_3_0 + b_2_03·b_4_0·b_3_1 + b_2_04·b_5_1 + b_2_05·b_3_1 + b_2_0·c_8_2·b_3_1
- b_6_0·b_7_0 + b_4_1·b_9_0 + b_4_1·b_6_0·b_3_1 + b_4_12·b_5_1 + b_4_12·b_5_0
+ b_4_0·b_6_0·b_3_0 + b_4_0·b_4_1·b_5_1 + b_2_0·b_4_1·b_7_0 + b_2_0·b_4_12·b_3_1 + b_2_0·b_4_0·b_7_4 + b_2_0·b_4_0·b_7_0 + b_2_0·b_4_0·b_4_1·b_3_0 + b_2_0·b_4_02·b_3_0 + b_2_02·b_9_0 + b_2_02·b_4_1·b_5_1 + b_2_02·b_4_1·b_5_0 + b_2_02·b_4_0·b_5_0 + b_2_03·b_4_1·b_3_1 + b_2_03·b_4_0·b_3_0 + b_2_04·b_5_0
- b_6_0·b_7_4 + b_4_1·b_9_1 + b_4_1·b_6_0·b_3_0 + b_4_12·b_5_1 + b_4_12·b_5_0
+ b_2_0·b_4_12·b_3_1 + b_2_0·b_4_12·b_3_0 + b_2_0·b_4_0·b_7_0 + b_2_0·b_4_0·b_4_1·b_3_1 + b_2_0·b_4_0·b_4_1·b_3_0 + b_2_0·b_4_02·b_3_0 + b_2_02·b_9_0 + b_2_02·b_4_1·b_5_0 + b_2_02·b_4_0·b_5_0 + b_2_03·b_7_4
- b_6_1·b_7_0 + b_2_0·b_4_12·b_3_0 + b_2_0·b_4_0·b_7_4 + b_2_0·b_4_0·b_7_0
+ b_2_0·b_4_0·b_4_1·b_3_0 + b_2_0·b_4_02·b_3_1 + b_2_0·b_4_02·b_3_0 + b_2_02·b_9_0 + b_2_02·b_4_1·b_5_1 + b_2_02·b_4_1·b_5_0 + b_2_02·b_4_0·b_5_0 + b_2_03·b_4_1·b_3_1 + b_2_0·c_8_2·b_3_0
- b_6_1·b_7_4 + b_2_0·b_4_1·b_7_4 + b_2_0·b_4_1·b_7_0 + b_2_0·b_4_0·b_7_4
+ b_2_0·b_4_0·b_7_0 + b_2_0·b_4_02·b_3_1 + b_2_0·b_4_02·b_3_0 + b_2_02·b_9_1 + b_2_02·b_9_0 + b_2_02·b_6_0·b_3_0 + b_2_02·b_4_0·b_5_1 + b_2_02·b_4_0·b_5_0 + b_2_03·b_7_4 + b_2_03·b_4_1·b_3_1 + b_2_03·b_4_1·b_3_0 + b_2_03·b_4_0·b_3_1 + b_2_03·b_4_0·b_3_0 + b_2_04·b_5_1 + b_2_04·b_5_0 + b_2_05·b_3_1 + b_2_0·c_8_2·b_3_1
- b_8_0·b_5_0 + b_4_1·b_9_1 + b_4_1·b_6_0·b_3_0 + b_4_12·b_5_1 + b_4_12·b_5_0
+ b_4_0·b_4_1·b_5_1 + b_4_0·b_4_1·b_5_0 + b_4_02·b_5_0 + b_2_0·b_4_1·b_7_4 + b_2_0·b_4_1·b_7_0 + b_2_0·b_4_12·b_3_1 + b_2_0·b_4_12·b_3_0 + b_2_0·b_4_0·b_7_4 + b_2_0·b_4_0·b_7_0 + b_2_0·b_4_0·b_4_1·b_3_1 + b_2_02·b_9_0 + b_2_02·b_4_1·b_5_1 + b_2_02·b_4_1·b_5_0 + b_2_02·b_4_0·b_5_1 + b_2_02·b_4_0·b_5_0 + b_2_03·b_7_0 + b_2_03·b_4_0·b_3_1 + b_2_0·c_8_2·b_3_0
- b_8_0·b_5_1 + b_4_1·b_9_1 + b_4_1·b_9_0 + b_4_1·b_6_0·b_3_0 + b_4_0·b_4_1·b_5_1
+ b_4_0·b_4_1·b_5_0 + b_4_02·b_5_1 + b_2_0·b_4_0·b_7_0 + b_2_0·b_4_0·b_4_1·b_3_1 + b_2_0·b_4_0·b_4_1·b_3_0 + b_2_0·b_4_02·b_3_1 + b_2_0·b_4_02·b_3_0 + b_2_02·b_9_1 + b_2_02·b_9_0 + b_2_02·b_6_0·b_3_1 + b_2_02·b_6_0·b_3_0 + b_2_02·b_4_1·b_5_1 + b_2_03·b_7_0 + b_2_03·b_4_0·b_3_1 + b_2_03·b_4_0·b_3_0 + b_2_04·b_5_0 + b_2_0·c_8_2·b_3_1
- b_8_1·b_5_0 + b_4_1·b_9_1 + b_4_1·b_9_0 + b_4_1·b_6_0·b_3_0 + b_4_12·b_5_1
+ b_4_0·b_4_1·b_5_0 + b_4_02·b_5_0 + b_2_0·b_4_1·b_7_4 + b_2_0·b_4_12·b_3_0 + b_2_0·b_4_0·b_7_4 + b_2_0·b_4_0·b_4_1·b_3_1 + b_2_0·b_4_0·b_4_1·b_3_0 + b_2_0·b_4_02·b_3_0 + b_2_02·b_9_0 + b_2_02·b_4_1·b_5_0 + b_2_02·b_4_0·b_5_0 + b_2_03·b_4_0·b_3_0 + b_2_04·b_5_0 + b_2_0·c_8_2·b_3_0
- b_8_1·b_5_1 + b_4_1·b_9_0 + b_4_0·b_4_1·b_5_1 + b_4_0·b_4_1·b_5_0 + b_4_02·b_5_1
+ b_2_0·b_4_1·b_7_4 + b_2_0·b_4_1·b_7_0 + b_2_0·b_4_0·b_7_4 + b_2_0·b_4_0·b_7_0 + b_2_0·b_4_0·b_4_1·b_3_1 + b_2_0·b_4_0·b_4_1·b_3_0 + b_2_0·b_4_02·b_3_1 + b_2_0·b_4_02·b_3_0 + b_2_02·b_9_1 + b_2_02·b_9_0 + b_2_02·b_6_0·b_3_1 + b_2_02·b_6_0·b_3_0 + b_2_02·b_4_1·b_5_1 + b_2_02·b_4_1·b_5_0 + b_2_02·b_4_0·b_5_1 + b_2_02·b_4_0·b_5_0 + b_2_03·b_4_1·b_3_1 + b_2_03·b_4_0·b_3_0 + b_2_04·b_5_0 + b_2_0·c_8_2·b_3_1
- b_10_15·b_3_0 + b_4_1·b_9_0 + b_4_1·b_6_0·b_3_0 + b_4_12·b_5_1 + b_4_12·b_5_0
+ b_4_0·b_6_0·b_3_1 + b_4_0·b_6_0·b_3_0 + b_4_0·b_4_1·b_5_1 + b_4_0·b_4_1·b_5_0 + b_2_0·b_4_1·b_7_4 + b_2_0·b_4_12·b_3_1 + b_2_0·b_4_0·b_7_4 + b_2_0·b_4_0·b_7_0 + b_2_0·b_4_0·b_4_1·b_3_1 + b_2_0·b_4_0·b_4_1·b_3_0 + b_2_0·b_4_02·b_3_1 + b_2_02·b_4_1·b_5_0 + b_2_02·b_4_0·b_5_0 + b_2_03·b_4_0·b_3_1
- b_10_15·b_3_1 + b_4_1·b_9_1 + b_4_1·b_6_0·b_3_1 + b_4_1·b_6_0·b_3_0 + b_4_12·b_5_1
+ b_4_12·b_5_0 + b_4_0·b_6_0·b_3_0 + b_4_0·b_4_1·b_5_1 + b_2_0·b_4_12·b_3_0 + b_2_0·b_4_0·b_7_0 + b_2_02·b_9_1 + b_2_02·b_9_0 + b_2_02·b_6_0·b_3_0 + b_2_02·b_4_0·b_5_1 + b_2_03·b_4_1·b_3_1 + b_2_03·b_4_1·b_3_0 + b_2_03·b_4_0·b_3_1 + b_2_03·b_4_0·b_3_0 + b_2_04·b_5_1 + b_2_04·b_5_0 + b_2_05·b_3_1
- a_7_102
- a_5_4·b_9_0
- a_5_4·b_9_1
- a_7_10·b_7_0
- a_7_10·b_7_4
- b_4_1·b_10_15 + b_4_1·b_4_3·b_6_0 + b_4_12·b_3_02 + b_4_0·b_4_3·b_6_0
+ b_4_0·b_4_1·b_3_02 + b_4_02·b_3_0·b_3_1 + b_4_02·b_3_02 + b_4_02·b_6_0 + b_2_0·b_4_1·b_8_1 + b_2_0·b_4_1·b_8_0 + b_2_0·b_4_0·b_8_0 + b_2_0·b_4_0·b_4_1·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_0·b_4_03 + b_2_02·b_4_1·b_3_0·b_3_1 + b_2_02·b_4_1·b_3_02 + b_2_02·b_4_1·b_6_0 + b_2_02·b_4_0·b_3_0·b_3_1 + b_2_02·b_4_0·b_3_02 + b_2_03·b_8_1 + b_2_03·b_8_0 + b_2_03·b_4_1·b_4_3 + b_2_03·b_4_0·b_4_3 + b_2_03·b_4_0·b_4_1 + b_2_04·b_3_0·b_3_1 + b_2_04·b_3_02 + b_2_04·b_6_0 + b_2_05·b_4_1 + b_2_05·b_4_0 + b_2_07 + c_8_2·b_3_0·b_3_1 + c_8_2·b_3_02
- b_4_3·b_10_15 + b_4_1·b_4_3·b_6_0 + b_4_12·b_3_0·b_3_1 + b_4_12·b_6_0 + b_4_0·b_10_15
+ b_4_0·b_4_1·b_3_0·b_3_1 + b_4_02·b_3_02 + b_2_0·b_4_1·b_8_1 + b_2_0·b_4_12·b_4_3 + b_2_0·b_4_13 + b_2_0·b_4_0·b_8_0 + b_2_0·b_4_0·b_4_1·b_4_3 + b_2_0·b_4_0·b_4_12 + b_2_0·b_4_02·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_02·b_10_15 + b_2_02·b_4_3·b_6_0 + b_2_02·b_4_1·b_3_0·b_3_1 + b_2_02·b_4_1·b_6_0 + b_2_02·b_4_0·b_3_02 + b_2_02·b_4_0·b_6_1 + b_2_02·b_4_0·b_6_0 + b_2_03·b_4_0·b_4_3 + b_2_03·b_4_0·b_4_1 + b_2_03·b_4_02 + b_2_04·b_3_0·b_3_1 + b_2_04·b_3_02 + b_2_04·b_6_1 + b_2_04·b_6_0 + b_2_05·b_4_3 + b_2_05·b_4_0 + b_2_07 + c_8_2·b_3_02 + b_2_0·b_4_1·c_8_2 + b_2_03·c_8_2
- b_6_0·b_8_0 + b_4_1·b_4_3·b_6_0 + b_4_12·b_3_0·b_3_1 + b_4_12·b_6_0
+ b_4_0·b_4_1·b_3_0·b_3_1 + b_4_0·b_4_1·b_3_02 + b_4_02·b_3_02 + b_4_02·b_6_0 + b_2_0·b_6_02 + b_2_0·b_4_1·b_8_0 + b_2_0·b_4_12·b_4_3 + b_2_0·b_4_13 + b_2_0·b_4_0·b_8_0 + b_2_0·b_4_0·b_4_1·b_4_3 + b_2_0·b_4_0·b_4_12 + b_2_0·b_4_02·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_02·b_10_15 + b_2_02·b_4_3·b_6_0 + b_2_02·b_4_1·b_3_02 + b_2_02·b_4_0·b_3_0·b_3_1 + b_2_02·b_4_0·b_3_02 + b_2_02·b_4_0·b_6_0 + b_2_03·b_8_1 + b_2_03·b_8_0 + b_2_03·b_4_0·b_4_3 + b_2_03·b_4_0·b_4_1 + b_2_04·b_3_0·b_3_1 + b_2_04·b_3_02 + b_2_04·b_6_1 + b_2_04·b_6_0 + b_2_05·b_4_3 + b_2_05·b_4_1 + b_2_05·b_4_0 + b_2_07 + c_8_2·b_3_02 + b_2_0·b_4_1·c_8_2
- b_6_0·b_8_1 + b_4_1·b_4_3·b_6_0 + b_4_12·b_3_0·b_3_1 + b_4_12·b_3_02 + b_4_12·b_6_0
+ b_4_0·b_4_1·b_3_02 + b_4_0·b_4_1·b_6_0 + b_4_02·b_3_0·b_3_1 + b_4_02·b_6_0 + b_2_0·b_6_02 + b_2_0·b_4_1·b_8_1 + b_2_0·b_4_1·b_8_0 + b_2_0·b_4_12·b_4_3 + b_2_0·b_4_0·b_4_12 + b_2_0·b_4_02·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_0·b_4_03 + b_2_02·b_10_15 + b_2_02·b_4_1·b_3_0·b_3_1 + b_2_02·b_4_1·b_3_02 + b_2_02·b_4_0·b_3_02 + b_2_02·b_4_0·b_6_0 + b_2_03·b_8_1 + b_2_03·b_8_0 + b_2_03·b_4_12 + b_2_03·b_4_02 + b_2_04·b_6_1 + b_2_05·b_4_1 + b_2_05·b_4_0 + c_8_2·b_3_0·b_3_1 + b_2_0·b_4_1·c_8_2
- b_6_1·b_8_0 + b_4_02·b_6_1 + b_2_0·b_4_1·b_8_1 + b_2_0·b_4_1·b_8_0 + b_2_0·b_4_13
+ b_2_0·b_4_0·b_4_1·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_02·b_4_3·b_6_0 + b_2_02·b_4_1·b_3_02 + b_2_02·b_4_0·b_3_02 + b_2_02·b_4_0·b_6_1 + b_2_03·b_8_0 + b_2_03·b_4_12 + b_2_03·b_4_0·b_4_1 + b_2_03·b_4_02 + b_2_04·b_6_0 + b_2_05·b_4_3 + b_2_05·b_4_1 + b_2_05·b_4_0 + b_2_0·b_4_3·c_8_2 + b_2_0·b_4_0·c_8_2
- b_6_1·b_8_1 + b_4_02·b_6_1 + b_2_0·b_4_12·b_4_3 + b_2_0·b_4_13 + b_2_0·b_4_0·b_8_0
+ b_2_0·b_4_0·b_4_12 + b_2_0·b_4_02·b_4_3 + b_2_02·b_10_15 + b_2_02·b_4_3·b_6_0 + b_2_02·b_4_1·b_3_0·b_3_1 + b_2_03·b_4_1·b_4_3 + b_2_03·b_4_12 + b_2_04·b_6_1 + b_2_05·b_4_3 + b_2_0·b_4_3·c_8_2 + b_2_0·b_4_1·c_8_2 + b_2_0·b_4_0·c_8_2
- b_5_0·b_9_0 + b_4_12·b_3_02 + b_4_0·b_4_1·b_3_02 + b_4_0·b_4_1·b_6_0
+ b_4_02·b_3_02 + b_2_0·b_4_1·b_8_1 + b_2_0·b_4_12·b_4_3 + b_2_0·b_4_0·b_4_1·b_4_3 + b_2_0·b_4_02·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_0·b_4_03 + b_2_02·b_10_15 + b_2_02·b_4_0·b_3_02 + b_2_02·b_4_0·b_6_1 + b_2_02·b_4_0·b_6_0 + b_2_03·b_8_0 + b_2_03·b_4_1·b_4_3 + b_2_03·b_4_12 + b_2_04·b_6_1 + b_2_04·b_6_0 + b_2_05·b_4_0 + c_8_2·b_3_02
- b_5_0·b_9_1 + b_4_12·b_6_0 + b_4_0·b_4_3·b_6_0 + b_4_0·b_4_1·b_3_02
+ b_4_0·b_4_1·b_6_0 + b_4_02·b_3_0·b_3_1 + b_4_02·b_6_0 + b_2_0·b_4_0·b_8_1 + b_2_0·b_4_0·b_8_0 + b_2_0·b_4_0·b_4_1·b_4_3 + b_2_0·b_4_02·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_0·b_4_03 + b_2_02·b_10_15 + b_2_02·b_4_3·b_6_0 + b_2_02·b_4_1·b_3_02 + b_2_02·b_4_1·b_6_0 + b_2_02·b_4_0·b_3_0·b_3_1 + b_2_02·b_4_0·b_3_02 + b_2_02·b_4_0·b_6_0 + b_2_03·b_8_1 + b_2_03·b_4_12 + b_2_03·b_4_0·b_4_3 + b_2_03·b_4_0·b_4_1 + b_2_04·b_6_1 + b_2_04·b_6_0 + b_2_05·b_4_3 + b_2_05·b_4_1 + b_2_05·b_4_0 + c_8_2·b_3_0·b_3_1
- b_5_1·b_9_0 + b_4_12·b_3_0·b_3_1 + b_4_0·b_4_3·b_6_0 + b_4_0·b_4_1·b_3_0·b_3_1
+ b_4_02·b_3_0·b_3_1 + b_4_02·b_6_0 + b_2_0·b_4_1·b_8_0 + b_2_0·b_4_12·b_4_3 + b_2_0·b_4_0·b_8_1 + b_2_0·b_4_0·b_8_0 + b_2_0·b_4_0·b_4_12 + b_2_02·b_4_3·b_6_0 + b_2_02·b_4_1·b_3_0·b_3_1 + b_2_02·b_4_0·b_6_1 + b_2_02·b_4_0·b_6_0 + b_2_03·b_8_1 + b_2_03·b_8_0 + b_2_03·b_4_0·b_4_3 + b_2_03·b_4_02 + b_2_04·b_3_0·b_3_1 + b_2_04·b_3_02 + b_2_04·b_6_0 + b_2_05·b_4_3 + b_2_07 + c_8_2·b_3_0·b_3_1
- b_5_1·b_9_1 + b_4_1·b_4_3·b_6_0 + b_4_0·b_4_1·b_3_0·b_3_1 + b_4_02·b_3_0·b_3_1
+ b_4_02·b_3_02 + b_2_0·b_6_0·b_3_02 + b_2_0·b_6_02 + b_2_0·b_4_1·b_8_1 + b_2_0·b_4_1·b_8_0 + b_2_0·b_4_02·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_0·b_4_03 + b_2_02·b_4_3·b_6_0 + b_2_02·b_4_1·b_3_0·b_3_1 + b_2_02·b_4_1·b_3_02 + b_2_02·b_4_0·b_3_0·b_3_1 + b_2_02·b_4_0·b_6_1 + b_2_02·b_4_0·b_6_0 + b_2_03·b_8_1 + b_2_03·b_8_0 + b_2_03·b_4_1·b_4_3 + b_2_03·b_4_0·b_4_3 + b_2_03·b_4_0·b_4_1 + b_2_04·b_6_0 + b_2_05·b_4_1 + c_8_2·b_3_0·b_3_1 + c_8_2·b_3_02 + b_2_03·c_8_2
- b_7_02 + b_4_1·b_4_3·b_6_0 + b_4_12·b_6_0 + b_4_0·b_4_3·b_6_0
+ b_4_0·b_4_1·b_3_0·b_3_1 + b_4_0·b_4_1·b_3_02 + b_4_0·b_4_1·b_6_0 + b_4_02·b_6_0 + b_2_0·b_4_1·b_8_1 + b_2_0·b_4_12·b_4_3 + b_2_0·b_4_13 + b_2_0·b_4_0·b_8_1 + b_2_0·b_4_0·b_8_0 + b_2_0·b_4_0·b_4_1·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_02·b_10_15 + b_2_02·b_4_3·b_6_0 + b_2_02·b_4_1·b_3_02 + b_2_02·b_4_0·b_3_0·b_3_1 + b_2_02·b_4_0·b_6_1 + b_2_02·b_4_0·b_6_0 + b_2_03·b_8_1 + b_2_03·b_4_1·b_4_3 + b_2_03·b_4_0·b_4_3 + b_2_04·b_3_0·b_3_1 + b_2_04·b_3_02 + b_2_04·b_6_1 + b_2_05·b_4_3 + b_2_05·b_4_1 + b_2_07 + c_8_2·b_3_02
- b_7_0·b_7_4 + b_4_12·b_3_0·b_3_1 + b_4_0·b_4_1·b_3_0·b_3_1 + b_4_0·b_4_1·b_3_02
+ b_4_02·b_3_0·b_3_1 + b_2_0·b_4_1·b_8_1 + b_2_0·b_4_1·b_8_0 + b_2_0·b_4_12·b_4_3 + b_2_0·b_4_13 + b_2_0·b_4_0·b_4_1·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_02·b_4_3·b_6_0 + b_2_02·b_4_1·b_3_02 + b_2_02·b_4_0·b_6_0 + b_2_03·b_8_1 + b_2_03·b_8_0 + b_2_03·b_4_0·b_4_3 + b_2_03·b_4_0·b_4_1 + b_2_03·b_4_02 + b_2_04·b_3_0·b_3_1 + b_2_04·b_3_02 + b_2_04·b_6_0 + b_2_05·b_4_3 + b_2_05·b_4_1 + b_2_07 + c_8_2·b_3_0·b_3_1
- b_7_42 + b_4_1·b_4_3·b_6_0 + b_4_12·b_3_0·b_3_1 + b_4_0·b_4_1·b_3_0·b_3_1
+ b_4_02·b_3_0·b_3_1 + b_4_02·b_3_02 + b_2_0·b_4_12·b_4_3 + b_2_0·b_4_13 + b_2_0·b_4_02·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_0·b_4_03 + b_2_02·b_4_3·b_6_0 + b_2_02·b_4_1·b_3_02 + b_2_02·b_4_0·b_6_0 + b_2_03·b_8_0 + b_2_03·b_4_1·b_4_3 + b_2_04·b_3_0·b_3_1 + b_2_04·b_3_02 + b_2_05·b_4_3 + b_2_05·b_4_1 + b_2_07 + c_8_2·b_3_0·b_3_1 + c_8_2·b_3_02 + b_2_03·c_8_2
- b_8_0·a_7_10 + b_4_02·a_7_10
- b_8_1·a_7_10 + b_4_02·a_7_10
- b_10_15·a_5_4
- b_6_0·b_9_0 + b_4_12·b_7_0 + b_4_13·b_3_0 + b_4_0·b_4_1·b_7_4 + b_4_0·b_4_1·b_7_0
+ b_4_0·b_4_12·b_3_1 + b_4_0·b_4_12·b_3_0 + b_2_0·b_4_1·b_9_1 + b_2_0·b_4_1·b_6_0·b_3_0 + b_2_0·b_4_12·b_5_1 + b_2_0·b_4_0·b_9_1 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_6_0·b_3_0 + b_2_0·b_4_0·b_4_1·b_5_1 + b_2_0·b_4_02·b_5_1 + b_2_0·b_4_02·b_5_0 + b_2_02·b_4_1·b_7_4 + b_2_02·b_4_0·b_7_0 + b_2_02·b_4_0·b_4_1·b_3_1 + b_2_02·b_4_02·b_3_0 + b_2_03·b_4_1·b_5_1 + b_2_04·b_7_0 + b_2_04·b_4_0·b_3_0 + b_2_05·b_5_0 + b_4_1·c_8_2·b_3_0 + b_2_02·c_8_2·b_3_0
- b_6_0·b_9_1 + b_6_02·b_3_0 + b_4_13·b_3_1 + b_4_13·b_3_0 + b_4_0·b_4_1·b_7_4
+ b_4_0·b_4_12·b_3_1 + b_4_0·b_4_12·b_3_0 + b_4_02·b_4_1·b_3_1 + b_2_0·b_4_1·b_6_0·b_3_1 + b_2_0·b_4_1·b_6_0·b_3_0 + b_2_0·b_4_12·b_5_0 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_6_0·b_3_0 + b_2_0·b_4_0·b_4_1·b_5_1 + b_2_0·b_4_0·b_4_1·b_5_0 + b_2_0·b_4_02·b_5_1 + b_2_02·b_4_12·b_3_0 + b_2_02·b_4_0·b_7_4 + b_2_02·b_4_0·b_7_0 + b_2_02·b_4_0·b_4_1·b_3_0 + b_2_02·b_4_02·b_3_1 + b_2_03·b_9_1 + b_2_03·b_9_0 + b_2_03·b_6_0·b_3_0 + b_2_03·b_4_0·b_5_0 + b_2_04·b_7_0 + b_2_04·b_4_1·b_3_1 + b_2_04·b_4_0·b_3_1 + b_2_04·b_4_0·b_3_0 + b_2_05·b_5_0 + b_4_1·c_8_2·b_3_1 + b_2_02·c_8_2·b_3_0
- b_6_1·b_9_0 + b_2_0·b_4_12·b_5_0 + b_2_0·b_4_0·b_4_1·b_5_1 + b_2_0·b_4_0·b_4_1·b_5_0
+ b_2_02·b_4_1·b_7_0 + b_2_02·b_4_12·b_3_1 + b_2_02·b_4_0·b_7_0 + b_2_02·b_4_0·b_4_1·b_3_0 + b_2_02·b_4_02·b_3_0 + b_2_03·b_9_0 + b_2_03·b_4_0·b_5_1 + b_2_03·b_4_0·b_5_0 + b_2_04·b_4_0·b_3_1 + b_2_0·c_8_2·b_5_0
- b_6_1·b_9_1 + b_2_0·b_4_1·b_9_1 + b_2_0·b_4_1·b_9_0 + b_2_0·b_4_1·b_6_0·b_3_0
+ b_2_0·b_4_0·b_9_1 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_6_0·b_3_1 + b_2_0·b_4_0·b_4_1·b_5_0 + b_2_02·b_4_12·b_3_1 + b_2_02·b_4_0·b_7_0 + b_2_02·b_4_0·b_4_1·b_3_1 + b_2_02·b_4_0·b_4_1·b_3_0 + b_2_03·b_9_1 + b_2_03·b_9_0 + b_2_03·b_6_0·b_3_0 + b_2_03·b_4_0·b_5_0 + b_2_04·b_7_4 + b_2_04·b_7_0 + b_2_04·b_4_1·b_3_0 + b_2_04·b_4_0·b_3_0 + b_2_05·b_5_1 + b_2_05·b_5_0 + b_2_06·b_3_1 + b_2_0·c_8_2·b_5_1 + b_2_02·c_8_2·b_3_0
- b_8_0·b_7_0 + b_4_12·b_7_4 + b_4_13·b_3_0 + b_4_0·b_4_1·b_7_4 + b_4_0·b_4_1·b_7_0
+ b_4_0·b_4_12·b_3_1 + b_4_02·b_7_0 + b_2_0·b_4_1·b_9_1 + b_2_0·b_4_1·b_6_0·b_3_1 + b_2_0·b_4_1·b_6_0·b_3_0 + b_2_0·b_4_0·b_9_1 + b_2_0·b_4_0·b_4_1·b_5_1 + b_2_0·b_4_0·b_4_1·b_5_0 + b_2_0·b_4_02·b_5_1 + b_2_0·b_4_02·b_5_0 + b_2_02·b_4_12·b_3_0 + b_2_02·b_4_0·b_7_4 + b_2_02·b_4_0·b_4_1·b_3_0 + b_2_03·b_9_0 + b_2_03·b_4_1·b_5_1 + b_2_03·b_4_1·b_5_0 + b_2_03·b_4_0·b_5_0 + b_2_04·b_7_0 + b_4_1·c_8_2·b_3_1 + b_2_0·c_8_2·b_5_0
- b_8_0·b_7_4 + b_4_12·b_7_4 + b_4_13·b_3_1 + b_4_13·b_3_0 + b_4_0·b_4_1·b_7_4
+ b_4_0·b_4_12·b_3_0 + b_4_02·b_7_4 + b_4_02·b_4_1·b_3_1 + b_4_02·b_4_1·b_3_0 + b_2_0·b_4_1·b_9_1 + b_2_0·b_4_1·b_6_0·b_3_0 + b_2_0·b_4_12·b_5_0 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_4_1·b_5_1 + b_2_02·b_4_1·b_7_4 + b_2_02·b_4_0·b_7_0 + b_2_02·b_4_0·b_4_1·b_3_1 + b_2_02·b_4_0·b_4_1·b_3_0 + b_2_03·b_9_1 + b_2_03·b_9_0 + b_2_03·b_6_0·b_3_0 + b_2_03·b_4_1·b_5_1 + b_2_03·b_4_0·b_5_0 + b_2_04·b_7_4 + b_2_04·b_7_0 + b_2_04·b_4_1·b_3_1 + b_2_04·b_4_1·b_3_0 + b_2_05·b_5_1 + b_2_06·b_3_1 + b_4_1·c_8_2·b_3_1 + b_4_1·c_8_2·b_3_0 + b_2_0·c_8_2·b_5_1 + b_2_02·c_8_2·b_3_1 + b_2_02·c_8_2·b_3_0
- b_8_1·b_7_0 + b_4_12·b_7_0 + b_4_13·b_3_1 + b_4_13·b_3_0 + b_4_0·b_4_1·b_7_4
+ b_4_0·b_4_1·b_7_0 + b_4_0·b_4_12·b_3_1 + b_4_02·b_7_0 + b_4_02·b_4_1·b_3_0 + b_2_0·b_4_1·b_9_1 + b_2_0·b_4_1·b_9_0 + b_2_0·b_4_1·b_6_0·b_3_1 + b_2_0·b_4_1·b_6_0·b_3_0 + b_2_0·b_4_12·b_5_1 + b_2_0·b_4_0·b_9_1 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_4_1·b_5_1 + b_2_0·b_4_0·b_4_1·b_5_0 + b_2_02·b_4_12·b_3_1 + b_2_02·b_4_12·b_3_0 + b_2_02·b_4_02·b_3_0 + b_2_03·b_4_0·b_5_0 + b_2_04·b_4_0·b_3_0 + b_2_05·b_5_0 + b_4_1·c_8_2·b_3_1 + b_4_1·c_8_2·b_3_0 + b_2_0·c_8_2·b_5_0
- b_8_1·b_7_4 + b_4_13·b_3_0 + b_4_0·b_4_12·b_3_1 + b_4_02·b_7_4 + b_4_02·b_4_1·b_3_0
+ b_2_0·b_4_1·b_9_0 + b_2_0·b_4_12·b_5_1 + b_2_0·b_4_0·b_9_1 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_6_0·b_3_0 + b_2_0·b_4_0·b_4_1·b_5_1 + b_2_0·b_4_0·b_4_1·b_5_0 + b_2_02·b_4_12·b_3_0 + b_2_02·b_4_0·b_4_1·b_3_1 + b_2_02·b_4_0·b_4_1·b_3_0 + b_2_03·b_9_1 + b_2_03·b_6_0·b_3_0 + b_2_03·b_4_0·b_5_0 + b_2_04·b_7_4 + b_2_04·b_7_0 + b_2_04·b_4_1·b_3_0 + b_2_05·b_5_1 + b_2_06·b_3_1 + b_4_1·c_8_2·b_3_0 + b_2_0·c_8_2·b_5_1 + b_2_02·c_8_2·b_3_1 + b_2_02·c_8_2·b_3_0
- b_10_15·b_5_0 + b_4_12·b_7_4 + b_4_0·b_4_1·b_7_4 + b_4_0·b_4_1·b_7_0
+ b_4_0·b_4_12·b_3_1 + b_4_0·b_4_12·b_3_0 + b_2_0·b_4_0·b_9_1 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_6_0·b_3_0 + b_2_0·b_4_0·b_4_1·b_5_1 + b_2_0·b_4_0·b_4_1·b_5_0 + b_2_0·b_4_02·b_5_1 + b_2_0·b_4_02·b_5_0 + b_2_02·b_4_1·b_7_0 + b_2_02·b_4_12·b_3_1 + b_2_02·b_4_0·b_4_1·b_3_0 + b_2_03·b_4_0·b_5_1 + b_2_04·b_4_0·b_3_1 + b_4_1·c_8_2·b_3_0
- b_10_15·b_5_1 + b_4_12·b_7_4 + b_4_12·b_7_0 + b_4_13·b_3_1 + b_4_0·b_4_1·b_7_0
+ b_4_0·b_4_12·b_3_0 + b_4_02·b_4_1·b_3_1 + b_4_02·b_4_1·b_3_0 + b_2_0·b_4_1·b_9_1 + b_2_0·b_4_1·b_6_0·b_3_1 + b_2_0·b_4_1·b_6_0·b_3_0 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_6_0·b_3_0 + b_2_0·b_4_0·b_4_1·b_5_1 + b_2_02·b_4_1·b_7_4 + b_2_02·b_4_1·b_7_0 + b_2_02·b_4_12·b_3_0 + b_2_02·b_4_0·b_7_4 + b_2_02·b_4_0·b_4_1·b_3_1 + b_2_02·b_4_02·b_3_1 + b_2_02·b_4_02·b_3_0 + b_2_03·b_4_1·b_5_1 + b_2_04·b_7_4 + b_2_04·b_7_0 + b_2_04·b_4_0·b_3_0 + b_2_05·b_5_0 + b_4_1·c_8_2·b_3_1 + b_2_02·c_8_2·b_3_1 + b_2_02·c_8_2·b_3_0
- a_7_10·b_9_0
- a_7_10·b_9_1
- b_6_0·b_10_15 + b_4_1·b_6_02 + b_4_12·b_8_0 + b_4_13·b_4_3 + b_4_0·b_6_0·b_3_02
+ b_4_0·b_6_02 + b_4_0·b_4_1·b_8_0 + b_4_0·b_4_13 + b_4_02·b_4_1·b_4_3 + b_4_02·b_4_12 + b_2_0·b_4_1·b_4_3·b_6_0 + b_2_0·b_4_12·b_3_0·b_3_1 + b_2_0·b_4_12·b_6_0 + b_2_0·b_4_0·b_10_15 + b_2_0·b_4_0·b_4_3·b_6_0 + b_2_0·b_4_0·b_4_1·b_3_02 + b_2_0·b_4_02·b_3_0·b_3_1 + b_2_0·b_4_02·b_3_02 + b_2_0·b_4_02·b_6_1 + b_2_02·b_4_12·b_4_3 + b_2_02·b_4_0·b_8_1 + b_2_02·b_4_02·b_4_1 + b_2_02·b_4_03 + b_2_03·b_10_15 + b_2_03·b_4_1·b_6_0 + b_2_03·b_4_0·b_3_0·b_3_1 + b_2_03·b_4_0·b_6_1 + b_2_04·b_8_1 + b_2_04·b_8_0 + b_2_04·b_4_1·b_4_3 + b_2_04·b_4_12 + b_2_04·b_4_0·b_4_3 + b_2_04·b_4_0·b_4_1 + b_2_04·b_4_02 + b_2_05·b_3_0·b_3_1 + b_2_05·b_3_02 + b_2_05·b_6_0 + b_2_08 + b_4_12·c_8_2 + b_2_0·c_8_2·b_3_0·b_3_1 + b_2_0·c_8_2·b_3_02 + b_2_02·b_4_1·c_8_2
- b_6_1·b_10_15 + b_2_0·b_4_1·b_4_3·b_6_0 + b_2_0·b_4_12·b_3_0·b_3_1
+ b_2_0·b_4_12·b_3_02 + b_2_0·b_4_12·b_6_0 + b_2_0·b_4_0·b_4_3·b_6_0 + b_2_0·b_4_0·b_4_1·b_3_0·b_3_1 + b_2_0·b_4_02·b_6_0 + b_2_02·b_4_1·b_8_0 + b_2_02·b_4_0·b_8_0 + b_2_02·b_4_0·b_4_1·b_4_3 + b_2_02·b_4_0·b_4_12 + b_2_02·b_4_02·b_4_3 + b_2_03·b_4_3·b_6_0 + b_2_03·b_4_1·b_3_02 + b_2_03·b_4_1·b_6_0 + b_2_03·b_4_0·b_3_0·b_3_1 + b_2_03·b_4_0·b_3_02 + b_2_03·b_4_0·b_6_1 + b_2_03·b_4_0·b_6_0 + b_2_04·b_4_1·b_4_3 + b_2_04·b_4_12 + b_2_04·b_4_0·b_4_1 + b_2_04·b_4_02 + b_2_05·b_3_0·b_3_1 + b_2_05·b_3_02 + b_2_05·b_6_1 + b_2_05·b_6_0 + b_2_06·b_4_3 + b_2_06·b_4_1 + b_2_06·b_4_0 + b_2_08 + b_2_0·c_8_2·b_3_0·b_3_1 + b_2_0·b_6_0·c_8_2 + b_2_02·b_4_3·c_8_2 + b_2_02·b_4_0·c_8_2
- b_8_02 + b_4_12·b_8_1 + b_4_12·b_8_0 + b_4_13·b_4_3 + b_4_14 + b_4_0·b_4_1·b_8_1
+ b_4_0·b_4_13 + b_4_02·b_4_1·b_4_3 + b_4_04 + b_2_0·b_4_1·b_4_3·b_6_0 + b_2_0·b_4_12·b_6_0 + b_2_0·b_4_0·b_10_15 + b_2_0·b_4_0·b_4_3·b_6_0 + b_2_0·b_4_0·b_4_1·b_3_02 + b_2_0·b_4_02·b_6_0 + b_2_02·b_6_02 + b_2_02·b_4_1·b_8_1 + b_2_02·b_4_12·b_4_3 + b_2_02·b_4_13 + b_2_02·b_4_0·b_8_1 + b_2_02·b_4_0·b_8_0 + b_2_02·b_4_0·b_4_1·b_4_3 + b_2_02·b_4_0·b_4_12 + b_2_02·b_4_02·b_4_1 + b_2_03·b_10_15 + b_2_03·b_4_3·b_6_0 + b_2_03·b_4_1·b_3_02 + b_2_03·b_4_0·b_3_0·b_3_1 + b_2_03·b_4_0·b_6_0 + b_2_04·b_8_1 + b_2_04·b_4_12 + b_2_04·b_4_0·b_4_1 + b_2_04·b_4_02 + b_2_05·b_6_0 + b_2_06·b_4_3 + b_2_06·b_4_1 + b_4_1·b_4_3·c_8_2 + b_4_12·c_8_2 + b_4_0·b_4_1·c_8_2 + b_2_0·c_8_2·b_3_02 + b_2_0·b_6_1·c_8_2 + b_2_0·b_6_0·c_8_2 + b_2_02·b_4_3·c_8_2
- b_8_0·b_8_1 + b_4_12·b_8_1 + b_4_12·b_8_0 + b_4_0·b_4_1·b_8_0 + b_4_0·b_4_12·b_4_3
+ b_4_02·b_8_1 + b_4_02·b_8_0 + b_4_02·b_4_12 + b_4_03·b_4_1 + b_4_04 + b_2_0·b_4_12·b_3_02 + b_2_0·b_4_12·b_6_0 + b_2_0·b_4_0·b_4_3·b_6_0 + b_2_0·b_4_0·b_4_1·b_3_02 + b_2_0·b_4_0·b_4_1·b_6_0 + b_2_0·b_4_02·b_6_0 + b_2_02·b_6_02 + b_2_02·b_4_0·b_8_1 + b_2_02·b_4_0·b_4_1·b_4_3 + b_2_02·b_4_0·b_4_12 + b_2_02·b_4_03 + b_2_03·b_4_3·b_6_0 + b_2_03·b_4_1·b_3_02 + b_2_03·b_4_0·b_3_0·b_3_1 + b_2_03·b_4_0·b_6_1 + b_2_04·b_8_1 + b_2_04·b_8_0 + b_2_04·b_4_12 + b_2_04·b_4_0·b_4_1 + b_2_05·b_3_0·b_3_1 + b_2_05·b_3_02 + b_2_05·b_6_1 + b_2_05·b_6_0 + b_2_06·b_4_3 + b_2_06·b_4_1 + b_2_08 + b_4_12·c_8_2 + b_2_0·c_8_2·b_3_0·b_3_1 + b_2_0·c_8_2·b_3_02 + b_2_0·b_6_1·c_8_2 + b_2_0·b_6_0·c_8_2 + b_2_02·b_4_3·c_8_2 + b_2_02·b_4_0·c_8_2
- b_8_12 + b_4_12·b_8_1 + b_4_13·b_4_3 + b_4_0·b_4_1·b_8_0 + b_4_0·b_4_12·b_4_3
+ b_4_0·b_4_13 + b_4_02·b_4_1·b_4_3 + b_4_02·b_4_12 + b_4_04 + b_2_0·b_4_1·b_4_3·b_6_0 + b_2_0·b_4_0·b_10_15 + b_2_0·b_4_0·b_4_3·b_6_0 + b_2_0·b_4_0·b_4_1·b_3_0·b_3_1 + b_2_0·b_4_0·b_4_1·b_6_0 + b_2_0·b_4_02·b_3_0·b_3_1 + b_2_0·b_4_02·b_3_02 + b_2_0·b_4_02·b_6_1 + b_2_02·b_6_02 + b_2_02·b_4_1·b_8_1 + b_2_02·b_4_12·b_4_3 + b_2_02·b_4_13 + b_2_02·b_4_0·b_8_1 + b_2_02·b_4_0·b_8_0 + b_2_03·b_10_15 + b_2_03·b_4_0·b_3_02 + b_2_03·b_4_0·b_6_0 + b_2_04·b_8_0 + b_2_04·b_4_1·b_4_3 + b_2_04·b_4_12 + b_2_04·b_4_02 + b_2_05·b_3_0·b_3_1 + b_2_05·b_3_02 + b_2_06·b_4_0 + b_2_08 + b_4_1·b_4_3·c_8_2 + b_4_0·b_4_1·c_8_2 + b_2_0·c_8_2·b_3_02 + b_2_0·b_6_1·c_8_2 + b_2_0·b_6_0·c_8_2 + b_2_02·b_4_3·c_8_2
- b_7_0·b_9_0 + b_4_12·b_8_1 + b_4_13·b_4_3 + b_4_0·b_4_1·b_8_1 + b_4_0·b_4_12·b_4_3
+ b_4_02·b_4_1·b_4_3 + b_2_0·b_4_1·b_4_3·b_6_0 + b_2_0·b_4_12·b_3_02 + b_2_0·b_4_0·b_10_15 + b_2_0·b_4_0·b_4_3·b_6_0 + b_2_0·b_4_0·b_4_1·b_6_0 + b_2_0·b_4_02·b_3_02 + b_2_0·b_4_02·b_6_0 + b_2_02·b_4_1·b_8_1 + b_2_02·b_4_1·b_8_0 + b_2_02·b_4_02·b_4_3 + b_2_02·b_4_02·b_4_1 + b_2_02·b_4_03 + b_2_03·b_10_15 + b_2_03·b_4_3·b_6_0 + b_2_03·b_4_1·b_3_02 + b_2_03·b_4_1·b_6_0 + b_2_03·b_4_0·b_3_0·b_3_1 + b_2_03·b_4_0·b_6_0 + b_2_04·b_8_1 + b_2_04·b_4_12 + b_2_04·b_4_0·b_4_1 + b_2_04·b_4_02 + b_2_05·b_3_0·b_3_1 + b_2_05·b_3_02 + b_2_05·b_6_1 + b_2_06·b_4_3 + b_2_06·b_4_1 + b_2_08 + b_4_1·b_4_3·c_8_2 + b_4_0·b_4_1·c_8_2 + b_2_0·b_6_0·c_8_2 + b_2_02·b_4_0·c_8_2 + b_2_04·c_8_2
- b_7_0·b_9_1 + b_4_1·b_6_0·b_3_02 + b_4_1·b_6_02 + b_4_12·b_8_1 + b_4_12·b_8_0
+ b_4_0·b_6_0·b_3_02 + b_4_0·b_4_12·b_4_3 + b_4_0·b_4_13 + b_4_02·b_4_1·b_4_3 + b_4_03·b_4_1 + b_2_0·b_4_12·b_3_0·b_3_1 + b_2_0·b_4_12·b_3_02 + b_2_0·b_4_12·b_6_0 + b_2_0·b_4_0·b_4_1·b_3_02 + b_2_0·b_4_0·b_4_1·b_6_0 + b_2_0·b_4_02·b_3_02 + b_2_0·b_4_02·b_6_0 + b_2_02·b_4_1·b_8_0 + b_2_02·b_4_12·b_4_3 + b_2_02·b_4_0·b_8_1 + b_2_02·b_4_02·b_4_3 + b_2_03·b_4_1·b_3_0·b_3_1 + b_2_03·b_4_1·b_3_02 + b_2_03·b_4_1·b_6_0 + b_2_03·b_4_0·b_3_02 + b_2_03·b_4_0·b_6_0 + b_2_04·b_4_1·b_4_3 + b_2_04·b_4_02 + b_2_05·b_3_0·b_3_1 + b_2_05·b_3_02 + b_2_05·b_6_0 + b_2_06·b_4_1 + b_2_06·b_4_0 + b_2_08 + b_4_1·b_4_3·c_8_2 + b_4_12·c_8_2 + b_4_0·b_4_1·c_8_2 + b_2_0·b_6_0·c_8_2 + b_2_02·b_4_1·c_8_2 + b_2_04·c_8_2
- b_7_4·b_9_0 + b_4_13·b_4_3 + b_4_14 + b_4_0·b_4_1·b_8_0 + b_4_0·b_4_12·b_4_3
+ b_4_02·b_4_12 + b_4_03·b_4_1 + b_2_0·b_4_1·b_4_3·b_6_0 + b_2_0·b_4_0·b_10_15 + b_2_0·b_4_0·b_4_1·b_3_02 + b_2_0·b_4_02·b_3_0·b_3_1 + b_2_0·b_4_02·b_3_02 + b_2_0·b_4_02·b_6_1 + b_2_02·b_4_1·b_8_1 + b_2_02·b_4_1·b_8_0 + b_2_02·b_4_13 + b_2_02·b_4_0·b_8_0 + b_2_02·b_4_02·b_4_1 + b_2_03·b_4_3·b_6_0 + b_2_03·b_4_1·b_3_0·b_3_1 + b_2_03·b_4_1·b_6_0 + b_2_03·b_4_0·b_3_0·b_3_1 + b_2_03·b_4_0·b_3_02 + b_2_03·b_4_0·b_6_0 + b_2_04·b_8_1 + b_2_04·b_8_0 + b_2_04·b_4_0·b_4_1 + b_2_05·b_3_0·b_3_1 + b_2_05·b_3_02 + b_2_05·b_6_0 + b_2_06·b_4_3 + b_2_06·b_4_0 + b_2_08 + b_4_1·b_4_3·c_8_2 + b_4_12·c_8_2 + b_4_0·b_4_1·c_8_2 + b_2_0·c_8_2·b_3_0·b_3_1 + b_2_0·b_6_0·c_8_2 + b_2_04·c_8_2
- b_7_4·b_9_1 + b_4_12·b_8_0 + b_4_0·b_4_1·b_8_1 + b_4_0·b_4_1·b_8_0
+ b_4_0·b_4_12·b_4_3 + b_4_02·b_4_12 + b_2_0·b_4_1·b_4_3·b_6_0 + b_2_0·b_4_12·b_3_0·b_3_1 + b_2_0·b_4_12·b_3_02 + b_2_0·b_4_12·b_6_0 + b_2_0·b_4_0·b_4_1·b_6_0 + b_2_0·b_4_02·b_3_0·b_3_1 + b_2_0·b_4_02·b_3_02 + b_2_0·b_4_02·b_6_1 + b_2_0·b_4_02·b_6_0 + b_2_02·b_4_1·b_8_1 + b_2_02·b_4_0·b_8_1 + b_2_02·b_4_0·b_8_0 + b_2_02·b_4_0·b_4_12 + b_2_02·b_4_02·b_4_3 + b_2_03·b_4_1·b_6_0 + b_2_04·b_8_1 + b_2_04·b_4_12 + b_2_04·b_4_02 + b_2_05·b_6_0 + b_4_12·c_8_2 + b_2_02·b_4_3·c_8_2 + b_2_04·c_8_2
- b_10_15·a_7_10
- b_8_0·b_9_0 + b_4_12·b_6_0·b_3_1 + b_4_0·b_4_1·b_9_1 + b_4_0·b_4_1·b_6_0·b_3_1
+ b_4_0·b_4_12·b_5_0 + b_4_02·b_9_0 + b_4_02·b_6_0·b_3_1 + b_4_02·b_4_1·b_5_0 + b_2_0·b_4_12·b_7_0 + b_2_0·b_4_13·b_3_1 + b_2_0·b_4_13·b_3_0 + b_2_0·b_4_0·b_4_1·b_7_4 + b_2_0·b_4_02·b_7_4 + b_2_0·b_4_02·b_7_0 + b_2_0·b_4_02·b_4_1·b_3_1 + b_2_0·b_4_02·b_4_1·b_3_0 + b_2_0·b_4_03·b_3_0 + b_2_02·b_4_1·b_9_1 + b_2_02·b_4_1·b_9_0 + b_2_02·b_4_1·b_6_0·b_3_0 + b_2_02·b_4_12·b_5_0 + b_2_02·b_4_0·b_9_0 + b_2_02·b_4_0·b_4_1·b_5_1 + b_2_02·b_4_02·b_5_0 + b_2_03·b_4_1·b_7_4 + b_2_03·b_4_1·b_7_0 + b_2_03·b_4_12·b_3_1 + b_2_03·b_4_0·b_7_4 + b_6_0·c_8_2·b_3_1 + b_2_0·c_8_2·b_7_0 + b_2_0·b_4_1·c_8_2·b_3_1 + b_2_0·b_4_0·c_8_2·b_3_0 + b_2_02·c_8_2·b_5_0 + b_2_03·c_8_2·b_3_1
- b_8_0·b_9_1 + b_4_13·b_5_1 + b_4_0·b_4_1·b_9_1 + b_4_0·b_4_1·b_6_0·b_3_0
+ b_4_0·b_4_12·b_5_1 + b_4_02·b_9_1 + b_4_02·b_6_0·b_3_1 + b_4_02·b_4_1·b_5_0 + b_2_0·b_6_02·b_3_0 + b_2_0·b_4_12·b_7_4 + b_2_0·b_4_13·b_3_0 + b_2_0·b_4_0·b_4_1·b_7_4 + b_2_0·b_4_0·b_4_1·b_7_0 + b_2_0·b_4_0·b_4_12·b_3_1 + b_2_0·b_4_02·b_7_4 + b_2_0·b_4_02·b_7_0 + b_2_0·b_4_02·b_4_1·b_3_1 + b_2_0·b_4_02·b_4_1·b_3_0 + b_2_0·b_4_03·b_3_0 + b_2_02·b_4_1·b_6_0·b_3_1 + b_2_02·b_4_1·b_6_0·b_3_0 + b_2_02·b_4_0·b_6_0·b_3_1 + b_2_02·b_4_0·b_4_1·b_5_1 + b_2_03·b_4_1·b_7_0 + b_2_03·b_4_12·b_3_1 + b_2_03·b_4_0·b_7_0 + b_2_03·b_4_0·b_4_1·b_3_1 + b_2_03·b_4_02·b_3_1 + b_2_03·b_4_02·b_3_0 + b_2_04·b_4_1·b_5_0 + b_2_04·b_4_0·b_5_1 + b_2_04·b_4_0·b_5_0 + b_2_05·b_4_1·b_3_1 + b_2_05·b_4_1·b_3_0 + b_2_06·b_5_1 + b_2_07·b_3_1 + b_6_0·c_8_2·b_3_1 + b_4_1·c_8_2·b_5_0 + b_2_0·c_8_2·b_7_4 + b_2_0·b_4_1·c_8_2·b_3_1 + b_2_03·c_8_2·b_3_1 + b_2_03·c_8_2·b_3_0
- b_8_1·b_9_0 + b_4_12·b_6_0·b_3_0 + b_4_13·b_5_1 + b_4_0·b_4_1·b_9_0
+ b_4_0·b_4_1·b_6_0·b_3_1 + b_4_0·b_4_12·b_5_1 + b_4_0·b_4_12·b_5_0 + b_4_02·b_9_0 + b_4_02·b_6_0·b_3_0 + b_4_02·b_4_1·b_5_0 + b_2_0·b_4_12·b_7_0 + b_2_0·b_4_0·b_4_12·b_3_1 + b_2_0·b_4_02·b_4_1·b_3_0 + b_2_0·b_4_03·b_3_1 + b_2_0·b_4_03·b_3_0 + b_2_02·b_4_1·b_9_1 + b_2_02·b_4_1·b_6_0·b_3_0 + b_2_02·b_4_12·b_5_1 + b_2_02·b_4_12·b_5_0 + b_2_03·b_4_1·b_7_4 + b_2_03·b_4_1·b_7_0 + b_2_03·b_4_0·b_4_1·b_3_1 + b_2_03·b_4_02·b_3_1 + b_2_04·b_9_0 + b_2_04·b_4_1·b_5_1 + b_2_04·b_4_0·b_5_0 + b_2_05·b_7_0 + b_2_05·b_4_0·b_3_0 + b_2_06·b_5_0 + b_6_0·c_8_2·b_3_0 + b_4_1·c_8_2·b_5_1 + b_2_0·c_8_2·b_7_0 + b_2_0·b_4_0·c_8_2·b_3_1 + b_2_02·c_8_2·b_5_0
- b_8_1·b_9_1 + b_4_12·b_6_0·b_3_0 + b_4_13·b_5_1 + b_4_13·b_5_0
+ b_4_0·b_4_1·b_6_0·b_3_1 + b_4_0·b_4_1·b_6_0·b_3_0 + b_4_0·b_4_12·b_5_0 + b_4_02·b_9_1 + b_4_02·b_4_1·b_5_0 + b_2_0·b_6_02·b_3_0 + b_2_0·b_4_13·b_3_0 + b_2_0·b_4_0·b_4_1·b_7_4 + b_2_0·b_4_0·b_4_1·b_7_0 + b_2_0·b_4_0·b_4_12·b_3_1 + b_2_0·b_4_0·b_4_12·b_3_0 + b_2_0·b_4_02·b_7_0 + b_2_0·b_4_03·b_3_1 + b_2_02·b_4_1·b_9_1 + b_2_02·b_4_1·b_6_0·b_3_1 + b_2_02·b_4_12·b_5_1 + b_2_02·b_4_0·b_9_0 + b_2_02·b_4_0·b_6_0·b_3_0 + b_2_02·b_4_0·b_4_1·b_5_1 + b_2_02·b_4_02·b_5_1 + b_2_02·b_4_02·b_5_0 + b_2_03·b_4_1·b_7_4 + b_2_03·b_4_12·b_3_1 + b_2_03·b_4_0·b_7_4 + b_2_03·b_4_0·b_4_1·b_3_0 + b_2_03·b_4_02·b_3_0 + b_2_04·b_9_0 + b_2_04·b_4_1·b_5_1 + b_2_04·b_4_0·b_5_1 + b_2_04·b_4_0·b_5_0 + b_2_05·b_4_1·b_3_0 + b_2_05·b_4_0·b_3_0 + b_2_06·b_5_1 + b_2_06·b_5_0 + b_2_07·b_3_1 + b_4_1·c_8_2·b_5_0 + b_2_0·c_8_2·b_7_4 + b_2_0·b_4_1·c_8_2·b_3_0 + b_2_0·b_4_0·c_8_2·b_3_1 + b_2_0·b_4_0·c_8_2·b_3_0 + b_2_02·c_8_2·b_5_0
- b_10_15·b_7_0 + b_4_12·b_6_0·b_3_1 + b_4_13·b_5_1 + b_4_0·b_4_1·b_9_1
+ b_4_0·b_4_1·b_6_0·b_3_0 + b_4_0·b_4_12·b_5_1 + b_4_0·b_4_12·b_5_0 + b_4_02·b_6_0·b_3_1 + b_4_02·b_6_0·b_3_0 + b_2_0·b_4_12·b_7_4 + b_2_0·b_4_12·b_7_0 + b_2_0·b_4_0·b_4_1·b_7_4 + b_2_0·b_4_02·b_7_0 + b_2_0·b_4_02·b_4_1·b_3_1 + b_2_0·b_4_03·b_3_0 + b_2_02·b_4_1·b_9_0 + b_2_02·b_4_12·b_5_1 + b_2_02·b_4_02·b_5_1 + b_2_02·b_4_02·b_5_0 + b_2_03·b_4_1·b_7_4 + b_2_03·b_4_1·b_7_0 + b_2_03·b_4_0·b_7_4 + b_2_03·b_4_02·b_3_1 + b_2_03·b_4_02·b_3_0 + b_2_04·b_4_0·b_5_0 + b_4_1·c_8_2·b_5_0 + b_2_0·b_4_1·c_8_2·b_3_1 + b_2_0·b_4_0·c_8_2·b_3_1 + b_2_0·b_4_0·c_8_2·b_3_0
- b_10_15·b_7_4 + b_4_12·b_6_0·b_3_1 + b_4_12·b_6_0·b_3_0 + b_4_13·b_5_1
+ b_4_0·b_4_1·b_9_0 + b_4_0·b_4_1·b_6_0·b_3_0 + b_4_0·b_4_12·b_5_1 + b_4_02·b_6_0·b_3_1 + b_4_02·b_6_0·b_3_0 + b_4_02·b_4_1·b_5_1 + b_4_02·b_4_1·b_5_0 + b_2_0·b_4_12·b_7_4 + b_2_0·b_4_12·b_7_0 + b_2_0·b_4_13·b_3_0 + b_2_0·b_4_0·b_4_12·b_3_1 + b_2_0·b_4_02·b_7_4 + b_2_0·b_4_02·b_7_0 + b_2_0·b_4_02·b_4_1·b_3_1 + b_2_0·b_4_02·b_4_1·b_3_0 + b_2_0·b_4_03·b_3_1 + b_2_02·b_4_1·b_9_1 + b_2_02·b_4_1·b_6_0·b_3_0 + b_2_02·b_4_12·b_5_1 + b_2_02·b_4_0·b_9_0 + b_2_02·b_4_0·b_4_1·b_5_0 + b_2_02·b_4_02·b_5_1 + b_2_03·b_4_1·b_7_0 + b_2_03·b_4_12·b_3_0 + b_2_03·b_4_0·b_4_1·b_3_1 + b_2_03·b_4_0·b_4_1·b_3_0 + b_2_03·b_4_02·b_3_1 + b_2_04·b_4_1·b_5_1 + b_2_04·b_4_0·b_5_1 + b_2_04·b_4_0·b_5_0 + b_2_05·b_7_4 + b_2_05·b_7_0 + b_2_05·b_4_0·b_3_1 + b_2_05·b_4_0·b_3_0 + b_2_06·b_5_0 + b_6_0·c_8_2·b_3_1 + b_6_0·c_8_2·b_3_0 + b_4_1·c_8_2·b_5_0 + b_2_0·b_4_1·c_8_2·b_3_1 + b_2_0·b_4_0·c_8_2·b_3_1 + b_2_0·b_4_0·c_8_2·b_3_0 + b_2_02·c_8_2·b_5_1 + b_2_02·c_8_2·b_5_0 + b_2_03·c_8_2·b_3_1
- b_8_0·b_10_15 + b_4_12·b_4_3·b_6_0 + b_4_13·b_3_0·b_3_1 + b_4_13·b_3_02
+ b_4_0·b_4_1·b_4_3·b_6_0 + b_4_0·b_4_12·b_3_0·b_3_1 + b_4_0·b_4_12·b_3_02 + b_4_02·b_10_15 + b_4_02·b_4_1·b_3_0·b_3_1 + b_4_02·b_4_1·b_3_02 + b_4_03·b_3_02 + b_2_0·b_4_1·b_6_02 + b_2_0·b_4_12·b_8_1 + b_2_0·b_4_0·b_6_0·b_3_02 + b_2_0·b_4_0·b_6_02 + b_2_0·b_4_0·b_4_1·b_8_1 + b_2_0·b_4_0·b_4_1·b_8_0 + b_2_0·b_4_0·b_4_13 + b_2_0·b_4_02·b_8_0 + b_2_0·b_4_02·b_4_1·b_4_3 + b_2_0·b_4_02·b_4_12 + b_2_0·b_4_03·b_4_3 + b_2_02·b_4_12·b_3_02 + b_2_02·b_4_12·b_6_0 + b_2_02·b_4_0·b_4_1·b_3_02 + b_2_02·b_4_0·b_4_1·b_6_0 + b_2_02·b_4_02·b_3_0·b_3_1 + b_2_02·b_4_02·b_6_1 + b_2_03·b_4_1·b_8_1 + b_2_03·b_4_12·b_4_3 + b_2_03·b_4_0·b_4_12 + b_2_03·b_4_03 + b_2_04·b_4_3·b_6_0 + b_2_04·b_4_1·b_3_02 + b_2_04·b_4_1·b_6_0 + b_2_05·b_4_12 + b_2_05·b_4_0·b_4_3 + b_2_05·b_4_02 + b_2_06·b_3_0·b_3_1 + b_2_06·b_3_02 + b_2_06·b_6_1 + b_2_06·b_6_0 + b_2_07·b_4_3 + b_2_07·b_4_1 + b_2_09 + b_4_3·b_6_0·c_8_2 + b_4_1·c_8_2·b_3_0·b_3_1 + b_4_0·c_8_2·b_3_02 + b_4_0·b_6_0·c_8_2 + b_2_0·b_4_0·b_4_1·c_8_2 + b_2_02·c_8_2·b_3_0·b_3_1 + b_2_02·b_6_1·c_8_2 + b_2_02·b_6_0·c_8_2 + b_2_03·b_4_3·c_8_2 + b_2_03·b_4_0·c_8_2
- b_8_1·b_10_15 + b_4_13·b_3_0·b_3_1 + b_4_13·b_3_02 + b_4_0·b_4_1·b_4_3·b_6_0
+ b_4_0·b_4_12·b_3_02 + b_4_0·b_4_12·b_6_0 + b_4_02·b_10_15 + b_4_02·b_4_3·b_6_0 + b_4_02·b_4_1·b_3_0·b_3_1 + b_4_03·b_3_0·b_3_1 + b_4_03·b_3_02 + b_4_03·b_6_0 + b_2_0·b_4_1·b_6_02 + b_2_0·b_4_12·b_8_1 + b_2_0·b_4_12·b_8_0 + b_2_0·b_4_14 + b_2_0·b_4_0·b_6_0·b_3_02 + b_2_0·b_4_0·b_6_02 + b_2_0·b_4_0·b_4_1·b_8_0 + b_2_0·b_4_0·b_4_12·b_4_3 + b_2_0·b_4_02·b_8_0 + b_2_0·b_4_03·b_4_1 + b_2_0·b_4_04 + b_2_02·b_4_12·b_3_02 + b_2_02·b_4_0·b_4_3·b_6_0 + b_2_02·b_4_0·b_4_1·b_3_02 + b_2_02·b_4_0·b_4_1·b_6_0 + b_2_02·b_4_02·b_3_0·b_3_1 + b_2_02·b_4_02·b_3_02 + b_2_02·b_4_02·b_6_1 + b_2_02·b_4_02·b_6_0 + b_2_03·b_4_1·b_8_1 + b_2_03·b_4_0·b_8_1 + b_2_03·b_4_0·b_8_0 + b_2_03·b_4_0·b_4_1·b_4_3 + b_2_03·b_4_0·b_4_12 + b_2_03·b_4_03 + b_2_04·b_4_3·b_6_0 + b_2_04·b_4_1·b_3_02 + b_2_04·b_4_1·b_6_0 + b_2_04·b_4_0·b_3_0·b_3_1 + b_2_04·b_4_0·b_3_02 + b_2_04·b_4_0·b_6_1 + b_2_04·b_4_0·b_6_0 + b_2_05·b_8_1 + b_2_05·b_8_0 + b_2_05·b_4_1·b_4_3 + b_2_05·b_4_0·b_4_3 + b_2_05·b_4_02 + b_2_06·b_6_1 + b_2_07·b_4_3 + b_2_07·b_4_1 + b_2_07·b_4_0 + b_4_3·b_6_0·c_8_2 + b_4_1·c_8_2·b_3_0·b_3_1 + b_4_1·b_6_0·c_8_2 + b_4_0·c_8_2·b_3_0·b_3_1 + b_4_0·c_8_2·b_3_02 + b_4_0·b_6_0·c_8_2 + b_2_0·b_4_1·b_4_3·c_8_2 + b_2_0·b_4_0·b_4_1·c_8_2 + b_2_02·c_8_2·b_3_0·b_3_1 + b_2_02·b_6_1·c_8_2 + b_2_02·b_6_0·c_8_2 + b_2_03·b_4_3·c_8_2
- b_9_02 + b_4_12·b_4_3·b_6_0 + b_4_13·b_3_0·b_3_1 + b_4_13·b_3_02
+ b_4_0·b_4_1·b_4_3·b_6_0 + b_4_02·b_4_1·b_3_0·b_3_1 + b_4_02·b_4_1·b_3_02 + b_4_03·b_3_02 + b_2_0·b_4_12·b_8_0 + b_2_0·b_4_0·b_4_1·b_8_1 + b_2_0·b_4_0·b_4_1·b_8_0 + b_2_0·b_4_02·b_4_12 + b_2_0·b_4_03·b_4_3 + b_2_0·b_4_03·b_4_1 + b_2_0·b_4_04 + b_2_02·b_4_1·b_4_3·b_6_0 + b_2_02·b_4_12·b_3_0·b_3_1 + b_2_02·b_4_0·b_4_3·b_6_0 + b_2_02·b_4_0·b_4_1·b_3_02 + b_2_02·b_4_0·b_4_1·b_6_0 + b_2_02·b_4_02·b_6_1 + b_2_02·b_4_02·b_6_0 + b_2_03·b_4_1·b_8_1 + b_2_03·b_4_13 + b_2_03·b_4_0·b_8_1 + b_2_03·b_4_0·b_8_0 + b_2_03·b_4_0·b_4_12 + b_2_03·b_4_03 + b_2_04·b_10_15 + b_2_04·b_4_3·b_6_0 + b_2_04·b_4_1·b_3_02 + b_2_04·b_4_0·b_3_0·b_3_1 + b_2_04·b_4_0·b_6_1 + b_2_04·b_4_0·b_6_0 + b_2_05·b_8_1 + b_2_05·b_4_1·b_4_3 + b_2_05·b_4_0·b_4_3 + b_2_06·b_3_0·b_3_1 + b_2_06·b_3_02 + b_2_06·b_6_1 + b_2_07·b_4_3 + b_2_07·b_4_1 + b_2_09 + b_4_3·b_6_0·c_8_2 + b_4_1·c_8_2·b_3_0·b_3_1 + b_4_1·c_8_2·b_3_02 + b_4_0·c_8_2·b_3_02 + b_4_0·b_6_0·c_8_2 + b_2_0·b_8_1·c_8_2 + b_2_0·b_8_0·c_8_2 + b_2_0·b_4_0·b_4_1·c_8_2 + b_2_03·b_4_3·c_8_2 + b_2_03·b_4_1·c_8_2 + b_2_03·b_4_0·c_8_2
- b_9_0·b_9_1 + b_4_13·b_3_02 + b_4_13·b_6_0 + b_4_0·b_4_1·b_4_3·b_6_0
+ b_4_0·b_4_12·b_3_0·b_3_1 + b_4_02·b_4_1·b_3_02 + b_4_03·b_3_02 + b_2_0·b_4_12·b_8_0 + b_2_0·b_4_13·b_4_3 + b_2_0·b_4_14 + b_2_0·b_4_0·b_4_1·b_8_1 + b_2_0·b_4_0·b_4_12·b_4_3 + b_2_0·b_4_02·b_4_12 + b_2_0·b_4_03·b_4_3 + b_2_0·b_4_04 + b_2_02·b_4_12·b_3_02 + b_2_02·b_4_0·b_10_15 + b_2_02·b_4_0·b_4_3·b_6_0 + b_2_02·b_4_02·b_3_02 + b_2_03·b_4_12·b_4_3 + b_2_03·b_4_13 + b_2_03·b_4_0·b_8_1 + b_2_03·b_4_0·b_8_0 + b_2_03·b_4_0·b_4_1·b_4_3 + b_2_03·b_4_0·b_4_12 + b_2_03·b_4_02·b_4_3 + b_2_03·b_4_02·b_4_1 + b_2_04·b_10_15 + b_2_04·b_4_1·b_6_0 + b_2_04·b_4_0·b_3_02 + b_2_04·b_4_0·b_6_1 + b_2_04·b_4_0·b_6_0 + b_2_05·b_8_0 + b_2_05·b_4_12 + b_2_05·b_4_0·b_4_1 + b_2_06·b_6_1 + b_2_06·b_6_0 + b_2_07·b_4_0 + b_4_3·b_6_0·c_8_2 + b_4_1·c_8_2·b_3_0·b_3_1 + b_4_1·b_6_0·c_8_2 + b_4_0·c_8_2·b_3_02 + b_4_0·b_6_0·c_8_2 + b_2_0·b_8_1·c_8_2 + b_2_0·b_8_0·c_8_2 + b_2_0·b_4_0·b_4_3·c_8_2 + b_2_0·b_4_02·c_8_2 + b_2_02·c_8_2·b_3_0·b_3_1 + b_2_03·b_4_3·c_8_2 + b_2_03·b_4_0·c_8_2
- b_9_12 + b_6_02·b_3_02 + b_4_13·b_3_02 + b_4_0·b_4_1·b_4_3·b_6_0
+ b_4_02·b_4_1·b_6_0 + b_4_03·b_3_0·b_3_1 + b_4_03·b_3_02 + b_2_0·b_4_12·b_8_0 + b_2_0·b_4_0·b_4_1·b_8_1 + b_2_0·b_4_0·b_4_1·b_8_0 + b_2_0·b_4_0·b_4_13 + b_2_0·b_4_02·b_4_12 + b_2_02·b_4_1·b_4_3·b_6_0 + b_2_02·b_4_12·b_6_0 + b_2_02·b_4_0·b_4_3·b_6_0 + b_2_02·b_4_0·b_4_1·b_3_0·b_3_1 + b_2_02·b_4_0·b_4_1·b_3_02 + b_2_02·b_4_02·b_3_0·b_3_1 + b_2_02·b_4_02·b_6_0 + b_2_03·b_4_13 + b_2_03·b_4_0·b_8_0 + b_2_03·b_4_02·b_4_1 + b_2_03·b_4_03 + b_2_04·b_4_0·b_3_0·b_3_1 + b_2_04·b_4_0·b_3_02 + b_2_05·b_8_1 + b_2_05·b_4_0·b_4_1 + b_2_06·b_6_0 + b_2_07·b_4_0 + b_4_1·c_8_2·b_3_0·b_3_1 + b_4_1·b_6_0·c_8_2 + b_4_0·c_8_2·b_3_0·b_3_1 + b_4_0·c_8_2·b_3_02 + b_2_0·b_4_12·c_8_2 + b_2_0·b_4_0·b_4_3·c_8_2 + b_2_0·b_4_0·b_4_1·c_8_2 + b_2_0·b_4_02·c_8_2 + b_2_02·b_6_1·c_8_2 + b_2_02·b_6_0·c_8_2 + b_2_03·b_4_3·c_8_2 + b_2_03·b_4_0·c_8_2 + b_2_05·c_8_2
- b_10_15·b_9_0 + b_4_14·b_3_1 + b_4_0·b_4_13·b_3_1 + b_4_02·b_4_1·b_7_4
+ b_4_02·b_4_1·b_7_0 + b_4_02·b_4_12·b_3_0 + b_2_0·b_4_12·b_6_0·b_3_0 + b_2_0·b_4_13·b_5_1 + b_2_0·b_4_13·b_5_0 + b_2_0·b_4_0·b_4_1·b_9_0 + b_2_0·b_4_0·b_4_1·b_6_0·b_3_1 + b_2_0·b_4_0·b_4_12·b_5_1 + b_2_0·b_4_0·b_4_12·b_5_0 + b_2_0·b_4_02·b_9_1 + b_2_0·b_4_02·b_9_0 + b_2_0·b_4_03·b_5_1 + b_2_0·b_4_03·b_5_0 + b_2_02·b_4_13·b_3_0 + b_2_02·b_4_0·b_4_1·b_7_4 + b_2_02·b_4_0·b_4_12·b_3_0 + b_2_02·b_4_02·b_7_4 + b_2_02·b_4_02·b_7_0 + b_2_02·b_4_02·b_4_1·b_3_1 + b_2_03·b_4_12·b_5_1 + b_2_03·b_4_0·b_9_1 + b_2_03·b_4_0·b_9_0 + b_2_03·b_4_0·b_6_0·b_3_0 + b_2_03·b_4_0·b_4_1·b_5_1 + b_2_03·b_4_02·b_5_0 + b_2_04·b_4_1·b_7_0 + b_2_04·b_4_12·b_3_1 + b_2_04·b_4_0·b_7_0 + b_2_04·b_4_02·b_3_0 + b_2_05·b_4_1·b_5_0 + b_2_05·b_4_0·b_5_1 + b_2_05·b_4_0·b_5_0 + b_2_06·b_4_0·b_3_1 + b_4_1·c_8_2·b_7_0 + b_4_12·c_8_2·b_3_1 + b_2_0·b_6_0·c_8_2·b_3_0 + b_2_0·b_4_0·c_8_2·b_5_1 + b_2_0·b_4_0·c_8_2·b_5_0 + b_2_02·b_4_1·c_8_2·b_3_0 + b_2_02·b_4_0·c_8_2·b_3_0 + b_2_03·c_8_2·b_5_0 + b_2_04·c_8_2·b_3_0
- b_10_15·b_9_1 + b_4_1·b_6_02·b_3_0 + b_4_13·b_7_0 + b_4_14·b_3_0
+ b_4_0·b_6_02·b_3_1 + b_4_0·b_6_02·b_3_0 + b_4_0·b_4_13·b_3_1 + b_4_0·b_4_13·b_3_0 + b_4_02·b_4_1·b_7_4 + b_4_02·b_4_1·b_7_0 + b_4_02·b_4_12·b_3_1 + b_4_02·b_4_12·b_3_0 + b_2_0·b_4_12·b_6_0·b_3_1 + b_2_0·b_4_12·b_6_0·b_3_0 + b_2_0·b_4_13·b_5_0 + b_2_0·b_4_0·b_4_12·b_5_1 + b_2_0·b_4_0·b_4_12·b_5_0 + b_2_0·b_4_02·b_9_1 + b_2_0·b_4_02·b_9_0 + b_2_0·b_4_02·b_6_0·b_3_0 + b_2_0·b_4_03·b_5_1 + b_2_0·b_4_03·b_5_0 + b_2_02·b_4_12·b_7_4 + b_2_02·b_4_12·b_7_0 + b_2_02·b_4_0·b_4_1·b_7_0 + b_2_02·b_4_0·b_4_12·b_3_1 + b_2_02·b_4_02·b_7_0 + b_2_02·b_4_02·b_4_1·b_3_1 + b_2_02·b_4_02·b_4_1·b_3_0 + b_2_02·b_4_03·b_3_1 + b_2_02·b_4_03·b_3_0 + b_2_03·b_4_1·b_9_1 + b_2_03·b_4_1·b_6_0·b_3_0 + b_2_03·b_4_12·b_5_1 + b_2_03·b_4_12·b_5_0 + b_2_03·b_4_0·b_9_1 + b_2_03·b_4_0·b_9_0 + b_2_03·b_4_0·b_6_0·b_3_1 + b_2_03·b_4_0·b_6_0·b_3_0 + b_2_03·b_4_0·b_4_1·b_5_1 + b_2_03·b_4_02·b_5_1 + b_2_03·b_4_02·b_5_0 + b_2_04·b_4_1·b_7_4 + b_2_04·b_4_1·b_7_0 + b_2_04·b_4_12·b_3_1 + b_2_04·b_4_12·b_3_0 + b_2_04·b_4_0·b_7_4 + b_2_04·b_4_0·b_4_1·b_3_1 + b_2_05·b_4_1·b_5_1 + b_2_05·b_4_1·b_5_0 + b_2_05·b_4_0·b_5_1 + b_2_05·b_4_0·b_5_0 + b_2_06·b_7_4 + b_2_06·b_7_0 + b_2_06·b_4_0·b_3_1 + b_2_06·b_4_0·b_3_0 + b_2_07·b_5_0 + b_4_1·c_8_2·b_7_4 + b_4_12·c_8_2·b_3_1 + b_4_12·c_8_2·b_3_0 + b_4_0·b_4_1·c_8_2·b_3_0 + b_2_0·b_4_0·c_8_2·b_5_0 + b_2_02·c_8_2·b_7_4 + b_2_02·c_8_2·b_7_0 + b_2_02·b_4_0·c_8_2·b_3_1 + b_2_02·b_4_0·c_8_2·b_3_0 + b_2_03·c_8_2·b_5_1 + b_2_04·c_8_2·b_3_0
- b_10_152 + b_4_13·b_8_1 + b_4_15 + b_4_0·b_4_1·b_6_0·b_3_02 + b_4_0·b_4_12·b_8_0
+ b_4_02·b_6_0·b_3_02 + b_4_02·b_6_02 + b_4_02·b_4_1·b_8_0 + b_4_02·b_4_12·b_4_3 + b_4_03·b_4_1·b_4_3 + b_2_0·b_4_12·b_4_3·b_6_0 + b_2_0·b_4_13·b_3_0·b_3_1 + b_2_0·b_4_13·b_6_0 + b_2_0·b_4_02·b_10_15 + b_2_0·b_4_03·b_3_02 + b_2_0·b_4_03·b_6_1 + b_2_0·b_4_03·b_6_0 + b_2_02·b_4_12·b_8_1 + b_2_02·b_4_14 + b_2_02·b_4_0·b_4_1·b_8_0 + b_2_02·b_4_02·b_8_1 + b_2_02·b_4_02·b_8_0 + b_2_03·b_4_1·b_4_3·b_6_0 + b_2_03·b_4_12·b_6_0 + b_2_03·b_4_0·b_4_3·b_6_0 + b_2_03·b_4_0·b_4_1·b_3_02 + b_2_03·b_4_0·b_4_1·b_6_0 + b_2_04·b_4_1·b_8_1 + b_2_04·b_4_12·b_4_3 + b_2_04·b_4_13 + b_2_04·b_4_0·b_8_1 + b_2_04·b_4_0·b_4_1·b_4_3 + b_2_04·b_4_0·b_4_12 + b_2_05·b_10_15 + b_2_05·b_4_0·b_3_0·b_3_1 + b_2_05·b_4_0·b_6_0 + b_2_06·b_4_0·b_4_1 + b_2_06·b_4_02 + b_6_02·c_8_2 + b_4_12·b_4_3·c_8_2 + b_2_0·b_4_1·c_8_2·b_3_0·b_3_1 + b_2_0·b_4_0·c_8_2·b_3_0·b_3_1 + b_2_0·b_4_0·c_8_2·b_3_02 + b_2_03·c_8_2·b_3_0·b_3_1 + b_2_03·c_8_2·b_3_02 + b_2_03·b_6_1·c_8_2 + b_2_04·b_4_3·c_8_2 + b_2_04·b_4_0·c_8_2 + b_2_06·c_8_2
Data used for the Hilbert-Poincaré test
- We proved completion in degree 20 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- b_4_1·b_4_3 + b_4_0·b_4_3 + b_2_04 + c_8_2, an element of degree 8
- b_6_02 + b_4_1·b_8_1 + b_4_1·b_8_0 + b_4_13 + b_4_02·b_4_3 + b_4_02·b_4_1 + b_4_03
+ b_2_0·b_4_1·b_3_0·b_3_1 + b_2_0·b_4_1·b_3_02 + b_2_0·b_4_1·b_6_0 + b_2_0·b_4_0·b_3_0·b_3_1 + b_2_0·b_4_0·b_3_02 + b_2_0·b_4_0·b_6_0 + b_2_02·b_8_1 + b_2_02·b_4_1·b_4_3 + b_2_02·b_4_12 + b_2_02·b_4_0·b_4_1 + b_2_02·b_4_02 + b_2_03·b_3_0·b_3_1 + b_2_03·b_3_02 + b_2_03·b_6_1 + b_2_04·b_4_1 + b_2_04·b_4_0 + b_2_06 + b_4_3·c_8_2 + b_2_02·c_8_2, an element of degree 12
- b_4_12·b_3_02 + b_4_0·b_4_1·b_3_0·b_3_1 + b_4_02·b_3_0·b_3_1 + b_4_02·b_3_02
+ b_2_0·b_4_12·b_4_3 + b_2_0·b_4_13 + b_2_0·b_4_02·b_4_3 + b_2_0·b_4_02·b_4_1 + b_2_0·b_4_03 + b_2_02·b_4_3·b_6_0 + b_2_02·b_4_1·b_3_02 + b_2_02·b_4_0·b_6_0 + b_2_03·b_8_0 + b_2_03·b_4_0·b_4_1 + b_2_03·b_4_02 + b_2_04·b_6_1 + b_2_04·b_6_0 + b_2_05·b_4_3 + b_2_05·b_4_1 + c_8_2·b_3_0·b_3_1 + c_8_2·b_3_02 + b_2_0·b_4_3·c_8_2 + b_2_03·c_8_2, an element of degree 14
- b_3_0, an element of degree 3
- A Duflot regular sequence is given by c_8_2.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 15, 26, 33].
- Modifying the above filter regular HSOP, we obtained the following parameters:
- b_4_1·b_4_3 + b_4_0·b_4_3 + b_2_04 + c_8_2, an element of degree 8
- b_4_0 + b_2_02, an element of degree 4
- b_2_0, an element of degree 2
- b_3_0, an element of degree 3
Restriction maps
Expressing the generators as elements of H*(Syl2(J2); GF(2))
- b_2_0 → b_1_22 + b_1_1·b_1_2 + b_1_12
- a_3_2 → a_2_4·b_1_2
- b_3_1 → b_1_1·b_1_22 + b_1_12·b_1_2
- b_3_0 → b_1_23 + b_1_12·b_1_2 + b_1_13
- b_4_3 → b_1_1·b_3_8 + b_1_04 + b_4_14 + a_2_4·b_1_02 + a_2_4·a_2_5
- b_4_1 → b_1_2·b_3_8 + b_1_1·b_3_9 + b_1_1·b_1_23 + b_1_12·b_1_22
- b_4_0 → b_1_2·b_3_9 + b_1_1·b_3_9 + b_1_12·b_1_22 + b_1_13·b_1_2 + b_1_04 + b_4_14
+ a_2_4·b_1_02 + a_2_4·a_2_5
- a_5_4 → a_2_4·b_3_9
- b_5_1 → b_1_22·b_3_8 + b_1_12·b_3_9 + b_1_12·b_1_23 + b_1_14·b_1_2
- b_5_0 → b_1_22·b_3_9 + b_1_12·b_3_9 + b_1_12·b_3_8 + b_1_13·b_1_22 + b_1_14·b_1_2
- b_6_1 → b_1_2·b_5_20 + b_1_1·b_5_21 + b_1_1·b_5_20 + b_1_13·b_3_8 + b_4_14·b_1_22
+ b_4_14·b_1_1·b_1_2 + b_4_14·b_1_12
- b_6_0 → b_3_8·b_3_9 + b_1_1·b_5_20 + b_1_12·b_1_2·b_3_9 + b_4_14·b_1_22 + b_4_14·b_1_1·b_1_2
+ a_2_5·b_4_14 + a_2_4·b_4_14 + a_2_4·a_2_5·b_1_02 + a_2_42·b_1_02
- a_7_10 → a_2_4·b_5_20 + a_2_42·b_1_03 + a_2_42·a_2_5·b_1_0
- b_7_4 → b_1_1·b_1_2·b_5_20 + b_1_12·b_5_20 + b_1_12·b_1_25 + b_1_14·b_3_8
+ b_1_14·b_1_23 + b_4_14·b_1_23 + b_4_14·b_1_1·b_1_22 + b_4_14·b_1_13
- b_7_0 → b_1_22·b_5_20 + b_1_12·b_5_21 + b_1_12·b_5_20 + b_1_12·b_1_25 + b_1_13·b_1_24
+ b_1_14·b_3_8 + b_1_14·b_1_23 + b_1_15·b_1_22 + b_4_14·b_1_23 + b_4_14·b_1_1·b_1_22 + b_4_14·b_1_13
- c_8_2 → b_3_8·b_5_20 + b_1_1·b_1_22·b_5_20 + b_1_12·b_1_23·b_3_9 + b_1_13·b_5_20
+ b_1_13·b_1_22·b_3_9 + b_1_14·b_1_2·b_3_9 + b_1_14·b_1_2·b_3_8 + b_1_15·b_3_9 + b_4_14·b_1_2·b_3_9 + b_4_14·b_1_24 + b_4_14·b_1_14 + b_4_142 + a_2_4·a_2_5·b_1_04 + c_8_49
- b_8_1 → b_3_9·b_5_20 + b_3_8·b_5_21 + b_3_8·b_5_20 + b_1_1·b_1_22·b_5_20 + b_1_13·b_5_20
+ b_1_13·b_1_22·b_3_9 + b_1_14·b_1_2·b_3_9 + b_1_08 + b_4_14·b_1_2·b_3_9 + b_4_14·b_1_1·b_3_9 + b_4_14·b_1_1·b_3_8 + b_4_14·b_1_12·b_1_22 + b_4_14·b_1_13·b_1_2 + b_4_142 + a_2_42·b_1_04
- b_8_0 → b_3_9·b_5_21 + b_3_9·b_5_20 + b_3_8·b_5_21 + b_1_12·b_1_2·b_5_20
+ b_1_13·b_1_22·b_3_9 + b_1_13·b_1_22·b_3_8 + b_1_13·b_1_25 + b_1_15·b_1_23 + b_1_08 + b_4_14·b_1_1·b_1_23 + b_4_142 + a_2_42·b_1_04
- b_9_1 → b_1_2·b_3_8·b_5_20 + b_1_1·b_3_9·b_5_21 + b_1_12·b_1_22·b_5_20
+ b_1_13·b_1_23·b_3_9 + b_1_13·b_1_23·b_3_8 + b_1_14·b_5_21 + b_1_14·b_1_25 + b_1_15·b_1_2·b_3_8 + b_1_15·b_1_24 + b_1_16·b_3_8 + b_1_16·b_1_23 + b_1_17·b_1_22 + b_4_14·b_1_22·b_3_9 + b_4_14·b_1_22·b_3_8 + b_4_14·b_1_25 + b_4_14·b_1_12·b_3_8 + b_4_14·b_1_14·b_1_2 + b_4_14·b_1_15
- b_9_0 → b_1_2·b_3_9·b_5_20 + b_1_1·b_3_9·b_5_21 + b_1_1·b_3_8·b_5_21 + b_1_12·b_1_22·b_5_20
+ b_1_14·b_1_22·b_3_9 + b_1_14·b_1_22·b_3_8 + b_1_15·b_1_2·b_3_8 + b_4_14·b_1_1·b_1_24 + b_4_14·b_1_14·b_1_2
- b_10_15 → b_1_12·b_3_8·b_5_21 + b_1_14·b_1_26 + b_1_15·b_1_22·b_3_9
+ b_1_15·b_1_22·b_3_8 + b_1_15·b_1_25 + b_1_16·b_1_2·b_3_8 + b_1_16·b_1_24 + b_1_17·b_1_23 + b_10_83 + b_4_14·b_3_8·b_3_9 + b_4_14·b_1_23·b_3_9 + b_4_14·b_1_23·b_3_8 + b_4_14·b_1_1·b_5_21 + b_4_14·b_1_1·b_1_22·b_3_9 + b_4_14·b_1_12·b_1_2·b_3_9 + b_4_14·b_1_13·b_3_9 + b_4_14·b_1_13·b_3_8 + b_4_142·b_1_1·b_1_2 + b_4_142·b_1_12 + a_2_5·b_4_142 + a_2_4·a_2_5·b_1_06 + c_8_49·b_1_1·b_1_2 + c_8_49·b_1_12 + c_8_49·b_1_02 + a_2_4·c_8_49
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- b_2_0 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_3 → 0, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_5_4 → 0, an element of degree 5
- b_5_1 → 0, an element of degree 5
- b_5_0 → 0, an element of degree 5
- b_6_1 → 0, an element of degree 6
- b_6_0 → 0, an element of degree 6
- a_7_10 → 0, an element of degree 7
- b_7_4 → 0, an element of degree 7
- b_7_0 → 0, an element of degree 7
- c_8_2 → c_1_08, an element of degree 8
- b_8_1 → 0, an element of degree 8
- b_8_0 → 0, an element of degree 8
- b_9_1 → 0, an element of degree 9
- b_9_0 → 0, an element of degree 9
- b_10_15 → 0, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- b_2_0 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_3 → c_1_14, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → c_1_14, an element of degree 4
- a_5_4 → 0, an element of degree 5
- b_5_1 → 0, an element of degree 5
- b_5_0 → 0, an element of degree 5
- b_6_1 → 0, an element of degree 6
- b_6_0 → 0, an element of degree 6
- a_7_10 → 0, an element of degree 7
- b_7_4 → 0, an element of degree 7
- b_7_0 → 0, an element of degree 7
- c_8_2 → c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_8_1 → c_1_18, an element of degree 8
- b_8_0 → c_1_18, an element of degree 8
- b_9_1 → 0, an element of degree 9
- b_9_0 → 0, an element of degree 9
- b_10_15 → 0, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_2_0 → c_1_32 + c_1_2·c_1_3 + c_1_22, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_1 → c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
- b_3_0 → c_1_33 + c_1_22·c_1_3 + c_1_23, an element of degree 3
- b_4_3 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_1 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_22·c_1_3
+ c_1_1·c_1_23 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3, an element of degree 4
- b_4_0 → c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_23 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
- a_5_4 → 0, an element of degree 5
- b_5_1 → c_1_22·c_1_33 + c_1_24·c_1_3 + c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32
+ c_1_1·c_1_24 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_23 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3, an element of degree 5
- b_5_0 → c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3
+ c_1_0·c_1_34 + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_24 + c_1_02·c_1_33 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_23, an element of degree 5
- b_6_1 → c_1_0·c_1_2·c_1_34 + c_1_0·c_1_24·c_1_3 + c_1_02·c_1_34
+ c_1_02·c_1_22·c_1_32 + c_1_02·c_1_24 + c_1_04·c_1_32 + c_1_04·c_1_2·c_1_3 + c_1_04·c_1_22, an element of degree 6
- b_6_0 → c_1_1·c_1_23·c_1_32 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_34
+ c_1_12·c_1_23·c_1_3 + c_1_12·c_1_24 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_24·c_1_3 + c_1_0·c_1_1·c_1_34 + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_33 + c_1_0·c_1_12·c_1_2·c_1_32 + c_1_0·c_1_12·c_1_23 + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_1·c_1_33 + c_1_02·c_1_1·c_1_22·c_1_3 + c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_3 + c_1_02·c_1_12·c_1_22 + c_1_03·c_1_2·c_1_32 + c_1_03·c_1_22·c_1_3, an element of degree 6
- a_7_10 → 0, an element of degree 7
- b_7_4 → c_1_22·c_1_35 + c_1_24·c_1_33 + c_1_12·c_1_35 + c_1_12·c_1_24·c_1_3
+ c_1_12·c_1_25 + c_1_14·c_1_33 + c_1_14·c_1_22·c_1_3 + c_1_14·c_1_23 + c_1_02·c_1_2·c_1_34 + c_1_02·c_1_24·c_1_3 + c_1_04·c_1_2·c_1_32 + c_1_04·c_1_22·c_1_3, an element of degree 7
- b_7_0 → c_1_22·c_1_35 + c_1_23·c_1_34 + c_1_24·c_1_33 + c_1_25·c_1_32
+ c_1_1·c_1_2·c_1_35 + c_1_1·c_1_22·c_1_34 + c_1_1·c_1_23·c_1_33 + c_1_1·c_1_25·c_1_3 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_02·c_1_35 + c_1_02·c_1_24·c_1_3 + c_1_02·c_1_25 + c_1_04·c_1_33 + c_1_04·c_1_22·c_1_3 + c_1_04·c_1_23, an element of degree 7
- c_8_2 → c_1_1·c_1_22·c_1_35 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_24·c_1_33
+ c_1_1·c_1_25·c_1_32 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_23·c_1_33 + c_1_13·c_1_35 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_25 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_33 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_23 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_0·c_1_1·c_1_2·c_1_35 + c_1_0·c_1_1·c_1_23·c_1_33 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_1·c_1_25·c_1_3 + c_1_0·c_1_12·c_1_35 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_14·c_1_33 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_23 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_8_1 → c_1_1·c_1_22·c_1_35 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_24·c_1_33
+ c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_13·c_1_35 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_25 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_24 + c_1_15·c_1_33 + c_1_15·c_1_22·c_1_3 + c_1_15·c_1_23 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_18 + c_1_0·c_1_24·c_1_33 + c_1_0·c_1_26·c_1_3 + c_1_0·c_1_1·c_1_36 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_35 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_2·c_1_35 + c_1_02·c_1_23·c_1_33 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_03·c_1_35 + c_1_03·c_1_2·c_1_34 + c_1_03·c_1_25 + c_1_04·c_1_34 + c_1_04·c_1_2·c_1_33 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_33 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_05·c_1_33 + c_1_05·c_1_22·c_1_3 + c_1_05·c_1_23 + c_1_06·c_1_32 + c_1_06·c_1_2·c_1_3 + c_1_06·c_1_22, an element of degree 8
- b_8_0 → c_1_23·c_1_35 + c_1_25·c_1_33 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_25·c_1_32
+ c_1_12·c_1_36 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_18 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_1·c_1_2·c_1_35 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_23·c_1_33 + c_1_0·c_1_1·c_1_25·c_1_3 + c_1_0·c_1_12·c_1_35 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_14·c_1_33 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_23 + c_1_02·c_1_36 + c_1_02·c_1_2·c_1_35 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_23·c_1_33 + c_1_02·c_1_26 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_03·c_1_35 + c_1_03·c_1_2·c_1_34 + c_1_03·c_1_25 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_05·c_1_33 + c_1_05·c_1_2·c_1_32 + c_1_05·c_1_23 + c_1_06·c_1_32 + c_1_06·c_1_2·c_1_3 + c_1_06·c_1_22, an element of degree 8
- b_9_1 → c_1_24·c_1_35 + c_1_25·c_1_34 + c_1_26·c_1_33 + c_1_27·c_1_32
+ c_1_1·c_1_22·c_1_36 + c_1_1·c_1_23·c_1_35 + c_1_1·c_1_25·c_1_33 + c_1_1·c_1_26·c_1_32 + c_1_12·c_1_37 + c_1_12·c_1_2·c_1_36 + c_1_12·c_1_22·c_1_35 + c_1_12·c_1_24·c_1_33 + c_1_12·c_1_25·c_1_32 + c_1_12·c_1_26·c_1_3 + c_1_12·c_1_27 + c_1_14·c_1_35 + c_1_14·c_1_23·c_1_32 + c_1_14·c_1_25 + c_1_16·c_1_2·c_1_32 + c_1_16·c_1_22·c_1_3 + c_1_0·c_1_1·c_1_2·c_1_36 + c_1_0·c_1_1·c_1_22·c_1_35 + c_1_0·c_1_1·c_1_23·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_33 + c_1_0·c_1_1·c_1_25·c_1_32 + c_1_0·c_1_1·c_1_26·c_1_3 + c_1_0·c_1_12·c_1_36 + c_1_0·c_1_12·c_1_2·c_1_35 + c_1_0·c_1_12·c_1_23·c_1_33 + c_1_0·c_1_12·c_1_25·c_1_3 + c_1_0·c_1_12·c_1_26 + c_1_0·c_1_14·c_1_34 + c_1_0·c_1_14·c_1_22·c_1_32 + c_1_0·c_1_14·c_1_24 + c_1_02·c_1_2·c_1_36 + c_1_02·c_1_22·c_1_35 + c_1_02·c_1_1·c_1_36 + c_1_02·c_1_1·c_1_2·c_1_35 + c_1_02·c_1_1·c_1_23·c_1_33 + c_1_02·c_1_1·c_1_25·c_1_3 + c_1_02·c_1_1·c_1_26 + c_1_02·c_1_14·c_1_33 + c_1_02·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_14·c_1_23 + c_1_04·c_1_22·c_1_33 + c_1_04·c_1_24·c_1_3 + c_1_04·c_1_1·c_1_34 + c_1_04·c_1_1·c_1_22·c_1_32 + c_1_04·c_1_1·c_1_24 + c_1_04·c_1_12·c_1_33 + c_1_04·c_1_12·c_1_2·c_1_32 + c_1_04·c_1_12·c_1_23 + c_1_06·c_1_2·c_1_32 + c_1_06·c_1_22·c_1_3, an element of degree 9
- b_9_0 → c_1_1·c_1_24·c_1_34 + c_1_1·c_1_26·c_1_32 + c_1_12·c_1_23·c_1_34
+ c_1_12·c_1_26·c_1_3 + c_1_13·c_1_22·c_1_34 + c_1_13·c_1_24·c_1_32 + c_1_14·c_1_2·c_1_34 + c_1_14·c_1_23·c_1_32 + c_1_16·c_1_2·c_1_32 + c_1_16·c_1_22·c_1_3 + c_1_0·c_1_24·c_1_34 + c_1_0·c_1_26·c_1_32 + c_1_0·c_1_1·c_1_2·c_1_36 + c_1_0·c_1_1·c_1_22·c_1_35 + c_1_0·c_1_1·c_1_23·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_33 + c_1_0·c_1_1·c_1_25·c_1_32 + c_1_0·c_1_1·c_1_26·c_1_3 + c_1_0·c_1_12·c_1_36 + c_1_0·c_1_12·c_1_2·c_1_35 + c_1_0·c_1_12·c_1_22·c_1_34 + c_1_0·c_1_12·c_1_23·c_1_33 + c_1_0·c_1_12·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_25·c_1_3 + c_1_0·c_1_12·c_1_26 + c_1_0·c_1_14·c_1_34 + c_1_0·c_1_14·c_1_22·c_1_32 + c_1_0·c_1_14·c_1_24 + c_1_02·c_1_2·c_1_36 + c_1_02·c_1_22·c_1_35 + c_1_02·c_1_24·c_1_33 + c_1_02·c_1_25·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_35 + c_1_02·c_1_1·c_1_22·c_1_34 + c_1_02·c_1_1·c_1_23·c_1_33 + c_1_02·c_1_1·c_1_25·c_1_3 + c_1_02·c_1_12·c_1_35 + c_1_02·c_1_12·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_25 + c_1_02·c_1_14·c_1_33 + c_1_02·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_14·c_1_23 + c_1_03·c_1_36 + c_1_03·c_1_22·c_1_34 + c_1_03·c_1_26 + c_1_04·c_1_35 + c_1_04·c_1_2·c_1_34 + c_1_04·c_1_23·c_1_32 + c_1_04·c_1_24·c_1_3 + c_1_04·c_1_25 + c_1_04·c_1_12·c_1_2·c_1_32 + c_1_04·c_1_12·c_1_22·c_1_3 + c_1_05·c_1_34 + c_1_05·c_1_22·c_1_32 + c_1_05·c_1_24 + c_1_06·c_1_33 + c_1_06·c_1_22·c_1_3 + c_1_06·c_1_23, an element of degree 9
- b_10_15 → c_1_24·c_1_36 + c_1_25·c_1_35 + c_1_26·c_1_34 + c_1_27·c_1_33
+ c_1_1·c_1_22·c_1_37 + c_1_1·c_1_23·c_1_36 + c_1_1·c_1_24·c_1_35 + c_1_1·c_1_27·c_1_32 + c_1_12·c_1_2·c_1_37 + c_1_12·c_1_23·c_1_35 + c_1_12·c_1_24·c_1_34 + c_1_12·c_1_27·c_1_3 + c_1_13·c_1_2·c_1_36 + c_1_13·c_1_22·c_1_35 + c_1_13·c_1_23·c_1_34 + c_1_13·c_1_24·c_1_33 + c_1_14·c_1_36 + c_1_14·c_1_22·c_1_34 + c_1_14·c_1_24·c_1_32 + c_1_14·c_1_25·c_1_3 + c_1_14·c_1_26 + c_1_15·c_1_23·c_1_32 + c_1_15·c_1_24·c_1_3 + c_1_16·c_1_22·c_1_32 + c_1_16·c_1_23·c_1_3 + c_1_17·c_1_2·c_1_32 + c_1_17·c_1_22·c_1_3 + c_1_18·c_1_32 + c_1_18·c_1_2·c_1_3 + c_1_18·c_1_22 + c_1_0·c_1_2·c_1_38 + c_1_0·c_1_23·c_1_36 + c_1_0·c_1_24·c_1_35 + c_1_0·c_1_26·c_1_33 + c_1_0·c_1_27·c_1_32 + c_1_0·c_1_28·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_36 + c_1_0·c_1_1·c_1_26·c_1_32 + c_1_0·c_1_12·c_1_22·c_1_35 + c_1_0·c_1_12·c_1_26·c_1_3 + c_1_0·c_1_13·c_1_36 + c_1_0·c_1_13·c_1_22·c_1_34 + c_1_0·c_1_13·c_1_26 + c_1_0·c_1_14·c_1_35 + c_1_0·c_1_14·c_1_2·c_1_34 + c_1_0·c_1_14·c_1_22·c_1_33 + c_1_0·c_1_14·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_25 + c_1_0·c_1_15·c_1_34 + c_1_0·c_1_15·c_1_22·c_1_32 + c_1_0·c_1_15·c_1_24 + c_1_0·c_1_16·c_1_33 + c_1_0·c_1_16·c_1_2·c_1_32 + c_1_0·c_1_16·c_1_23 + c_1_02·c_1_38 + c_1_02·c_1_22·c_1_36 + c_1_02·c_1_24·c_1_34 + c_1_02·c_1_27·c_1_3 + c_1_02·c_1_28 + c_1_02·c_1_1·c_1_22·c_1_35 + c_1_02·c_1_1·c_1_23·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_33 + c_1_02·c_1_1·c_1_26·c_1_3 + c_1_02·c_1_12·c_1_36 + c_1_02·c_1_12·c_1_23·c_1_33 + c_1_02·c_1_12·c_1_26 + c_1_02·c_1_13·c_1_35 + c_1_02·c_1_13·c_1_2·c_1_34 + c_1_02·c_1_13·c_1_25 + c_1_02·c_1_14·c_1_2·c_1_33 + c_1_02·c_1_14·c_1_22·c_1_32 + c_1_02·c_1_15·c_1_33 + c_1_02·c_1_15·c_1_22·c_1_3 + c_1_02·c_1_15·c_1_23 + c_1_02·c_1_16·c_1_32 + c_1_02·c_1_16·c_1_2·c_1_3 + c_1_02·c_1_16·c_1_22 + c_1_03·c_1_37 + c_1_03·c_1_24·c_1_33 + c_1_03·c_1_27 + c_1_03·c_1_1·c_1_36 + c_1_03·c_1_1·c_1_24·c_1_32 + c_1_03·c_1_1·c_1_26 + c_1_03·c_1_12·c_1_35 + c_1_03·c_1_12·c_1_24·c_1_3 + c_1_03·c_1_12·c_1_25 + c_1_03·c_1_14·c_1_2·c_1_32 + c_1_03·c_1_14·c_1_22·c_1_3 + c_1_04·c_1_22·c_1_34 + c_1_04·c_1_23·c_1_33 + c_1_04·c_1_1·c_1_35 + c_1_04·c_1_1·c_1_23·c_1_32 + c_1_04·c_1_1·c_1_25 + c_1_04·c_1_12·c_1_22·c_1_32 + c_1_04·c_1_12·c_1_23·c_1_3 + c_1_04·c_1_13·c_1_2·c_1_32 + c_1_04·c_1_13·c_1_22·c_1_3 + c_1_04·c_1_14·c_1_32 + c_1_04·c_1_14·c_1_2·c_1_3 + c_1_04·c_1_14·c_1_22 + c_1_05·c_1_35 + c_1_05·c_1_2·c_1_34 + c_1_05·c_1_22·c_1_33 + c_1_05·c_1_24·c_1_3 + c_1_05·c_1_25 + c_1_05·c_1_1·c_1_34 + c_1_05·c_1_1·c_1_22·c_1_32 + c_1_05·c_1_1·c_1_24 + c_1_05·c_1_12·c_1_33 + c_1_05·c_1_12·c_1_2·c_1_32 + c_1_05·c_1_12·c_1_23 + c_1_06·c_1_34 + c_1_06·c_1_2·c_1_33 + c_1_06·c_1_24 + c_1_06·c_1_1·c_1_33 + c_1_06·c_1_1·c_1_22·c_1_3 + c_1_06·c_1_1·c_1_23 + c_1_06·c_1_12·c_1_32 + c_1_06·c_1_12·c_1_2·c_1_3 + c_1_06·c_1_12·c_1_22 + c_1_07·c_1_2·c_1_32 + c_1_07·c_1_22·c_1_3, an element of degree 10
|