Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of group number 1494 of order 192
General information on the group
- The group order factors as 26 · 3.
- It is non-abelian.
- It has 2-Rank 3.
- The centre of a Sylow 2-subgroup has rank 1.
- Its Sylow 2-subgroup has 5 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
The computation was based on 1 stability condition for H*(Syl2(M12); GF(2)).
General information
- The cohomology ring is of dimension 3 and depth 3.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1)·(1 − t + 3·t2 − t3 + t4) |
| ( − 1 + t)3 · (1 + t2) · (1 + t + t2) |
- The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Ring generators
The cohomology ring has 8 minimal generators of maximal degree 4:
- b_1_0, an element of degree 1
- b_2_2, an element of degree 2
- b_2_0, an element of degree 2
- b_3_4, an element of degree 3
- b_3_2, an element of degree 3
- b_3_1, an element of degree 3
- b_3_0, an element of degree 3
- c_4_6, a Duflot element of degree 4
Ring relations
There are 14 minimal relations of maximal degree 6:
- b_2_0·b_1_0
- b_1_0·b_3_1
- b_1_0·b_3_2
- b_1_0·b_3_4
- b_2_0·b_3_0
- b_2_2·b_3_1 + b_2_0·b_3_4
- b_2_2·b_3_2
- b_3_0·b_3_1
- b_3_0·b_3_2
- b_3_0·b_3_4 + b_3_02 + b_1_03·b_3_0 + b_2_2·b_1_0·b_3_0 + c_4_6·b_1_02
- b_3_1·b_3_4 + b_2_02·b_2_2
- b_3_22 + b_3_1·b_3_2 + b_3_12 + b_2_03
- b_3_2·b_3_4
- b_3_42 + b_3_02 + b_1_03·b_3_0 + b_2_2·b_1_0·b_3_0 + b_2_0·b_2_22 + c_4_6·b_1_02
Data used for the Hilbert-Poincaré test
- We proved completion in degree 6 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_6, an element of degree 4
- b_1_02 + b_2_2 + b_2_0, an element of degree 2
- b_3_4 + b_3_2 + b_2_2·b_1_0, an element of degree 3
- A Duflot regular sequence is given by c_4_6.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, 6].
Restriction maps
Expressing the generators as elements of H*(Syl2(M12); GF(2))
- b_1_0 → b_1_0
- b_2_2 → b_2_5 + b_2_4
- b_2_0 → b_1_22 + b_1_1·b_1_2 + b_1_12 + b_2_4
- b_3_4 → b_2_5·b_1_2 + b_2_4·b_1_1
- b_3_2 → b_1_1·b_1_22 + b_1_12·b_1_2 + b_2_4·b_1_1
- b_3_1 → b_1_23 + b_1_12·b_1_2 + b_1_13 + b_2_4·b_1_2 + b_2_4·b_1_1
- b_3_0 → b_3_9
- c_4_6 → b_2_4·b_1_1·b_1_2 + b_2_42 + c_4_14
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- b_1_0 → 0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_0 → 0, an element of degree 2
- b_3_4 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_6 → c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → c_1_1, an element of degree 1
- b_2_2 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_2_0 → 0, an element of degree 2
- b_3_4 → 0, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
- c_4_6 → c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_0·c_1_13 + c_1_02·c_1_22
+ c_1_02·c_1_1·c_1_2 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_0 → c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_4 → 0, an element of degree 3
- b_3_2 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_1 → c_1_23 + c_1_12·c_1_2 + c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_6 → c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2
+ c_1_02·c_1_12 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_2 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_2_0 → c_1_12, an element of degree 2
- b_3_4 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_6 → c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2
+ c_1_02·c_1_12 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_2 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_2_0 → c_1_12, an element of degree 2
- b_3_4 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → c_1_13, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_6 → c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2
+ c_1_02·c_1_12 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_2 → c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_2_0 → 0, an element of degree 2
- b_3_4 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- c_4_6 → c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2
+ c_1_02·c_1_12 + c_1_04, an element of degree 4
|