Mod-3-Cohomology of group number 803 of order 1944

About the group Ring generators Ring relations Completion information Restriction maps


General information on the group

  • The group order factors as 23 · 35.
  • It is non-abelian.
  • It has 3-Rank 3.
  • The centre of a Sylow 3-subgroup has rank 2.
  • Its Sylow 3-subgroup has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.


Structure of the cohomology ring

The computation was based on 7 stability conditions for H*(SmallGroup(243,9); GF(3)).

General information

  • The cohomology ring is of dimension 3 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1)·(1  −  3·t  +  6·t2  −  8·t3  +  9·t4  −  11·t5  +  14·t6  −  13·t7  +  11·t8  −  13·t9  +  17·t10  −  17·t11  +  16·t12  −  18·t13  +  19·t14  −  16·t15  +  14·t16  −  15·t17  +  15·t18  −  15·t19  +  16·t20  −  17·t21  +  17·t22  −  17·t23  +  18·t24  −  18·t25  +  19·t26  −  20·t27  +  20·t28  −  19·t29  +  19·t30  −  19·t31  +  18·t32  −  17·t33  +  17·t34  −  17·t35  +  16·t36  −  14·t37  +  15·t38  −  16·t39  +  14·t40  −  13·t41  +  17·t42  −  19·t43  +  16·t44  −  15·t45  +  17·t46  −  15·t47  +  11·t48  −  11·t49  +  13·t50  −  12·t51  +  9·t52  −  8·t53  +  7·t54  −  4·t55  +  t56)

    ( − 1  +  t)3 · (1  −  t  +  t2)2 · (1  +  t2)2 · (1  +  t  +  t2)2 · (1  +  t4) · (1  −  t2  +  t4)2 · (1  −  t4  +  t8) · (1  +  t8) · (1  −  t8  +  t16)
  • The a-invariants are -∞,-∞,-4,-3. They were obtained using the filter regular HSOP of the Symonds test.
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].

About the group Ring generators Ring relations Completion information Restriction maps

Ring generators

The cohomology ring has 68 minimal generators of maximal degree 48:

  1. a_2_0, a nilpotent element of degree 2
  2. a_3_1, a nilpotent element of degree 3
  3. a_3_0, a nilpotent element of degree 3
  4. b_4_0, an element of degree 4
  5. a_7_4, a nilpotent element of degree 7
  6. a_7_3, a nilpotent element of degree 7
  7. a_7_1, a nilpotent element of degree 7
  8. a_7_0, a nilpotent element of degree 7
  9. a_8_3, a nilpotent element of degree 8
  10. a_8_2, a nilpotent element of degree 8
  11. a_8_1, a nilpotent element of degree 8
  12. a_11_3, a nilpotent element of degree 11
  13. a_11_2, a nilpotent element of degree 11
  14. a_12_5, a nilpotent element of degree 12
  15. a_12_4, a nilpotent element of degree 12
  16. a_12_3, a nilpotent element of degree 12
  17. a_12_2, a nilpotent element of degree 12
  18. a_13_1, a nilpotent element of degree 13
  19. a_13_0, a nilpotent element of degree 13
  20. a_15_5, a nilpotent element of degree 15
  21. a_15_4, a nilpotent element of degree 15
  22. a_16_6, a nilpotent element of degree 16
  23. a_16_5, a nilpotent element of degree 16
  24. a_16_4, a nilpotent element of degree 16
  25. a_17_2, a nilpotent element of degree 17
  26. b_18_0, an element of degree 18
  27. a_19_6, a nilpotent element of degree 19
  28. a_19_5, a nilpotent element of degree 19
  29. a_20_6, a nilpotent element of degree 20
  30. a_20_5, a nilpotent element of degree 20
  31. a_22_1, a nilpotent element of degree 22
  32. a_23_5, a nilpotent element of degree 23
  33. a_23_4, a nilpotent element of degree 23
  34. a_23_1, a nilpotent element of degree 23
  35. a_23_0, a nilpotent element of degree 23
  36. a_24_8, a nilpotent element of degree 24
  37. a_24_7, a nilpotent element of degree 24
  38. a_24_6, a nilpotent element of degree 24
  39. a_24_5, a nilpotent element of degree 24
  40. c_24_4, a Duflot element of degree 24
  41. a_25_5, a nilpotent element of degree 25
  42. a_25_4, a nilpotent element of degree 25
  43. a_27_9, a nilpotent element of degree 27
  44. a_27_8, a nilpotent element of degree 27
  45. a_28_10, a nilpotent element of degree 28
  46. a_28_9, a nilpotent element of degree 28
  47. a_28_8, a nilpotent element of degree 28
  48. a_28_7, a nilpotent element of degree 28
  49. a_29_7, a nilpotent element of degree 29
  50. a_29_6, a nilpotent element of degree 29
  51. b_30_5, an element of degree 30
  52. b_30_4, an element of degree 30
  53. a_34_7, a nilpotent element of degree 34
  54. a_34_6, a nilpotent element of degree 34
  55. a_35_8, a nilpotent element of degree 35
  56. a_35_7, a nilpotent element of degree 35
  57. a_35_5, a nilpotent element of degree 35
  58. a_35_4, a nilpotent element of degree 35
  59. c_36_11, a Duflot element of degree 36
  60. c_36_5, a Duflot element of degree 36
  61. a_39_19, a nilpotent element of degree 39
  62. a_39_18, a nilpotent element of degree 39
  63. a_40_16, a nilpotent element of degree 40
  64. a_40_15, a nilpotent element of degree 40
  65. a_47_15, a nilpotent element of degree 47
  66. a_47_14, a nilpotent element of degree 47
  67. c_48_18, a Duflot element of degree 48
  68. c_48_13, a Duflot element of degree 48

About the group Ring generators Ring relations Completion information Restriction maps

Ring relations

There are 33 "obvious" relations:
   a_3_02, a_3_12, a_7_02, a_7_12, a_7_32, a_7_42, a_11_22, a_11_32, a_13_02, a_13_12, a_15_42, a_15_52, a_17_22, a_19_52, a_19_62, a_23_02, a_23_12, a_23_42, a_23_52, a_25_42, a_25_52, a_27_82, a_27_92, a_29_62, a_29_72, a_35_42, a_35_52, a_35_72, a_35_82, a_39_182, a_39_192, a_47_142, a_47_152

Apart from that, there are 2047 minimal relations of maximal degree 96:

  1. a_2_02
  2. a_2_0·a_3_0
  3. a_2_0·a_3_1
  4. a_2_0·b_4_0 + a_3_0·a_3_1
  5. b_4_0·a_3_1 − b_4_0·a_3_0
  6. a_2_0·a_7_0
  7. a_2_0·a_7_1
  8. a_2_0·a_7_3
  9. a_2_0·a_7_4
  10. a_2_0·a_8_3 + a_2_0·a_8_2 − a_2_0·a_8_1
  11. a_3_0·a_7_0
  12. a_3_0·a_7_1 + a_2_0·a_8_2 − a_2_0·a_8_1
  13. a_3_0·a_7_3 + a_2_0·a_8_2 − a_2_0·a_8_1
  14. a_3_0·a_7_4 + a_2_0·a_8_2 + a_2_0·a_8_1
  15. a_3_1·a_7_0 + a_2_0·a_8_2
  16. a_3_1·a_7_1 − a_2_0·a_8_2 + a_2_0·a_8_1
  17. a_3_1·a_7_3
  18. a_3_1·a_7_4
  19. a_8_2·a_3_1 + a_8_2·a_3_0 + a_8_1·a_3_1 − a_8_1·a_3_0
  20. a_8_3·a_3_0 + a_8_1·a_3_1 − a_8_1·a_3_0
  21. a_8_3·a_3_1 + a_8_2·a_3_0 − a_8_1·a_3_1 + a_8_1·a_3_0
  22. b_4_0·a_7_0 + b_4_02·a_3_0 + a_8_1·a_3_1
  23. b_4_0·a_7_1 − a_8_2·a_3_0
  24. b_4_0·a_7_3 − a_8_2·a_3_0 + a_8_1·a_3_1 − a_8_1·a_3_0
  25. b_4_0·a_7_4 + a_8_1·a_3_1 − a_8_1·a_3_0
  26. b_4_0·a_8_2
  27. b_4_0·a_8_3
  28. a_2_0·a_11_2
  29. a_2_0·a_11_3
  30. a_2_0·a_12_4 + a_2_0·a_12_3 + a_2_0·a_12_2
  31. a_2_0·a_12_5 + a_2_0·a_12_2
  32. a_3_0·a_11_2 + a_2_0·a_12_3 − a_2_0·a_12_2
  33. a_3_0·a_11_3 − a_2_0·a_12_3
  34. a_3_1·a_11_2 + a_2_0·a_12_3 + a_2_0·a_12_2
  35. a_3_1·a_11_3 + a_2_0·a_12_2
  36. a_7_0·a_7_1 + a_2_0·a_12_3 + a_2_0·a_12_2
  37. a_7_0·a_7_3 − a_2_0·a_12_2
  38. a_7_0·a_7_4 + a_2_0·a_12_3 − a_2_0·a_12_2
  39. a_7_1·a_7_3 + a_2_0·a_12_3 + a_2_0·a_12_2
  40. a_7_1·a_7_4 − a_2_0·a_12_3
  41. a_7_3·a_7_4
  42. a_8_1·a_7_1 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 + a_2_0·a_13_1 − a_2_0·a_13_0
  43. a_8_1·a_7_3 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 + a_2_0·a_13_1 − a_2_0·a_13_0
  44. a_8_1·a_7_4 + a_2_0·a_13_1 + a_2_0·a_13_0
  45. a_8_2·a_7_0 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 + a_2_0·a_13_1
  46. a_8_2·a_7_1 − a_8_1·a_7_0 − b_4_0·a_8_1·a_3_0 − a_2_0·a_13_1 + a_2_0·a_13_0
  47. a_8_2·a_7_3
  48. a_8_2·a_7_4 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0
  49. a_8_3·a_7_0 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 − a_2_0·a_13_1 + a_2_0·a_13_0
  50. a_8_3·a_7_1 − a_8_1·a_7_0 − b_4_0·a_8_1·a_3_0 − a_2_0·a_13_1
  51. a_8_3·a_7_3 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0
  52. a_8_3·a_7_4 − a_8_1·a_7_0 − b_4_0·a_8_1·a_3_0
  53. a_12_2·a_3_0 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 + a_2_0·a_13_1
  54. a_12_2·a_3_1
  55. a_12_3·a_3_0 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 + a_2_0·a_13_1 + a_2_0·a_13_0
  56. a_12_3·a_3_1 − a_8_1·a_7_0 − b_4_0·a_8_1·a_3_0
  57. a_12_4·a_3_0 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0 − a_2_0·a_13_1
  58. a_12_4·a_3_1 + a_8_1·a_7_0 + b_4_0·a_8_1·a_3_0
  59. a_12_5·a_3_0 − a_8_1·a_7_0 − b_4_0·a_8_1·a_3_0 − a_2_0·a_13_1 + a_2_0·a_13_0
  60. a_12_5·a_3_1
  61. b_4_0·a_11_2 − a_2_0·a_13_1
  62. b_4_0·a_11_3 − a_2_0·a_13_1 + a_2_0·a_13_0
  63. a_8_12
  64. a_8_1·a_8_2
  65. a_8_1·a_8_3
  66. a_8_22
  67. a_8_2·a_8_3
  68. a_8_32
  69. a_3_1·a_13_0 − a_3_0·a_13_0
  70. a_3_1·a_13_1 − a_3_0·a_13_1
  71. b_4_0·a_12_2 − a_3_0·a_13_0
  72. b_4_0·a_12_3 − a_3_0·a_13_1
  73. b_4_0·a_12_4
  74. b_4_0·a_12_5
  75. a_2_0·a_15_4
  76. a_2_0·a_15_5
  77. a_2_0·a_16_6 + a_2_0·a_16_4
  78. a_3_0·a_15_4 + a_2_0·a_16_5
  79. a_3_0·a_15_5 − a_2_0·a_16_4
  80. a_3_1·a_15_4 − a_2_0·a_16_5 − a_2_0·a_16_4
  81. a_3_1·a_15_5 − a_2_0·a_16_5 + a_2_0·a_16_4
  82. a_7_0·a_11_2 + a_2_0·a_16_5 + a_2_0·a_16_4
  83. a_7_0·a_11_3 + a_2_0·a_16_5 − a_2_0·a_16_4
  84. a_7_1·a_11_2 − a_2_0·a_16_5 − a_2_0·a_16_4
  85. a_7_1·a_11_3 − a_2_0·a_16_5 + a_2_0·a_16_4
  86. a_7_3·a_11_2 + a_2_0·a_16_4
  87. a_7_3·a_11_3 + a_2_0·a_16_5
  88. a_7_4·a_11_2 + a_2_0·a_16_5 − a_2_0·a_16_4
  89. a_7_4·a_11_3 − a_2_0·a_16_5 − a_2_0·a_16_4
  90. a_8_1·a_11_2 − a_2_0·a_17_2
  91. a_8_1·a_11_3 + a_2_0·a_17_2
  92. a_8_2·a_11_2 − a_2_0·a_17_2
  93. a_8_2·a_11_3
  94. a_8_3·a_11_2
  95. a_8_3·a_11_3 + a_2_0·a_17_2
  96. a_12_2·a_7_1 + a_12_2·a_7_0 + a_2_0·a_17_2
  97. a_12_2·a_7_4 − a_12_2·a_7_3 − a_12_2·a_7_0
  98. a_12_3·a_7_0 + a_12_2·a_7_3 − a_12_2·a_7_0
  99. a_12_3·a_7_1 − a_12_2·a_7_3 + a_12_2·a_7_0 + a_2_0·a_17_2
  100. a_12_3·a_7_3 + a_12_2·a_7_0
  101. a_12_3·a_7_4 + a_12_2·a_7_3 + a_2_0·a_17_2
  102. a_12_4·a_7_0 − a_12_2·a_7_3 − a_12_2·a_7_0 + a_2_0·a_17_2
  103. a_12_4·a_7_1 + a_12_2·a_7_3 + a_12_2·a_7_0
  104. a_12_4·a_7_3 + a_12_2·a_7_3 − a_12_2·a_7_0 − a_2_0·a_17_2
  105. a_12_4·a_7_4 + a_12_2·a_7_0 − a_2_0·a_17_2
  106. a_12_5·a_7_0 + a_12_2·a_7_0
  107. a_12_5·a_7_1 − a_12_2·a_7_0 − a_2_0·a_17_2
  108. a_12_5·a_7_3 + a_12_2·a_7_3 + a_2_0·a_17_2
  109. a_12_5·a_7_4 + a_12_2·a_7_3 + a_12_2·a_7_0 + a_2_0·a_17_2
  110. a_16_4·a_3_0 + a_12_2·a_7_3 + a_12_2·a_7_0
  111. a_16_4·a_3_1 − a_12_2·a_7_3 + a_12_2·a_7_0 + a_2_0·a_17_2
  112. a_16_5·a_3_0 − a_12_2·a_7_0 − a_2_0·a_17_2
  113. a_16_5·a_3_1 − a_12_2·a_7_3 − a_2_0·a_17_2
  114. a_16_6·a_3_0 − a_12_2·a_7_3 − a_12_2·a_7_0 − a_2_0·a_17_2
  115. a_16_6·a_3_1 + a_12_2·a_7_3 − a_12_2·a_7_0 + a_2_0·a_17_2
  116. b_4_0·a_15_4
  117. b_4_0·a_15_5
  118. a_8_1·a_12_3
  119. a_8_1·a_12_4 + a_8_1·a_12_2
  120. a_8_1·a_12_5 + a_8_1·a_12_2
  121. a_8_2·a_12_2 − a_8_1·a_12_2
  122. a_8_2·a_12_3 + a_8_1·a_12_2
  123. a_8_2·a_12_4
  124. a_8_2·a_12_5 + a_8_1·a_12_2
  125. a_8_3·a_12_2
  126. a_8_3·a_12_3 − a_8_1·a_12_2
  127. a_8_3·a_12_4 + a_8_1·a_12_2
  128. a_8_3·a_12_5
  129. a_3_0·a_17_2 + a_8_1·a_12_2
  130. a_3_1·a_17_2
  131. a_7_0·a_13_0 + b_4_0·a_3_0·a_13_0
  132. a_7_0·a_13_1 − a_8_1·a_12_2 + b_4_0·a_3_0·a_13_1
  133. a_7_1·a_13_0
  134. a_7_1·a_13_1 + a_8_1·a_12_2
  135. a_7_3·a_13_0 − a_8_1·a_12_2
  136. a_7_3·a_13_1 − a_8_1·a_12_2
  137. a_7_4·a_13_0 − a_8_1·a_12_2
  138. a_7_4·a_13_1 + a_8_1·a_12_2
  139. a_2_0·b_18_0 + a_8_1·a_12_2
  140. b_4_0·a_16_4 + a_8_1·a_12_2
  141. b_4_0·a_16_5
  142. b_4_0·a_16_6 + a_8_1·a_12_2
  143. a_2_0·a_19_5
  144. a_2_0·a_19_6
  145. a_8_1·a_13_0
  146. a_8_1·a_13_1
  147. a_8_2·a_13_0
  148. a_8_2·a_13_1
  149. a_8_3·a_13_0
  150. a_8_3·a_13_1
  151. b_18_0·a_3_0 − b_4_0·a_17_2
  152. b_18_0·a_3_1 − b_4_0·a_17_2
  153. a_3_0·a_19_5 − a_2_0·a_20_5
  154. a_3_0·a_19_6 + a_2_0·a_20_6
  155. a_3_1·a_19_5
  156. a_3_1·a_19_6
  157. a_7_0·a_15_4 + a_2_0·a_20_6
  158. a_7_0·a_15_5 + a_2_0·a_20_5
  159. a_7_1·a_15_4 − a_2_0·a_20_6
  160. a_7_1·a_15_5 − a_2_0·a_20_5
  161. a_7_3·a_15_4 − a_2_0·a_20_6 + a_2_0·a_20_5
  162. a_7_3·a_15_5 − a_2_0·a_20_6 − a_2_0·a_20_5
  163. a_7_4·a_15_4 + a_2_0·a_20_5
  164. a_7_4·a_15_5 − a_2_0·a_20_6
  165. a_11_2·a_11_3
  166. a_8_1·a_15_4
  167. a_8_1·a_15_5
  168. a_8_2·a_15_4
  169. a_8_2·a_15_5
  170. a_8_3·a_15_4
  171. a_8_3·a_15_5
  172. a_12_2·a_11_2
  173. a_12_2·a_11_3
  174. a_12_3·a_11_2
  175. a_12_3·a_11_3
  176. a_12_4·a_11_2
  177. a_12_4·a_11_3
  178. a_12_5·a_11_2
  179. a_12_5·a_11_3
  180. a_16_4·a_7_1 + a_16_4·a_7_0
  181. a_16_4·a_7_4 − a_16_4·a_7_3 − a_16_4·a_7_0
  182. a_16_5·a_7_0 − a_16_4·a_7_3 − a_16_4·a_7_0
  183. a_16_5·a_7_1 + a_16_4·a_7_3 + a_16_4·a_7_0
  184. a_16_5·a_7_3 + a_16_4·a_7_3 − a_16_4·a_7_0
  185. a_16_5·a_7_4 + a_16_4·a_7_0
  186. a_16_6·a_7_0 + a_16_4·a_7_0
  187. a_16_6·a_7_1 − a_16_4·a_7_0
  188. a_16_6·a_7_3 + a_16_4·a_7_3
  189. a_16_6·a_7_4 + a_16_4·a_7_3 + a_16_4·a_7_0
  190. a_20_5·a_3_0 + a_16_4·a_7_0
  191. a_20_5·a_3_1 + a_16_4·a_7_3
  192. a_20_6·a_3_0 − a_16_4·a_7_3 − a_16_4·a_7_0
  193. a_20_6·a_3_1 + a_16_4·a_7_3 − a_16_4·a_7_0
  194. b_4_0·a_19_5 − a_16_4·a_7_3
  195. b_4_0·a_19_6 + a_16_4·a_7_3 − a_16_4·a_7_0
  196. a_2_0·a_22_1
  197. a_8_1·a_16_4
  198. a_8_1·a_16_5
  199. a_8_1·a_16_6
  200. a_8_2·a_16_4
  201. a_8_2·a_16_5
  202. a_8_2·a_16_6
  203. a_8_3·a_16_4
  204. a_8_3·a_16_5
  205. a_8_3·a_16_6
  206. a_12_22
  207. a_12_2·a_12_3
  208. a_12_2·a_12_4
  209. a_12_2·a_12_5
  210. a_12_32
  211. a_12_3·a_12_4
  212. a_12_3·a_12_5
  213. a_12_42
  214. a_12_4·a_12_5
  215. a_12_52
  216. a_7_0·a_17_2
  217. a_7_1·a_17_2
  218. a_7_3·a_17_2
  219. a_7_4·a_17_2
  220. a_11_2·a_13_0
  221. a_11_2·a_13_1
  222. a_11_3·a_13_0
  223. a_11_3·a_13_1
  224. b_4_0·a_20_5
  225. b_4_0·a_20_6
  226. a_2_0·a_23_0
  227. a_2_0·a_23_1
  228. a_2_0·a_23_4
  229. a_2_0·a_23_5
  230. a_8_2·a_17_2
  231. a_8_3·a_17_2
  232. a_12_2·a_13_0
  233. a_12_2·a_13_1 + a_8_1·a_17_2
  234. a_12_3·a_13_0 − a_8_1·a_17_2
  235. a_12_3·a_13_1
  236. a_12_4·a_13_0
  237. a_12_4·a_13_1
  238. a_12_5·a_13_0
  239. a_12_5·a_13_1
  240. a_22_1·a_3_0 − a_8_1·a_17_2
  241. a_22_1·a_3_1 − a_8_1·a_17_2
  242. b_18_0·a_7_0 + b_4_02·a_17_2 + a_8_1·a_17_2
  243. b_18_0·a_7_1
  244. b_18_0·a_7_3
  245. b_18_0·a_7_4
  246. a_2_0·a_24_7 + a_2_0·a_24_5
  247. a_2_0·a_24_8 − a_2_0·a_24_6 + a_2_0·a_24_5
  248. a_3_0·a_23_4 − a_2_0·a_24_6 − a_2_0·a_24_5
  249. a_3_0·a_23_5 − a_2_0·a_24_6
  250. a_3_1·a_23_0 − a_3_0·a_23_0 − a_2_0·a_24_5
  251. a_3_1·a_23_1 − a_3_0·a_23_1 + a_2_0·a_24_5
  252. a_3_1·a_23_4 + a_2_0·a_24_5
  253. a_3_1·a_23_5 − a_2_0·a_24_6 + a_2_0·a_24_5
  254. a_7_0·a_19_5 + a_2_0·a_24_6 − a_2_0·a_24_5
  255. a_7_0·a_19_6 − a_2_0·a_24_5
  256. a_7_1·a_19_5 + a_2_0·a_24_5
  257. a_7_1·a_19_6 + a_2_0·a_24_6 − a_2_0·a_24_5
  258. a_7_3·a_19_5
  259. a_7_3·a_19_6
  260. a_7_4·a_19_5
  261. a_7_4·a_19_6
  262. a_11_2·a_15_4
  263. a_11_2·a_15_5
  264. a_11_3·a_15_4
  265. a_11_3·a_15_5
  266. b_4_0·a_22_1 + a_13_0·a_13_1
  267. a_8_1·b_18_0 + a_13_0·a_13_1
  268. a_8_2·b_18_0
  269. a_8_3·b_18_0
  270. a_8_2·a_19_5 + a_8_1·a_19_6 + a_8_1·a_19_5 − a_2_0·a_25_4
  271. a_8_2·a_19_6 + a_8_1·a_19_6 − a_8_1·a_19_5 − a_2_0·a_25_5 + a_2_0·a_25_4
  272. a_8_3·a_19_5 − a_8_1·a_19_6 + a_8_1·a_19_5 + a_2_0·a_25_5 − a_2_0·a_25_4
  273. a_8_3·a_19_6 + a_8_1·a_19_6 + a_8_1·a_19_5 − a_2_0·a_25_4
  274. a_12_2·a_15_4 + a_2_0·a_25_4
  275. a_12_2·a_15_5 + a_2_0·a_25_5 − a_2_0·a_25_4
  276. a_12_3·a_15_4 − a_2_0·a_25_5
  277. a_12_3·a_15_5 − a_2_0·a_25_5 − a_2_0·a_25_4
  278. a_12_4·a_15_4 + a_2_0·a_25_5 − a_2_0·a_25_4
  279. a_12_4·a_15_5 − a_2_0·a_25_4
  280. a_12_5·a_15_4 − a_2_0·a_25_4
  281. a_12_5·a_15_5 − a_2_0·a_25_5 + a_2_0·a_25_4
  282. a_16_4·a_11_2 − a_2_0·a_25_5
  283. a_16_4·a_11_3 − a_2_0·a_25_5 − a_2_0·a_25_4
  284. a_16_5·a_11_2 − a_2_0·a_25_5 − a_2_0·a_25_4
  285. a_16_5·a_11_3 + a_2_0·a_25_5
  286. a_16_6·a_11_2 + a_2_0·a_25_5
  287. a_16_6·a_11_3 + a_2_0·a_25_5 + a_2_0·a_25_4
  288. a_20_5·a_7_0 − a_8_1·a_19_5 − a_2_0·a_25_5 − a_2_0·a_25_4
  289. a_20_5·a_7_1 + a_8_1·a_19_5 + a_2_0·a_25_5 − a_2_0·a_25_4
  290. a_20_5·a_7_3 − a_8_1·a_19_6 + a_8_1·a_19_5 + a_2_0·a_25_5 − a_2_0·a_25_4
  291. a_20_5·a_7_4 − a_8_1·a_19_6 − a_2_0·a_25_5
  292. a_20_6·a_7_0 + a_8_1·a_19_6 − a_2_0·a_25_5
  293. a_20_6·a_7_1 − a_8_1·a_19_6 + a_2_0·a_25_4
  294. a_20_6·a_7_3 − a_8_1·a_19_6 − a_8_1·a_19_5 + a_2_0·a_25_4
  295. a_20_6·a_7_4 − a_8_1·a_19_5 + a_2_0·a_25_5 + a_2_0·a_25_4
  296. a_24_5·a_3_0 − a_8_1·a_19_6 + a_2_0·a_25_4
  297. a_24_5·a_3_1 + a_8_1·a_19_6 − a_8_1·a_19_5 − a_2_0·a_25_5 + a_2_0·a_25_4
  298. a_24_6·a_3_0 − a_8_1·a_19_6 + a_8_1·a_19_5 + a_2_0·a_25_5
  299. a_24_6·a_3_1 + a_8_1·a_19_5 − a_2_0·a_25_5 − a_2_0·a_25_4
  300. a_24_7·a_3_0 + a_8_1·a_19_6
  301. a_24_7·a_3_1 − a_8_1·a_19_6 + a_8_1·a_19_5 + a_2_0·a_25_5 − a_2_0·a_25_4
  302. a_24_8·a_3_0 + a_8_1·a_19_5
  303. a_24_8·a_3_1 − a_8_1·a_19_6 − a_8_1·a_19_5 + a_2_0·a_25_4
  304. b_4_0·a_23_4 − a_2_0·a_25_5
  305. b_4_0·a_23_5 + a_2_0·a_25_5 + a_2_0·a_25_4
  306. a_8_1·a_20_5
  307. a_8_1·a_20_6
  308. a_8_2·a_20_5
  309. a_8_2·a_20_6
  310. a_8_3·a_20_5
  311. a_8_3·a_20_6
  312. a_12_2·a_16_4
  313. a_12_2·a_16_5
  314. a_12_2·a_16_6
  315. a_12_3·a_16_4
  316. a_12_3·a_16_5
  317. a_12_3·a_16_6
  318. a_12_4·a_16_4
  319. a_12_4·a_16_5
  320. a_12_4·a_16_6
  321. a_12_5·a_16_4
  322. a_12_5·a_16_5
  323. a_12_5·a_16_6
  324. a_3_1·a_25_4 − a_3_0·a_25_4
  325. a_3_1·a_25_5 − a_3_0·a_25_5
  326. a_11_2·a_17_2
  327. a_11_3·a_17_2
  328. a_13_0·a_15_4
  329. a_13_0·a_15_5
  330. a_13_1·a_15_4
  331. a_13_1·a_15_5
  332. b_4_0·a_24_5 − a_3_0·a_25_4
  333. b_4_0·a_24_6 − a_3_0·a_25_5
  334. b_4_0·a_24_7
  335. b_4_0·a_24_8
  336. a_2_0·a_27_8
  337. a_2_0·a_27_9
  338. a_12_2·a_17_2
  339. a_12_3·a_17_2
  340. a_12_4·a_17_2
  341. a_12_5·a_17_2
  342. a_16_4·a_13_0
  343. a_16_4·a_13_1
  344. a_16_5·a_13_0
  345. a_16_5·a_13_1
  346. a_16_6·a_13_0
  347. a_16_6·a_13_1
  348. a_22_1·a_7_0 − a_3_0·a_13_0·a_13_1
  349. a_22_1·a_7_1
  350. a_22_1·a_7_3
  351. a_22_1·a_7_4
  352. b_18_0·a_11_2
  353. b_18_0·a_11_3
  354. a_2_0·a_28_9 − a_2_0·a_28_8
  355. a_2_0·a_28_10 + a_2_0·a_28_7
  356. a_8_1·a_22_1
  357. a_8_2·a_22_1
  358. a_8_3·a_22_1
  359. a_3_0·a_27_8 − a_2_0·a_28_8
  360. a_3_0·a_27_9 + a_2_0·a_28_7
  361. a_3_1·a_27_8 + a_2_0·a_28_8 + a_2_0·a_28_7
  362. a_3_1·a_27_9 + a_2_0·a_28_8 − a_2_0·a_28_7
  363. a_7_0·a_23_0 + b_4_0·a_3_0·a_23_0 + a_2_0·a_28_8 − c_24_4·a_3_0·a_3_1
  364. a_7_0·a_23_1 + b_4_0·a_3_0·a_23_1 − a_2_0·a_28_8 − a_2_0·a_28_7 − c_24_4·a_3_0·a_3_1
  365. a_7_0·a_23_4 + a_2_0·a_28_8 + a_2_0·a_28_7
  366. a_7_0·a_23_5 + a_2_0·a_28_8 − a_2_0·a_28_7
  367. a_7_1·a_23_0 − a_2_0·a_28_8 + a_2_0·a_28_7 + c_24_4·a_3_0·a_3_1
  368. a_7_1·a_23_1 − a_2_0·a_28_8 − a_2_0·a_28_7 + c_24_4·a_3_0·a_3_1
  369. a_7_1·a_23_4 − a_2_0·a_28_8 − a_2_0·a_28_7
  370. a_7_1·a_23_5 − a_2_0·a_28_8 + a_2_0·a_28_7
  371. a_7_3·a_23_0 + a_2_0·a_28_8 + a_2_0·a_28_7 + c_24_4·a_3_0·a_3_1
  372. a_7_3·a_23_1 + a_2_0·a_28_8 − a_2_0·a_28_7 − c_24_4·a_3_0·a_3_1
  373. a_7_3·a_23_4 + a_2_0·a_28_7
  374. a_7_3·a_23_5 + a_2_0·a_28_8
  375. a_7_4·a_23_0 + a_2_0·a_28_8 − a_2_0·a_28_7
  376. a_7_4·a_23_1 + c_24_4·a_3_0·a_3_1
  377. a_7_4·a_23_4 + a_2_0·a_28_8 − a_2_0·a_28_7
  378. a_7_4·a_23_5 − a_2_0·a_28_8 − a_2_0·a_28_7
  379. a_11_2·a_19_5 − a_2_0·a_28_7
  380. a_11_2·a_19_6 + a_2_0·a_28_8
  381. a_11_3·a_19_5 − a_2_0·a_28_8
  382. a_11_3·a_19_6 − a_2_0·a_28_7
  383. a_13_0·a_17_2 − b_4_0·a_3_0·a_23_1 + b_4_0·a_3_0·a_23_0
  384. a_13_1·a_17_2 + b_4_0·a_3_0·a_23_1
  385. a_15_4·a_15_5
  386. a_12_2·b_18_0 + b_4_0·a_3_0·a_23_1 − b_4_0·a_3_0·a_23_0
  387. a_12_3·b_18_0 − b_4_0·a_3_0·a_23_1
  388. a_12_4·b_18_0
  389. a_12_5·b_18_0
  390. a_8_1·a_23_4 + a_2_0·a_29_7 + a_2_0·a_29_6
  391. a_8_1·a_23_5 + a_2_0·a_29_7 − a_2_0·a_29_6
  392. a_8_2·a_23_0 − a_8_1·a_23_1 − a_8_1·a_23_0 − a_2_0·a_29_7
  393. a_8_2·a_23_1 − a_8_1·a_23_0 − a_2_0·a_29_7 − a_2_0·a_29_6
  394. a_8_2·a_23_4 + a_2_0·a_29_6
  395. a_8_2·a_23_5 + a_2_0·a_29_7
  396. a_8_3·a_23_0 + a_8_1·a_23_1 + a_2_0·a_29_7
  397. a_8_3·a_23_1 − a_8_1·a_23_1 + a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  398. a_8_3·a_23_4 + a_2_0·a_29_7
  399. a_8_3·a_23_5 − a_2_0·a_29_6
  400. a_12_2·a_19_5 + a_8_1·a_23_1 − a_8_1·a_23_0 − a_2_0·a_29_7
  401. a_12_2·a_19_6 + a_8_1·a_23_0 + a_2_0·a_29_6
  402. a_12_3·a_19_5 − a_8_1·a_23_1 − a_8_1·a_23_0 − a_2_0·a_29_7 + a_2_0·a_29_6
  403. a_12_3·a_19_6 − a_8_1·a_23_1 + a_2_0·a_29_7
  404. a_12_4·a_19_5 − a_8_1·a_23_0 + a_2_0·a_29_7
  405. a_12_4·a_19_6 + a_8_1·a_23_1 − a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  406. a_12_5·a_19_5 − a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_6
  407. a_12_5·a_19_6 − a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  408. a_16_4·a_15_4 − a_2_0·a_29_7 − a_2_0·a_29_6
  409. a_16_4·a_15_5 + a_2_0·a_29_7 − a_2_0·a_29_6
  410. a_16_5·a_15_4 + a_2_0·a_29_7 − a_2_0·a_29_6
  411. a_16_5·a_15_5 + a_2_0·a_29_7 + a_2_0·a_29_6
  412. a_16_6·a_15_4 + a_2_0·a_29_7 + a_2_0·a_29_6
  413. a_16_6·a_15_5 − a_2_0·a_29_7 + a_2_0·a_29_6
  414. a_20_5·a_11_2 − a_2_0·a_29_7
  415. a_20_5·a_11_3 − a_2_0·a_29_6
  416. a_20_6·a_11_2 + a_2_0·a_29_6
  417. a_20_6·a_11_3 − a_2_0·a_29_7
  418. a_24_5·a_7_0 + a_8_1·a_23_1 − a_2_0·a_29_7 + a_2_0·a_29_6
  419. a_24_5·a_7_1 − a_8_1·a_23_1 − a_2_0·a_29_7
  420. a_24_5·a_7_3 + a_8_1·a_23_0 + a_2_0·a_29_6
  421. a_24_5·a_7_4 + a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_7 + a_2_0·a_29_6
  422. a_24_6·a_7_0 − a_8_1·a_23_0 − a_2_0·a_29_6
  423. a_24_6·a_7_1 + a_8_1·a_23_0
  424. a_24_6·a_7_3 − a_8_1·a_23_1 − a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  425. a_24_6·a_7_4 − a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_7 − a_2_0·a_29_6
  426. a_24_7·a_7_0 − a_8_1·a_23_1 + a_2_0·a_29_7 + a_2_0·a_29_6
  427. a_24_7·a_7_1 + a_8_1·a_23_1 + a_2_0·a_29_7 + a_2_0·a_29_6
  428. a_24_7·a_7_3 − a_8_1·a_23_0 + a_2_0·a_29_7
  429. a_24_7·a_7_4 − a_8_1·a_23_1 − a_8_1·a_23_0 − a_2_0·a_29_7 − a_2_0·a_29_6
  430. a_24_8·a_7_0 − a_8_1·a_23_1 − a_8_1·a_23_0 + a_2_0·a_29_6
  431. a_24_8·a_7_1 + a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_7
  432. a_24_8·a_7_3 − a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_7 − a_2_0·a_29_6
  433. a_24_8·a_7_4 + a_8_1·a_23_1
  434. a_28_7·a_3_0 + a_8_1·a_23_1 + a_2_0·a_29_7 + a_2_0·a_29_6
  435. a_28_7·a_3_1 + a_8_1·a_23_0 − a_2_0·a_29_7
  436. a_28_8·a_3_0 + a_8_1·a_23_1 + a_8_1·a_23_0 + a_2_0·a_29_7
  437. a_28_8·a_3_1 + a_8_1·a_23_1 − a_8_1·a_23_0 + a_2_0·a_29_6
  438. a_28_9·a_3_0 + a_8_1·a_23_1 + a_8_1·a_23_0 − a_2_0·a_29_7
  439. a_28_9·a_3_1 + a_8_1·a_23_1 − a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  440. a_28_10·a_3_0 − a_8_1·a_23_1 − a_2_0·a_29_7
  441. a_28_10·a_3_1 − a_8_1·a_23_0 + a_2_0·a_29_7 + a_2_0·a_29_6
  442. b_4_0·a_27_8
  443. b_4_0·a_27_9
  444. b_18_0·a_13_0 + b_4_02·a_23_1 − b_4_02·a_23_0 + b_4_05·a_8_1·a_3_0
  445. b_18_0·a_13_1 − b_4_02·a_23_1 + b_4_05·a_8_1·a_3_0
  446. a_8_1·a_24_7 + a_8_1·a_24_5
  447. a_8_1·a_24_8 − a_8_1·a_24_6 + a_8_1·a_24_5
  448. a_8_2·a_24_5 + a_8_1·a_24_6
  449. a_8_2·a_24_6 − a_8_1·a_24_6 + a_8_1·a_24_5
  450. a_8_2·a_24_7 − a_8_1·a_24_6
  451. a_8_2·a_24_8 + a_8_1·a_24_6 + a_8_1·a_24_5
  452. a_8_3·a_24_5 − a_8_1·a_24_6 − a_8_1·a_24_5
  453. a_8_3·a_24_6 − a_8_1·a_24_5
  454. a_8_3·a_24_7 + a_8_1·a_24_6 + a_8_1·a_24_5
  455. a_8_3·a_24_8 + a_8_1·a_24_6
  456. a_12_2·a_20_5 + a_8_1·a_24_6
  457. a_12_2·a_20_6 − a_8_1·a_24_6 − a_8_1·a_24_5
  458. a_12_3·a_20_5 + a_8_1·a_24_6 − a_8_1·a_24_5
  459. a_12_3·a_20_6 + a_8_1·a_24_5
  460. a_12_4·a_20_5 + a_8_1·a_24_6 + a_8_1·a_24_5
  461. a_12_4·a_20_6 + a_8_1·a_24_6
  462. a_12_5·a_20_5 − a_8_1·a_24_6
  463. a_12_5·a_20_6 + a_8_1·a_24_6 + a_8_1·a_24_5
  464. a_16_42 + a_8_1·a_24_6 + a_8_1·a_24_5
  465. a_16_4·a_16_5 − a_8_1·a_24_6
  466. a_16_4·a_16_6 − a_8_1·a_24_6 − a_8_1·a_24_5
  467. a_16_52 − a_8_1·a_24_6 − a_8_1·a_24_5
  468. a_16_5·a_16_6 + a_8_1·a_24_6
  469. a_16_62 + a_8_1·a_24_6 + a_8_1·a_24_5
  470. a_3_0·a_29_6 − a_8_1·a_24_6 − a_8_1·a_24_5
  471. a_3_0·a_29_7 − a_8_1·a_24_6
  472. a_3_1·a_29_6
  473. a_3_1·a_29_7
  474. a_7_0·a_25_4 − a_8_1·a_24_6 − a_8_1·a_24_5 + b_4_0·a_3_0·a_25_4
  475. a_7_0·a_25_5 − a_8_1·a_24_5 + b_4_0·a_3_0·a_25_5
  476. a_7_1·a_25_4 + a_8_1·a_24_6 + a_8_1·a_24_5
  477. a_7_1·a_25_5 + a_8_1·a_24_5
  478. a_7_3·a_25_4 − a_8_1·a_24_6 + a_8_1·a_24_5
  479. a_7_3·a_25_5 − a_8_1·a_24_6 − a_8_1·a_24_5
  480. a_7_4·a_25_4 + a_8_1·a_24_6
  481. a_7_4·a_25_5 − a_8_1·a_24_6 + a_8_1·a_24_5
  482. a_13_0·a_19_5 − a_8_1·a_24_6 + a_8_1·a_24_5
  483. a_13_0·a_19_6 + a_8_1·a_24_5
  484. a_13_1·a_19_5 + a_8_1·a_24_6 + a_8_1·a_24_5
  485. a_13_1·a_19_6 − a_8_1·a_24_6
  486. a_15_4·a_17_2
  487. a_15_5·a_17_2
  488. a_2_0·b_30_4 − a_8_1·a_24_6 − a_8_1·a_24_5
  489. a_2_0·b_30_5 − a_8_1·a_24_6
  490. b_4_0·a_28_7 + a_8_1·a_24_6 + a_8_1·a_24_5
  491. b_4_0·a_28_8 − a_8_1·a_24_6
  492. b_4_0·a_28_9 + a_8_1·a_24_6
  493. b_4_0·a_28_10 + a_8_1·a_24_6 + a_8_1·a_24_5
  494. a_8_1·a_25_4
  495. a_8_1·a_25_5
  496. a_8_2·a_25_4
  497. a_8_2·a_25_5
  498. a_8_3·a_25_4
  499. a_8_3·a_25_5
  500. a_16_4·a_17_2
  501. a_16_5·a_17_2
  502. a_16_6·a_17_2
  503. a_20_5·a_13_0
  504. a_20_5·a_13_1
  505. a_20_6·a_13_0
  506. a_20_6·a_13_1
  507. a_22_1·a_11_2
  508. a_22_1·a_11_3
  509. b_18_0·a_15_4
  510. b_18_0·a_15_5
  511. b_30_4·a_3_0 − b_4_0·a_29_6
  512. b_30_4·a_3_1 − b_4_0·a_29_6
  513. b_30_5·a_3_0 − b_4_0·a_29_7
  514. b_30_5·a_3_1 − b_4_0·a_29_7
  515. a_12_2·a_22_1
  516. a_12_3·a_22_1
  517. a_12_4·a_22_1
  518. a_12_5·a_22_1
  519. a_7_0·a_27_8 − a_2_0·a_8_2·c_24_4
  520. a_7_0·a_27_9 + a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  521. a_7_1·a_27_8 + a_2_0·a_8_2·c_24_4
  522. a_7_1·a_27_9 − a_2_0·a_8_2·c_24_4 + a_2_0·a_8_1·c_24_4
  523. a_7_3·a_27_8 − a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  524. a_7_3·a_27_9 + a_2_0·a_8_1·c_24_4
  525. a_7_4·a_27_8 + a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  526. a_7_4·a_27_9 + a_2_0·a_8_2·c_24_4
  527. a_11_2·a_23_0 − a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  528. a_11_2·a_23_1 − a_2_0·a_8_2·c_24_4
  529. a_11_2·a_23_4
  530. a_11_2·a_23_5
  531. a_11_3·a_23_0 + a_2_0·a_8_1·c_24_4
  532. a_11_3·a_23_1 + a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  533. a_11_3·a_23_4
  534. a_11_3·a_23_5
  535. a_15_4·a_19_5 − a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  536. a_15_4·a_19_6 − a_2_0·a_8_1·c_24_4
  537. a_15_5·a_19_5 + a_2_0·a_8_1·c_24_4
  538. a_15_5·a_19_6 − a_2_0·a_8_2·c_24_4 − a_2_0·a_8_1·c_24_4
  539. a_16_4·b_18_0
  540. a_16_5·b_18_0
  541. a_16_6·b_18_0
  542. a_8_1·a_27_8
  543. a_8_1·a_27_9
  544. a_8_2·a_27_8
  545. a_8_2·a_27_9
  546. a_8_3·a_27_8
  547. a_8_3·a_27_9
  548. a_12_2·a_23_0 − b_4_06·a_8_1·a_3_0 − a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1
  549. a_12_2·a_23_1 − b_4_06·a_8_1·a_3_0 − a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1
       + a_8_1·c_24_4·a_3_0
  550. a_12_2·a_23_4
  551. a_12_2·a_23_5
  552. a_12_3·a_23_0 + b_4_06·a_8_1·a_3_0 + a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1
       − a_8_1·c_24_4·a_3_0
  553. a_12_3·a_23_1 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  554. a_12_3·a_23_4
  555. a_12_3·a_23_5
  556. a_12_4·a_23_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  557. a_12_4·a_23_1 − a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  558. a_12_4·a_23_4
  559. a_12_4·a_23_5
  560. a_12_5·a_23_0 − a_8_2·c_24_4·a_3_0
  561. a_12_5·a_23_1 − a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  562. a_12_5·a_23_4
  563. a_12_5·a_23_5
  564. a_16_4·a_19_5 − a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  565. a_16_4·a_19_6 − a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  566. a_16_5·a_19_5 + a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  567. a_16_5·a_19_6 − a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  568. a_16_6·a_19_5 + a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  569. a_16_6·a_19_6 + a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  570. a_20_5·a_15_4
  571. a_20_5·a_15_5
  572. a_20_6·a_15_4
  573. a_20_6·a_15_5
  574. a_22_1·a_13_0
  575. a_22_1·a_13_1
  576. a_24_5·a_11_2
  577. a_24_5·a_11_3
  578. a_24_6·a_11_2
  579. a_24_6·a_11_3
  580. a_24_7·a_11_2
  581. a_24_7·a_11_3
  582. a_24_8·a_11_2
  583. a_24_8·a_11_3
  584. a_28_7·a_7_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  585. a_28_7·a_7_1 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  586. a_28_7·a_7_3 − a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  587. a_28_7·a_7_4 − a_8_2·c_24_4·a_3_0
  588. a_28_8·a_7_0 − a_8_2·c_24_4·a_3_0
  589. a_28_8·a_7_1 + a_8_2·c_24_4·a_3_0
  590. a_28_8·a_7_3 + a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  591. a_28_8·a_7_4 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  592. a_28_9·a_7_0 − a_8_2·c_24_4·a_3_0
  593. a_28_9·a_7_1 + a_8_2·c_24_4·a_3_0
  594. a_28_9·a_7_3 + a_8_2·c_24_4·a_3_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  595. a_28_9·a_7_4 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  596. a_28_10·a_7_0 + a_8_1·c_24_4·a_3_1 − a_8_1·c_24_4·a_3_0
  597. a_28_10·a_7_1 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  598. a_28_10·a_7_3 + a_8_2·c_24_4·a_3_0 − a_8_1·c_24_4·a_3_1 + a_8_1·c_24_4·a_3_0
  599. a_28_10·a_7_4 + a_8_2·c_24_4·a_3_0
  600. b_18_0·a_17_2 + b_4_08·a_3_0 + b_4_02·c_24_4·a_3_0
  601. a_2_0·a_34_6
  602. a_2_0·a_34_7
  603. a_8_1·a_28_7
  604. a_8_1·a_28_8
  605. a_8_1·a_28_9
  606. a_8_1·a_28_10
  607. a_8_2·a_28_7
  608. a_8_2·a_28_8
  609. a_8_2·a_28_9
  610. a_8_2·a_28_10
  611. a_8_3·a_28_7
  612. a_8_3·a_28_8
  613. a_8_3·a_28_9
  614. a_8_3·a_28_10
  615. a_12_2·a_24_5
  616. a_12_2·a_24_6
  617. a_12_2·a_24_7
  618. a_12_2·a_24_8
  619. a_12_3·a_24_5
  620. a_12_3·a_24_6
  621. a_12_3·a_24_7
  622. a_12_3·a_24_8
  623. a_12_4·a_24_5
  624. a_12_4·a_24_6
  625. a_12_4·a_24_7
  626. a_12_4·a_24_8
  627. a_12_5·a_24_5
  628. a_12_5·a_24_6
  629. a_12_5·a_24_7
  630. a_12_5·a_24_8
  631. a_16_4·a_20_5
  632. a_16_4·a_20_6
  633. a_16_5·a_20_5
  634. a_16_5·a_20_6
  635. a_16_6·a_20_5
  636. a_16_6·a_20_6
  637. a_7_0·a_29_6
  638. a_7_0·a_29_7
  639. a_7_1·a_29_6
  640. a_7_1·a_29_7
  641. a_7_3·a_29_6
  642. a_7_3·a_29_7
  643. a_7_4·a_29_6
  644. a_7_4·a_29_7
  645. a_11_2·a_25_4
  646. a_11_2·a_25_5
  647. a_11_3·a_25_4
  648. a_11_3·a_25_5
  649. a_13_0·a_23_1 − a_13_0·a_23_0
  650. a_13_0·a_23_4
  651. a_13_0·a_23_5
  652. a_13_1·a_23_0 + a_13_0·a_23_0
  653. a_13_1·a_23_1
  654. a_13_1·a_23_4
  655. a_13_1·a_23_5
  656. a_17_2·a_19_5
  657. a_17_2·a_19_6
  658. b_4_07·a_8_1 − a_13_0·a_23_0 + b_4_0·a_8_1·c_24_4
  659. b_18_02 + b_4_09 + b_4_05·a_3_0·a_13_1 − b_4_05·a_3_0·a_13_0 + b_4_03·c_24_4
  660. a_2_0·a_35_4
  661. a_2_0·a_35_5
  662. a_2_0·a_35_7
  663. a_2_0·a_35_8
  664. a_8_2·a_29_6
  665. a_8_2·a_29_7
  666. a_8_3·a_29_6
  667. a_8_3·a_29_7
  668. a_12_2·a_25_4 − a_8_1·a_29_6
  669. a_12_2·a_25_5 + a_8_1·a_29_7 − a_8_1·a_29_6
  670. a_12_3·a_25_4 − a_8_1·a_29_7 + a_8_1·a_29_6
  671. a_12_3·a_25_5 + a_8_1·a_29_7
  672. a_12_4·a_25_4
  673. a_12_4·a_25_5
  674. a_12_5·a_25_4
  675. a_12_5·a_25_5
  676. a_20_5·a_17_2
  677. a_20_6·a_17_2
  678. a_22_1·a_15_4
  679. a_22_1·a_15_5
  680. a_24_5·a_13_0 + a_8_1·a_29_6
  681. a_24_5·a_13_1 + a_8_1·a_29_7 − a_8_1·a_29_6
  682. a_24_6·a_13_0 − a_8_1·a_29_7 + a_8_1·a_29_6
  683. a_24_6·a_13_1 − a_8_1·a_29_7
  684. a_24_7·a_13_0
  685. a_24_7·a_13_1
  686. a_24_8·a_13_0
  687. a_24_8·a_13_1
  688. a_34_6·a_3_0 + a_8_1·a_29_6
  689. a_34_6·a_3_1 + a_8_1·a_29_6
  690. a_34_7·a_3_0 + a_8_1·a_29_7
  691. a_34_7·a_3_1 + a_8_1·a_29_7
  692. b_18_0·a_19_5
  693. b_18_0·a_19_6
  694. b_30_4·a_7_0 + b_4_02·a_29_6 + a_8_1·a_29_6
  695. b_30_4·a_7_1
  696. b_30_4·a_7_3
  697. b_30_4·a_7_4
  698. b_30_5·a_7_0 + b_4_02·a_29_7 + a_8_1·a_29_7
  699. b_30_5·a_7_1
  700. b_30_5·a_7_3
  701. b_30_5·a_7_4
  702. a_16_4·a_22_1
  703. a_16_5·a_22_1
  704. a_16_6·a_22_1
  705. a_3_1·a_35_4 − a_3_0·a_35_4 − a_2_0·a_12_3·c_24_4 − a_2_0·a_12_2·c_24_4
  706. a_3_1·a_35_5 − a_3_0·a_35_5 − a_2_0·a_12_3·c_24_4 − a_2_0·a_12_2·c_24_4
  707. a_3_1·a_35_7 − a_3_0·a_35_7
  708. a_3_1·a_35_8 − a_3_0·a_35_8
  709. a_11_2·a_27_8
  710. a_11_2·a_27_9
  711. a_11_3·a_27_8
  712. a_11_3·a_27_9
  713. a_13_1·a_25_4 + a_13_0·a_25_5
  714. a_13_1·a_25_5 − a_13_0·a_25_5 + a_13_0·a_25_4
  715. a_15_4·a_23_0 + a_2_0·a_12_2·c_24_4
  716. a_15_4·a_23_1 − a_2_0·a_12_3·c_24_4
  717. a_15_4·a_23_4
  718. a_15_4·a_23_5
  719. a_15_5·a_23_0 − a_2_0·a_12_3·c_24_4 − a_2_0·a_12_2·c_24_4
  720. a_15_5·a_23_1 − a_2_0·a_12_3·c_24_4 + a_2_0·a_12_2·c_24_4
  721. a_15_5·a_23_4
  722. a_15_5·a_23_5
  723. a_19_5·a_19_6
  724. b_4_0·a_34_6 + a_13_0·a_25_4
  725. b_4_0·a_34_7 − a_13_0·a_25_5 + a_13_0·a_25_4
  726. a_8_1·b_30_4 − a_13_0·a_25_4
  727. a_8_1·b_30_5 + a_13_0·a_25_5 − a_13_0·a_25_4
  728. a_8_2·b_30_4
  729. a_8_2·b_30_5
  730. a_8_3·b_30_4
  731. a_8_3·b_30_5
  732. b_18_0·a_20_5
  733. b_18_0·a_20_6
  734. a_12_2·a_27_8 − a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  735. a_12_2·a_27_9 + a_2_0·c_24_4·a_13_0
  736. a_12_3·a_27_8 + a_2_0·c_24_4·a_13_1
  737. a_12_3·a_27_9 − a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  738. a_12_4·a_27_8 + a_2_0·c_24_4·a_13_0
  739. a_12_4·a_27_9 + a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  740. a_12_5·a_27_8 + a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  741. a_12_5·a_27_9 − a_2_0·c_24_4·a_13_0
  742. a_16_4·a_23_0 + a_8_1·c_24_4·a_7_0 + b_4_0·a_8_1·c_24_4·a_3_0 + a_2_0·c_24_4·a_13_1
       − a_2_0·c_24_4·a_13_0
  743. a_16_4·a_23_1 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  744. a_16_4·a_23_4 − a_2_0·c_24_4·a_13_1
  745. a_16_4·a_23_5 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  746. a_16_5·a_23_0 − a_8_1·c_24_4·a_7_0 − b_4_0·a_8_1·c_24_4·a_3_0 + a_2_0·c_24_4·a_13_0
  747. a_16_5·a_23_1 + a_8_1·c_24_4·a_7_0 + b_4_0·a_8_1·c_24_4·a_3_0 − a_2_0·c_24_4·a_13_1
       − a_2_0·c_24_4·a_13_0
  748. a_16_5·a_23_4 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  749. a_16_5·a_23_5 + a_2_0·c_24_4·a_13_1
  750. a_16_6·a_23_0 − a_8_1·c_24_4·a_7_0 − b_4_0·a_8_1·c_24_4·a_3_0 − a_2_0·c_24_4·a_13_0
  751. a_16_6·a_23_1 + a_2_0·c_24_4·a_13_0
  752. a_16_6·a_23_4 + a_2_0·c_24_4·a_13_1
  753. a_16_6·a_23_5 − a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  754. a_20_5·a_19_5 + a_8_1·c_24_4·a_7_0 + b_4_0·a_8_1·c_24_4·a_3_0
  755. a_20_5·a_19_6
  756. a_20_6·a_19_5
  757. a_20_6·a_19_6 − a_8_1·c_24_4·a_7_0 − b_4_0·a_8_1·c_24_4·a_3_0
  758. a_22_1·a_17_2 + a_3_0·a_13_0·a_23_0
  759. a_24_5·a_15_4 + a_2_0·c_24_4·a_13_0
  760. a_24_5·a_15_5 + a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  761. a_24_6·a_15_4 − a_2_0·c_24_4·a_13_1
  762. a_24_6·a_15_5 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  763. a_24_7·a_15_4 − a_2_0·c_24_4·a_13_0
  764. a_24_7·a_15_5 − a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  765. a_24_8·a_15_4 − a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  766. a_24_8·a_15_5 + a_2_0·c_24_4·a_13_0
  767. a_28_7·a_11_2 − a_2_0·c_24_4·a_13_1
  768. a_28_7·a_11_3 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  769. a_28_8·a_11_2 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  770. a_28_8·a_11_3 + a_2_0·c_24_4·a_13_1
  771. a_28_9·a_11_2 + a_2_0·c_24_4·a_13_1 − a_2_0·c_24_4·a_13_0
  772. a_28_9·a_11_3 + a_2_0·c_24_4·a_13_1
  773. a_28_10·a_11_2 + a_2_0·c_24_4·a_13_1
  774. a_28_10·a_11_3 − a_2_0·c_24_4·a_13_1 + a_2_0·c_24_4·a_13_0
  775. a_12_2·a_28_7
  776. a_12_2·a_28_8
  777. a_12_2·a_28_9
  778. a_12_2·a_28_10
  779. a_12_3·a_28_7
  780. a_12_3·a_28_8
  781. a_12_3·a_28_9
  782. a_12_3·a_28_10
  783. a_12_4·a_28_7
  784. a_12_4·a_28_8
  785. a_12_4·a_28_9
  786. a_12_4·a_28_10
  787. a_12_5·a_28_7
  788. a_12_5·a_28_8
  789. a_12_5·a_28_9
  790. a_12_5·a_28_10
  791. a_16_4·a_24_5
  792. a_16_4·a_24_6
  793. a_16_4·a_24_7
  794. a_16_4·a_24_8
  795. a_16_5·a_24_5
  796. a_16_5·a_24_6
  797. a_16_5·a_24_7
  798. a_16_5·a_24_8
  799. a_16_6·a_24_5
  800. a_16_6·a_24_6
  801. a_16_6·a_24_7
  802. a_16_6·a_24_8
  803. a_20_52
  804. a_20_5·a_20_6
  805. a_20_62
  806. a_11_2·a_29_6
  807. a_11_2·a_29_7
  808. a_11_3·a_29_6
  809. a_11_3·a_29_7
  810. a_13_0·a_27_8
  811. a_13_0·a_27_9
  812. a_13_1·a_27_8
  813. a_13_1·a_27_9
  814. a_15_4·a_25_4
  815. a_15_4·a_25_5
  816. a_15_5·a_25_4
  817. a_15_5·a_25_5
  818. a_17_2·a_23_0 + b_4_06·a_3_0·a_13_1 + b_4_06·a_3_0·a_13_0 + c_24_4·a_3_0·a_13_1
       + c_24_4·a_3_0·a_13_0
  819. a_17_2·a_23_1 + b_4_06·a_3_0·a_13_1 + c_24_4·a_3_0·a_13_1
  820. a_17_2·a_23_4
  821. a_17_2·a_23_5
  822. b_18_0·a_22_1 + b_4_0·a_13_0·a_23_0
  823. a_2_0·a_39_18
  824. a_2_0·a_39_19
  825. a_12_2·a_29_6
  826. a_12_2·a_29_7
  827. a_12_3·a_29_6
  828. a_12_3·a_29_7
  829. a_12_4·a_29_6
  830. a_12_4·a_29_7
  831. a_12_5·a_29_6
  832. a_12_5·a_29_7
  833. a_16_4·a_25_4
  834. a_16_4·a_25_5
  835. a_16_5·a_25_4
  836. a_16_5·a_25_5
  837. a_16_6·a_25_4
  838. a_16_6·a_25_5
  839. a_22_1·a_19_5
  840. a_22_1·a_19_6
  841. a_24_5·a_17_2
  842. a_24_6·a_17_2
  843. a_24_7·a_17_2
  844. a_24_8·a_17_2
  845. a_28_7·a_13_0
  846. a_28_7·a_13_1
  847. a_28_8·a_13_0
  848. a_28_8·a_13_1
  849. a_28_9·a_13_0
  850. a_28_9·a_13_1
  851. a_28_10·a_13_0
  852. a_28_10·a_13_1
  853. a_34_6·a_7_0 − a_3_0·a_13_0·a_25_4
  854. a_34_6·a_7_1
  855. a_34_6·a_7_3
  856. a_34_6·a_7_4
  857. a_34_7·a_7_0 + a_3_0·a_13_0·a_25_5 − a_3_0·a_13_0·a_25_4
  858. a_34_7·a_7_1
  859. a_34_7·a_7_3
  860. a_34_7·a_7_4
  861. b_18_0·a_23_0 + b_4_07·a_13_1 + b_4_07·a_13_0 + b_4_0·c_24_4·a_13_1
       + b_4_0·c_24_4·a_13_0
  862. b_18_0·a_23_1 + b_4_07·a_13_1 + b_4_0·c_24_4·a_13_1
  863. b_18_0·a_23_4
  864. b_18_0·a_23_5
  865. b_30_4·a_11_2
  866. b_30_4·a_11_3
  867. b_30_5·a_11_2
  868. b_30_5·a_11_3
  869. a_8_1·a_34_6
  870. a_8_1·a_34_7
  871. a_8_2·a_34_6
  872. a_8_2·a_34_7
  873. a_8_3·a_34_6
  874. a_8_3·a_34_7
  875. a_20_5·a_22_1
  876. a_20_6·a_22_1
  877. a_3_0·a_39_18 − a_2_0·a_40_16
  878. a_3_0·a_39_19 − a_2_0·a_40_16 + a_2_0·a_40_15
  879. a_3_1·a_39_18 + a_2_0·a_40_16 + a_2_0·a_40_15
  880. a_3_1·a_39_19 − a_2_0·a_40_16
  881. a_7_0·a_35_4 + b_4_0·a_3_0·a_35_4 + a_2_0·a_40_16 + a_2_0·a_40_15
  882. a_7_0·a_35_5 + b_4_0·a_3_0·a_35_5 + a_2_0·a_40_15 + c_36_11·a_3_0·a_3_1
       + a_2_0·a_16_4·c_24_4
  883. a_7_0·a_35_7 + b_4_0·a_3_0·a_35_7 + a_2_0·a_40_16 − a_2_0·a_40_15 + a_2_0·a_16_5·c_24_4
       + a_2_0·a_16_4·c_24_4
  884. a_7_0·a_35_8 + b_4_0·a_3_0·a_35_8 + a_2_0·a_40_16 + c_36_5·a_3_0·a_3_1
       + a_2_0·a_16_4·c_24_4
  885. a_7_1·a_35_4 − a_2_0·a_40_16 + a_2_0·a_40_15 − a_2_0·a_16_5·c_24_4
  886. a_7_1·a_35_5 − a_2_0·a_40_16 − c_36_11·a_3_0·a_3_1 + a_2_0·a_16_5·c_24_4
  887. a_7_1·a_35_7 + a_2_0·a_40_16 + a_2_0·a_40_15 − a_2_0·a_16_5·c_24_4 + a_2_0·a_16_4·c_24_4
  888. a_7_1·a_35_8 + a_2_0·a_40_15 − c_36_5·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_4
  889. a_7_3·a_35_4 + a_2_0·a_40_16 − a_2_0·a_40_15 + c_36_11·a_3_0·a_3_1 + a_2_0·a_16_5·c_24_4
       − a_2_0·a_16_4·c_24_4
  890. a_7_3·a_35_5 + a_2_0·a_40_16 + c_36_11·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_4
       − a_2_0·a_16_4·c_24_4
  891. a_7_3·a_35_7 − a_2_0·a_40_16 − a_2_0·a_40_15 + c_36_5·a_3_0·a_3_1 + a_2_0·a_16_5·c_24_4
       − a_2_0·a_16_4·c_24_4
  892. a_7_3·a_35_8 − a_2_0·a_40_15 + c_36_5·a_3_0·a_3_1 + a_2_0·a_16_5·c_24_4
  893. a_7_4·a_35_4 − a_2_0·a_40_15 + c_36_11·a_3_0·a_3_1 + a_2_0·a_16_4·c_24_4
  894. a_7_4·a_35_5 − a_2_0·a_40_16 + a_2_0·a_40_15 − c_36_11·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_4
       − a_2_0·a_16_4·c_24_4
  895. a_7_4·a_35_7 − a_2_0·a_40_16 + c_36_5·a_3_0·a_3_1 − a_2_0·a_16_4·c_24_4
  896. a_7_4·a_35_8 + a_2_0·a_40_16 + a_2_0·a_40_15 − c_36_5·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_4
       + a_2_0·a_16_4·c_24_4
  897. a_13_0·a_29_6 + b_4_0·a_3_0·a_35_4
  898. a_13_0·a_29_7 + b_4_0·a_3_0·a_35_7
  899. a_13_1·a_29_6 + b_4_0·a_3_0·a_35_5
  900. a_13_1·a_29_7 + b_4_0·a_3_0·a_35_8
  901. a_15_4·a_27_8
  902. a_15_4·a_27_9
  903. a_15_5·a_27_8
  904. a_15_5·a_27_9
  905. a_17_2·a_25_4 − b_4_0·a_3_0·a_35_7 + b_4_0·a_3_0·a_35_5 + b_4_0·a_3_0·a_35_4
  906. a_17_2·a_25_5 − b_4_0·a_3_0·a_35_8 + b_4_0·a_3_0·a_35_7 + b_4_0·a_3_0·a_35_5
  907. a_19_5·a_23_0 − a_2_0·a_40_15 + c_36_11·a_3_0·a_3_1 − c_36_5·a_3_0·a_3_1
       − a_2_0·a_16_5·c_24_4 + a_2_0·a_16_4·c_24_4
  908. a_19_5·a_23_1 + a_2_0·a_40_15 − c_36_11·a_3_0·a_3_1 − a_2_0·a_16_4·c_24_4
  909. a_19_5·a_23_4 − a_2_0·a_40_16
  910. a_19_5·a_23_5 + a_2_0·a_40_15
  911. a_19_6·a_23_0 + a_2_0·a_40_16 − c_36_11·a_3_0·a_3_1 − c_36_5·a_3_0·a_3_1
       + a_2_0·a_16_5·c_24_4 + a_2_0·a_16_4·c_24_4
  912. a_19_6·a_23_1 − a_2_0·a_40_16 + c_36_5·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_4
  913. a_19_6·a_23_4 − a_2_0·a_40_15
  914. a_19_6·a_23_5 − a_2_0·a_40_16
  915. a_12_2·b_30_4 − b_4_0·a_3_0·a_35_4
  916. a_12_2·b_30_5 − b_4_0·a_3_0·a_35_7
  917. a_12_3·b_30_4 − b_4_0·a_3_0·a_35_5
  918. a_12_3·b_30_5 − b_4_0·a_3_0·a_35_8
  919. a_12_4·b_30_4
  920. a_12_4·b_30_5
  921. a_12_5·b_30_4
  922. a_12_5·b_30_5
  923. b_18_0·a_24_5 − b_4_0·a_3_0·a_35_7 + b_4_0·a_3_0·a_35_5 + b_4_0·a_3_0·a_35_4
  924. b_18_0·a_24_6 − b_4_0·a_3_0·a_35_8 + b_4_0·a_3_0·a_35_7 + b_4_0·a_3_0·a_35_5
  925. b_18_0·a_24_7
  926. b_18_0·a_24_8
  927. a_8_1·a_35_4 − c_36_11·a_7_4 − c_36_5·a_7_4 + c_36_5·a_7_3 − c_24_4·a_19_6 − c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0 + b_4_02·a_8_1·c_24_4·a_3_0
       − a_2_0·c_24_4·a_17_2
  928. a_8_1·a_35_5 − c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_3 − c_24_4·a_19_6
       − a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  929. a_8_1·a_35_7 + c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_4 + c_24_4·a_19_6
       − c_24_4·a_19_5 − a_12_2·c_24_4·a_7_0 − a_2_0·c_24_4·a_17_2
  930. a_8_1·a_35_8 + c_36_11·a_7_3 − c_36_5·a_7_4 − c_36_5·a_7_3 − c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  931. a_8_2·a_35_4 − c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_3 − c_24_4·a_19_6
       − a_12_2·c_24_4·a_7_0 − a_2_0·c_24_4·a_17_2
  932. a_8_2·a_35_5 + c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_4 + c_24_4·a_19_6
       − c_24_4·a_19_5 − a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  933. a_8_2·a_35_7 + c_36_11·a_7_3 − c_36_5·a_7_4 − c_36_5·a_7_3 − c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  934. a_8_2·a_35_8 + c_36_11·a_7_4 + c_36_5·a_7_4 − c_36_5·a_7_3 + c_24_4·a_19_6 + c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  935. a_8_3·a_35_4 + c_36_11·a_7_3 − c_36_5·a_7_4 − c_36_5·a_7_3 − c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0
  936. a_8_3·a_35_5 + c_36_11·a_7_4 + c_36_5·a_7_4 − c_36_5·a_7_3 + c_24_4·a_19_6 + c_24_4·a_19_5
       + a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0 − a_2_0·c_24_4·a_17_2
  937. a_8_3·a_35_7 + c_36_11·a_7_4 + c_36_11·a_7_3 + c_36_5·a_7_3 + c_24_4·a_19_6
       + a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0
  938. a_8_3·a_35_8 − c_36_11·a_7_4 + c_36_11·a_7_3 + c_36_5·a_7_4 − c_24_4·a_19_6
       + c_24_4·a_19_5 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  939. a_16_4·a_27_8 − a_2_0·c_24_4·a_17_2
  940. a_16_4·a_27_9 − a_2_0·c_24_4·a_17_2
  941. a_16_5·a_27_8 − a_2_0·c_24_4·a_17_2
  942. a_16_5·a_27_9 + a_2_0·c_24_4·a_17_2
  943. a_16_6·a_27_8 + a_2_0·c_24_4·a_17_2
  944. a_16_6·a_27_9 + a_2_0·c_24_4·a_17_2
  945. a_20_5·a_23_0 + a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  946. a_20_5·a_23_1 + a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  947. a_20_5·a_23_4
  948. a_20_5·a_23_5 + a_2_0·c_24_4·a_17_2
  949. a_20_6·a_23_0 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  950. a_20_6·a_23_1 + a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0
  951. a_20_6·a_23_4 − a_2_0·c_24_4·a_17_2
  952. a_20_6·a_23_5
  953. a_24_5·a_19_5 − c_36_11·a_7_4 + c_36_11·a_7_3 + c_36_5·a_7_4 − c_24_4·a_19_6
       + c_24_4·a_19_5 − a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  954. a_24_5·a_19_6 + c_36_11·a_7_4 + c_36_5·a_7_4 − c_36_5·a_7_3 + c_24_4·a_19_6
       + c_24_4·a_19_5 − a_12_2·c_24_4·a_7_0
  955. a_24_6·a_19_5 + c_36_11·a_7_3 − c_36_5·a_7_4 − c_36_5·a_7_3 − c_24_4·a_19_5
       − a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0 − a_2_0·c_24_4·a_17_2
  956. a_24_6·a_19_6 − c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_3 − c_24_4·a_19_6
       + a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  957. a_24_7·a_19_5 + c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_4 + c_24_4·a_19_6
       − c_24_4·a_19_5 + a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  958. a_24_7·a_19_6 − c_36_11·a_7_4 − c_36_5·a_7_4 + c_36_5·a_7_3 − c_24_4·a_19_6
       − c_24_4·a_19_5 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  959. a_24_8·a_19_5 + c_36_11·a_7_4 + c_36_5·a_7_4 − c_36_5·a_7_3 + c_24_4·a_19_6
       + c_24_4·a_19_5 − a_12_2·c_24_4·a_7_0 − a_2_0·c_24_4·a_17_2
  960. a_24_8·a_19_6 + c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_4 + c_24_4·a_19_6
       − c_24_4·a_19_5 + a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0
  961. a_28_7·a_15_4 + a_2_0·c_24_4·a_17_2
  962. a_28_7·a_15_5 + a_2_0·c_24_4·a_17_2
  963. a_28_8·a_15_4 + a_2_0·c_24_4·a_17_2
  964. a_28_8·a_15_5 − a_2_0·c_24_4·a_17_2
  965. a_28_9·a_15_4 + a_2_0·c_24_4·a_17_2
  966. a_28_9·a_15_5 − a_2_0·c_24_4·a_17_2
  967. a_28_10·a_15_4 − a_2_0·c_24_4·a_17_2
  968. a_28_10·a_15_5 − a_2_0·c_24_4·a_17_2
  969. a_40_15·a_3_0 − c_36_11·a_7_3 + c_36_5·a_7_4 + c_36_5·a_7_3 + c_24_4·a_19_5
       + a_12_2·c_24_4·a_7_3 − a_12_2·c_24_4·a_7_0
  970. a_40_15·a_3_1 − c_36_11·a_7_4 − c_36_5·a_7_4 + c_36_5·a_7_3 − c_24_4·a_19_6
       − c_24_4·a_19_5 + a_12_2·c_24_4·a_7_0 + a_2_0·c_24_4·a_17_2
  971. a_40_16·a_3_0 − c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_3 − c_24_4·a_19_6
       + a_12_2·c_24_4·a_7_3 − a_2_0·c_24_4·a_17_2
  972. a_40_16·a_3_1 + c_36_11·a_7_4 − c_36_11·a_7_3 − c_36_5·a_7_4 + c_24_4·a_19_6
       − c_24_4·a_19_5 + a_12_2·c_24_4·a_7_3 + a_12_2·c_24_4·a_7_0
  973. b_4_0·a_39_18
  974. b_4_0·a_39_19
  975. b_18_0·a_25_4 − b_4_02·a_35_7 + b_4_02·a_35_5 + b_4_02·a_35_4 + b_4_04·c_24_4·a_3_0
       − b_4_02·a_8_1·c_24_4·a_3_0
  976. b_18_0·a_25_5 − b_4_02·a_35_8 + b_4_02·a_35_7 + b_4_02·a_35_5
       − b_4_02·a_8_1·c_24_4·a_3_0
  977. b_30_4·a_13_0 − b_4_02·a_35_4 − b_4_04·c_24_4·a_3_0
  978. b_30_4·a_13_1 − b_4_02·a_35_5 + b_4_02·a_8_1·c_24_4·a_3_0
  979. b_30_5·a_13_0 − b_4_02·a_35_7
  980. b_30_5·a_13_1 − b_4_02·a_35_8
  981. a_20_5·c_24_4 − a_8_3·c_36_11 + a_8_2·c_36_5 + a_8_1·a_12_2·c_24_4
  982. a_20_6·c_24_4 − a_8_3·c_36_5 − a_8_2·c_36_11 − a_8_1·a_12_2·c_24_4
  983. a_16_4·a_28_7 + a_8_1·a_12_2·c_24_4
  984. a_16_4·a_28_8
  985. a_16_4·a_28_9
  986. a_16_4·a_28_10 − a_8_1·a_12_2·c_24_4
  987. a_16_5·a_28_7
  988. a_16_5·a_28_8 − a_8_1·a_12_2·c_24_4
  989. a_16_5·a_28_9 − a_8_1·a_12_2·c_24_4
  990. a_16_5·a_28_10
  991. a_16_6·a_28_7 − a_8_1·a_12_2·c_24_4
  992. a_16_6·a_28_8
  993. a_16_6·a_28_9
  994. a_16_6·a_28_10 + a_8_1·a_12_2·c_24_4
  995. a_20_5·a_24_5 − a_8_1·a_12_2·c_24_4
  996. a_20_5·a_24_6 − a_8_1·a_12_2·c_24_4
  997. a_20_5·a_24_7 + a_8_1·a_12_2·c_24_4
  998. a_20_5·a_24_8
  999. a_20_6·a_24_5
  1000. a_20_6·a_24_6 + a_8_1·a_12_2·c_24_4
  1001. a_20_6·a_24_7
  1002. a_20_6·a_24_8 + a_8_1·a_12_2·c_24_4
  1003. a_22_12
  1004. a_15_4·a_29_6
  1005. a_15_4·a_29_7
  1006. a_15_5·a_29_6
  1007. a_15_5·a_29_7
  1008. a_17_2·a_27_8
  1009. a_17_2·a_27_9
  1010. a_19_5·a_25_4 + a_8_1·a_12_2·c_24_4
  1011. a_19_5·a_25_5 − a_8_1·a_12_2·c_24_4
  1012. a_19_6·a_25_4 − a_8_1·a_12_2·c_24_4
  1013. a_19_6·a_25_5
  1014. b_4_0·a_40_15
  1015. b_4_0·a_40_16 + a_8_1·a_12_2·c_24_4
  1016. a_16_4·a_29_6
  1017. a_16_4·a_29_7
  1018. a_16_5·a_29_6
  1019. a_16_5·a_29_7
  1020. a_16_6·a_29_6
  1021. a_16_6·a_29_7
  1022. a_20_5·a_25_4
  1023. a_20_5·a_25_5
  1024. a_20_6·a_25_4
  1025. a_20_6·a_25_5
  1026. a_22_1·a_23_0
  1027. a_22_1·a_23_1
  1028. a_22_1·a_23_4
  1029. a_22_1·a_23_5
  1030. a_28_7·a_17_2
  1031. a_28_8·a_17_2
  1032. a_28_9·a_17_2
  1033. a_28_10·a_17_2
  1034. a_34_6·a_11_2
  1035. a_34_6·a_11_3
  1036. a_34_7·a_11_2
  1037. a_34_7·a_11_3
  1038. b_18_0·a_27_8
  1039. b_18_0·a_27_9
  1040. b_30_4·a_15_4
  1041. b_30_4·a_15_5
  1042. b_30_5·a_15_4
  1043. b_30_5·a_15_5
  1044. a_12_2·a_34_6
  1045. a_12_2·a_34_7
  1046. a_12_3·a_34_6
  1047. a_12_3·a_34_7
  1048. a_12_4·a_34_6
  1049. a_12_4·a_34_7
  1050. a_12_5·a_34_6
  1051. a_12_5·a_34_7
  1052. a_22_1·a_24_5
  1053. a_22_1·a_24_6
  1054. a_22_1·a_24_7
  1055. a_22_1·a_24_8
  1056. a_7_0·a_39_18 + a_2_0·a_8_2·c_36_11 − a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_11
  1057. a_7_0·a_39_19 − a_2_0·a_8_2·c_36_11 − a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1058. a_7_1·a_39_18 − a_2_0·a_8_2·c_36_11 + a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11
  1059. a_7_1·a_39_19 + a_2_0·a_8_2·c_36_11 + a_2_0·a_8_1·c_36_11 + a_2_0·a_8_1·c_36_5
  1060. a_7_3·a_39_18 − a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1061. a_7_3·a_39_19 + a_2_0·a_8_2·c_36_11 − a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_11
  1062. a_7_4·a_39_18 + a_2_0·a_8_2·c_36_11 + a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_5
  1063. a_7_4·a_39_19 − a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1064. a_11_2·a_35_4 + a_2_0·a_8_1·c_36_11
  1065. a_11_2·a_35_5 + a_2_0·a_8_2·c_36_11
  1066. a_11_2·a_35_7 + a_2_0·a_8_1·c_36_5
  1067. a_11_2·a_35_8 + a_2_0·a_8_2·c_36_5
  1068. a_11_3·a_35_4 + a_2_0·a_8_2·c_36_11 + a_2_0·a_8_1·c_36_11
  1069. a_11_3·a_35_5 − a_2_0·a_8_2·c_36_11 + a_2_0·a_8_1·c_36_11
  1070. a_11_3·a_35_7 + a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_5
  1071. a_11_3·a_35_8 − a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_5
  1072. a_17_2·a_29_6
  1073. a_17_2·a_29_7
  1074. a_19_5·a_27_8 − a_2_0·a_8_2·c_36_11 − a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1075. a_19_5·a_27_9 − a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1076. a_19_6·a_27_8 + a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_11 + a_2_0·a_8_1·c_36_5
  1077. a_19_6·a_27_9 − a_2_0·a_8_2·c_36_11 − a_2_0·a_8_1·c_36_11 − a_2_0·a_8_1·c_36_5
  1078. a_23_0·a_23_1 + b_4_05·a_13_0·a_13_1 − a_22_1·c_24_4 + a_2_0·a_8_2·c_36_11
       + a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11 + a_2_0·a_8_1·c_36_5
  1079. a_23_0·a_23_4 + a_2_0·a_8_2·c_36_11 + a_2_0·a_8_1·c_36_11 + a_2_0·a_8_1·c_36_5
  1080. a_23_0·a_23_5 + a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_11 + a_2_0·a_8_1·c_36_5
  1081. a_23_1·a_23_4 + a_2_0·a_8_2·c_36_11 + a_2_0·a_8_2·c_36_5 − a_2_0·a_8_1·c_36_5
  1082. a_23_1·a_23_5 − a_2_0·a_8_2·c_36_11 + a_2_0·a_8_2·c_36_5 + a_2_0·a_8_1·c_36_11
  1083. a_23_4·a_23_5
  1084. a_16_4·b_30_4
  1085. a_16_4·b_30_5
  1086. a_16_5·b_30_4
  1087. a_16_5·b_30_5
  1088. a_16_6·b_30_4
  1089. a_16_6·b_30_5
  1090. b_18_0·a_28_7
  1091. b_18_0·a_28_8
  1092. b_18_0·a_28_9
  1093. b_18_0·a_28_10
  1094. c_36_11·a_11_2 − c_36_5·a_11_3 − c_24_4·a_23_4 + a_8_2·c_36_5·a_3_0 + a_8_1·c_36_5·a_3_1
       − a_8_1·c_36_5·a_3_0
  1095. c_36_11·a_11_3 + c_36_5·a_11_2 − c_24_4·a_23_5 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_5·a_3_1
       + a_8_1·c_36_5·a_3_0
  1096. a_8_1·a_39_18
  1097. a_8_1·a_39_19
  1098. a_8_2·a_39_18
  1099. a_8_2·a_39_19
  1100. a_8_3·a_39_18
  1101. a_8_3·a_39_19
  1102. a_12_2·a_35_4 − a_8_1·c_36_11·a_3_1 + a_8_1·c_36_11·a_3_0
  1103. a_12_2·a_35_5 + a_8_2·c_36_11·a_3_0 − a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
       + b_4_03·a_8_1·c_24_4·a_3_0
  1104. a_12_2·a_35_7 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1105. a_12_2·a_35_8 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1106. a_12_3·a_35_4 − a_8_2·c_36_11·a_3_0 − a_8_1·c_36_11·a_3_0 − b_4_03·a_8_1·c_24_4·a_3_0
  1107. a_12_3·a_35_5 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
  1108. a_12_3·a_35_7 − a_8_2·c_36_5·a_3_0 − a_8_1·c_36_5·a_3_0
  1109. a_12_3·a_35_8 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1110. a_12_4·a_35_4 − a_8_2·c_36_11·a_3_0
  1111. a_12_4·a_35_5 + a_8_2·c_36_11·a_3_0 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
  1112. a_12_4·a_35_7 − a_8_2·c_36_5·a_3_0
  1113. a_12_4·a_35_8 + a_8_2·c_36_5·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1114. a_12_5·a_35_4 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
  1115. a_12_5·a_35_5 + a_8_2·c_36_11·a_3_0 − a_8_1·c_36_11·a_3_1 + a_8_1·c_36_11·a_3_0
  1116. a_12_5·a_35_7 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1117. a_12_5·a_35_8 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1118. a_20_5·a_27_8
  1119. a_20_5·a_27_9
  1120. a_20_6·a_27_8
  1121. a_20_6·a_27_9
  1122. a_22_1·a_25_4
  1123. a_22_1·a_25_5
  1124. a_24_5·a_23_0 + a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
       + a_8_1·c_36_5·a_3_1
  1125. a_24_5·a_23_1 − a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_0
       − a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0 − b_4_03·a_8_1·c_24_4·a_3_0
  1126. a_24_5·a_23_4
  1127. a_24_5·a_23_5
  1128. a_24_6·a_23_0 + a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_0 + b_4_03·a_8_1·c_24_4·a_3_0
  1129. a_24_6·a_23_1 − a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1 + a_8_1·c_36_11·a_3_0
       − a_8_1·c_36_5·a_3_1
  1130. a_24_6·a_23_4
  1131. a_24_6·a_23_5
  1132. a_24_7·a_23_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1 + a_8_1·c_36_11·a_3_0
  1133. a_24_7·a_23_1 − a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1
       + a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1134. a_24_7·a_23_4
  1135. a_24_7·a_23_5
  1136. a_24_8·a_23_0 − a_8_2·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1137. a_24_8·a_23_1 − a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1138. a_24_8·a_23_4
  1139. a_24_8·a_23_5
  1140. a_28_7·a_19_5 − a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1141. a_28_7·a_19_6 − a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1
       + a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1142. a_28_8·a_19_5 + a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1143. a_28_8·a_19_6 − a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1144. a_28_9·a_19_5 + a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1145. a_28_9·a_19_6 − a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1146. a_28_10·a_19_5 + a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1
       + a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1147. a_28_10·a_19_6 + a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1148. a_34_6·a_13_0
  1149. a_34_6·a_13_1
  1150. a_34_7·a_13_0
  1151. a_34_7·a_13_1
  1152. a_40_15·a_7_0 − a_8_2·c_36_11·a_3_0 − a_8_1·c_36_5·a_3_1 + a_8_1·c_36_5·a_3_0
  1153. a_40_15·a_7_1 + a_8_2·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1154. a_40_15·a_7_3 + a_8_2·c_36_11·a_3_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1
       − a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1155. a_40_15·a_7_4 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
  1156. a_40_16·a_7_0 − a_8_2·c_36_5·a_3_0 + a_8_1·c_36_11·a_3_1 − a_8_1·c_36_11·a_3_0
  1157. a_40_16·a_7_1 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1 + a_8_1·c_36_11·a_3_0
  1158. a_40_16·a_7_3 + a_8_2·c_36_11·a_3_0 + a_8_2·c_36_5·a_3_0 − a_8_1·c_36_11·a_3_1
       + a_8_1·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1159. a_40_16·a_7_4 + a_8_2·c_36_11·a_3_0 + a_8_1·c_36_5·a_3_1 − a_8_1·c_36_5·a_3_0
  1160. b_18_0·a_29_6 − b_4_02·c_36_11·a_3_0 − b_4_05·c_24_4·a_3_0
  1161. b_18_0·a_29_7 − b_4_02·c_36_5·a_3_0
  1162. b_30_4·a_17_2 − b_4_02·c_36_11·a_3_0 − b_4_05·c_24_4·a_3_0
  1163. b_30_5·a_17_2 − b_4_02·c_36_5·a_3_0
  1164. a_24_7·c_24_4 + a_12_5·c_36_5 − a_12_4·c_36_11
  1165. a_24_8·c_24_4 − a_12_5·c_36_11 − a_12_4·c_36_5
  1166. b_4_05·a_3_0·a_25_4 + a_24_5·c_24_4 − a_12_3·c_36_11 − a_12_2·c_36_11 + a_12_2·c_36_5
       − b_4_02·c_24_4·a_3_0·a_13_1 − b_4_02·c_24_4·a_3_0·a_13_0
  1167. b_4_05·a_3_0·a_25_5 + a_24_6·c_24_4 − a_12_3·c_36_11 + a_12_3·c_36_5 − a_12_2·c_36_5
       − b_4_02·c_24_4·a_3_0·a_13_1
  1168. a_8_1·a_40_15
  1169. a_8_1·a_40_16
  1170. a_8_2·a_40_15
  1171. a_8_2·a_40_16
  1172. a_8_3·a_40_15
  1173. a_8_3·a_40_16
  1174. a_20_5·a_28_7
  1175. a_20_5·a_28_8
  1176. a_20_5·a_28_9
  1177. a_20_5·a_28_10
  1178. a_20_6·a_28_7
  1179. a_20_6·a_28_8
  1180. a_20_6·a_28_9
  1181. a_20_6·a_28_10
  1182. a_24_52
  1183. a_24_5·a_24_6
  1184. a_24_5·a_24_7
  1185. a_24_5·a_24_8
  1186. a_24_62
  1187. a_24_6·a_24_7
  1188. a_24_6·a_24_8
  1189. a_24_72
  1190. a_24_7·a_24_8
  1191. a_24_82
  1192. a_13_0·a_35_4 − b_4_02·c_24_4·a_3_0·a_13_0
  1193. a_13_0·a_35_5 + b_4_0·a_8_1·c_36_11 + b_4_04·a_8_1·c_24_4
  1194. a_13_0·a_35_7
  1195. a_13_0·a_35_8 + b_4_0·a_8_1·c_36_5
  1196. a_13_1·a_35_4 − b_4_0·a_8_1·c_36_11 − b_4_04·a_8_1·c_24_4
       − b_4_02·c_24_4·a_3_0·a_13_1
  1197. a_13_1·a_35_5
  1198. a_13_1·a_35_7 − b_4_0·a_8_1·c_36_5
  1199. a_13_1·a_35_8
  1200. a_19_5·a_29_6
  1201. a_19_5·a_29_7
  1202. a_19_6·a_29_6
  1203. a_19_6·a_29_7
  1204. a_23_0·a_25_4 − b_4_0·a_8_1·c_36_5
  1205. a_23_0·a_25_5 − b_4_0·a_8_1·c_36_11 − b_4_0·a_8_1·c_36_5 − b_4_04·a_8_1·c_24_4
  1206. a_23_1·a_25_4 + b_4_0·a_8_1·c_36_11 − b_4_0·a_8_1·c_36_5 + b_4_04·a_8_1·c_24_4
  1207. a_23_1·a_25_5 + b_4_0·a_8_1·c_36_5
  1208. a_23_4·a_25_4
  1209. a_23_4·a_25_5
  1210. a_23_5·a_25_4
  1211. a_23_5·a_25_5
  1212. b_18_0·b_30_4 − b_4_03·c_36_11 − b_4_06·c_24_4 − a_24_6·c_24_4 + a_24_5·c_24_4
       − a_12_3·c_36_5 − a_12_2·c_36_11 − a_12_2·c_36_5 + b_4_02·c_24_4·a_3_0·a_13_1
       − b_4_02·c_24_4·a_3_0·a_13_0
  1213. b_18_0·b_30_5 − b_4_03·c_36_5 − a_24_5·c_24_4 + a_12_3·c_36_11 + a_12_2·c_36_11
       − a_12_2·c_36_5
  1214. a_2_0·a_47_14
  1215. a_2_0·a_47_15
  1216. a_20_5·a_29_6
  1217. a_20_5·a_29_7
  1218. a_20_6·a_29_6
  1219. a_20_6·a_29_7
  1220. a_22_1·a_27_8
  1221. a_22_1·a_27_9
  1222. a_24_5·a_25_4
  1223. a_24_5·a_25_5 + b_4_02·a_3_0·a_13_0·a_25_4 + a_8_1·c_24_4·a_17_2
  1224. a_24_6·a_25_4 − b_4_02·a_3_0·a_13_0·a_25_4 − a_8_1·c_24_4·a_17_2
  1225. a_24_6·a_25_5
  1226. a_24_7·a_25_4
  1227. a_24_7·a_25_5
  1228. a_24_8·a_25_4
  1229. a_24_8·a_25_5
  1230. a_34_6·a_15_4
  1231. a_34_6·a_15_5
  1232. a_34_7·a_15_4
  1233. a_34_7·a_15_5
  1234. b_4_06·a_25_4 − b_4_02·a_3_0·a_13_0·a_25_5 − b_4_02·a_3_0·a_13_0·a_25_4
       − c_36_11·a_13_1 − c_36_11·a_13_0 + c_36_5·a_13_0 + c_24_4·a_25_4 − b_4_03·c_24_4·a_13_1
       − b_4_03·c_24_4·a_13_0 − a_8_1·c_24_4·a_17_2
  1235. b_4_06·a_25_5 − b_4_02·a_3_0·a_13_0·a_25_4 − c_36_11·a_13_1 + c_36_5·a_13_1
       − c_36_5·a_13_0 + c_24_4·a_25_5 − b_4_03·c_24_4·a_13_1 + a_8_1·c_24_4·a_17_2
  1236. b_30_4·a_19_5
  1237. b_30_4·a_19_6
  1238. b_30_5·a_19_5
  1239. b_30_5·a_19_6
  1240. a_16_4·a_34_6
  1241. a_16_4·a_34_7
  1242. a_16_5·a_34_6
  1243. a_16_5·a_34_7
  1244. a_16_6·a_34_6
  1245. a_16_6·a_34_7
  1246. a_22_1·a_28_7
  1247. a_22_1·a_28_8
  1248. a_22_1·a_28_9
  1249. a_22_1·a_28_10
  1250. a_3_1·a_47_14 − a_3_0·a_47_14 + a_2_0·a_12_3·c_36_5 + a_2_0·a_12_2·c_36_5
  1251. a_3_1·a_47_15 − a_3_0·a_47_15 − a_2_0·a_12_3·c_36_5 − a_2_0·a_12_2·c_36_5
  1252. a_11_2·a_39_18
  1253. a_11_2·a_39_19
  1254. a_11_3·a_39_18
  1255. a_11_3·a_39_19
  1256. a_15_4·a_35_4 − a_2_0·a_12_3·c_36_11 − a_2_0·a_12_2·c_36_11
  1257. a_15_4·a_35_5 + a_2_0·a_12_3·c_36_11
  1258. a_15_4·a_35_7 − a_2_0·a_12_3·c_36_5 − a_2_0·a_12_2·c_36_5
  1259. a_15_4·a_35_8 + a_2_0·a_12_3·c_36_5
  1260. a_15_5·a_35_4 − a_2_0·a_12_2·c_36_11
  1261. a_15_5·a_35_5 + a_2_0·a_12_3·c_36_11 − a_2_0·a_12_2·c_36_11
  1262. a_15_5·a_35_7 − a_2_0·a_12_2·c_36_5
  1263. a_15_5·a_35_8 + a_2_0·a_12_3·c_36_5 − a_2_0·a_12_2·c_36_5
  1264. a_23_0·a_27_8 + a_2_0·a_12_3·c_36_5 + a_2_0·a_12_2·c_36_11 + a_2_0·a_12_2·c_36_5
  1265. a_23_0·a_27_9 − a_2_0·a_12_3·c_36_11 − a_2_0·a_12_2·c_36_11 + a_2_0·a_12_2·c_36_5
  1266. a_23_1·a_27_8 − a_2_0·a_12_3·c_36_11 + a_2_0·a_12_3·c_36_5 − a_2_0·a_12_2·c_36_5
  1267. a_23_1·a_27_9 − a_2_0·a_12_3·c_36_11 − a_2_0·a_12_3·c_36_5 + a_2_0·a_12_2·c_36_11
  1268. a_23_4·a_27_8
  1269. a_23_4·a_27_9
  1270. a_23_5·a_27_8
  1271. a_23_5·a_27_9
  1272. a_25_4·a_25_5 + b_4_03·a_13_0·a_25_4 − c_24_4·a_13_0·a_13_1
  1273. a_20_5·b_30_4
  1274. a_20_5·b_30_5
  1275. a_20_6·b_30_4
  1276. a_20_6·b_30_5
  1277. c_36_11·a_15_4 − c_36_5·a_15_5 + c_24_4·a_27_8 + a_8_1·c_24_4·a_19_6
       + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5
       − a_2_0·c_24_4·a_25_4
  1278. c_36_11·a_15_5 + c_36_5·a_15_4 + c_24_4·a_27_9 + a_8_1·c_24_4·a_19_6
       + a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1279. a_12_2·a_39_18 + a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5
       + a_2_0·c_24_4·a_25_4
  1280. a_12_2·a_39_19 + a_2_0·c_36_5·a_13_1 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1281. a_12_3·a_39_18 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1282. a_12_3·a_39_19 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_4
  1283. a_12_4·a_39_18 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_4
  1284. a_12_4·a_39_19 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1285. a_12_5·a_39_18 − a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
       − a_2_0·c_24_4·a_25_4
  1286. a_12_5·a_39_19 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1287. a_16_4·a_35_4 + a_8_1·c_24_4·a_19_6 − a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1
       − a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1288. a_16_4·a_35_5 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1289. a_16_4·a_35_7 + a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_1
       − a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_4
  1290. a_16_4·a_35_8
  1291. a_16_5·a_35_4 + a_8_1·c_24_4·a_19_6 − a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1
       − a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_4
  1292. a_16_5·a_35_5 + a_8_1·c_24_4·a_19_6 − a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_1
       − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1293. a_16_5·a_35_7 + a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_0
       − a_2_0·c_24_4·a_25_4
  1294. a_16_5·a_35_8 + a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1
       + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_4
  1295. a_16_6·a_35_4 − a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1
       + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1296. a_16_6·a_35_5 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
       − a_2_0·c_24_4·a_25_4
  1297. a_16_6·a_35_7 − a_8_1·c_24_4·a_19_6 − a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1
       + a_2_0·c_24_4·a_25_4
  1298. a_16_6·a_35_8 − a_2_0·c_36_5·a_13_1
  1299. a_22_1·a_29_6 − b_4_0·a_8_1·c_36_11·a_3_0 − b_4_04·a_8_1·c_24_4·a_3_0
  1300. a_22_1·a_29_7 − b_4_0·a_8_1·c_36_5·a_3_0
  1301. a_24_5·a_27_8 − a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
       − a_2_0·c_24_4·a_25_4
  1302. a_24_5·a_27_9 + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_4
  1303. a_24_6·a_27_8 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1304. a_24_6·a_27_9 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1305. a_24_7·a_27_8 + a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5
       + a_2_0·c_24_4·a_25_4
  1306. a_24_7·a_27_9 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_4
  1307. a_24_8·a_27_8 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_4
  1308. a_24_8·a_27_9 − a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
       − a_2_0·c_24_4·a_25_4
  1309. a_28_7·a_23_0 + a_8_1·c_24_4·a_19_6 − a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0
       − a_2_0·c_24_4·a_25_4
  1310. a_28_7·a_23_1 + a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_0
       − a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1311. a_28_7·a_23_4 + a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5
  1312. a_28_7·a_23_5 + a_2_0·c_36_5·a_13_1 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1313. a_28_8·a_23_0 + a_8_1·c_24_4·a_19_5 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5
  1314. a_28_8·a_23_1 − a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_0
       + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1315. a_28_8·a_23_4 + a_2_0·c_36_5·a_13_1 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1316. a_28_8·a_23_5 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1317. a_28_9·a_23_0 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1318. a_28_9·a_23_1 − a_8_1·c_24_4·a_19_6 + a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_1
       + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1319. a_28_9·a_23_4 + a_2_0·c_36_5·a_13_1 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1320. a_28_9·a_23_5 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1321. a_28_10·a_23_0 − a_8_1·c_24_4·a_19_6 + a_2_0·c_36_5·a_13_1 − a_2_0·c_36_5·a_13_0
       − a_2_0·c_24_4·a_25_4
  1322. a_28_10·a_23_1 − a_8_1·c_24_4·a_19_6 − a_8_1·c_24_4·a_19_5 + a_2_0·c_36_5·a_13_1
       + a_2_0·c_36_5·a_13_0 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1323. a_28_10·a_23_4 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1324. a_28_10·a_23_5 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1325. a_34_6·a_17_2 + b_4_0·a_8_1·c_36_11·a_3_0 + b_4_04·a_8_1·c_24_4·a_3_0
  1326. a_34_7·a_17_2 + b_4_0·a_8_1·c_36_5·a_3_0
  1327. a_40_15·a_11_2 + a_2_0·c_36_5·a_13_1 − a_2_0·c_24_4·a_25_5 − a_2_0·c_24_4·a_25_4
  1328. a_40_15·a_11_3 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1329. a_40_16·a_11_2 − a_2_0·c_36_5·a_13_1 + a_2_0·c_36_5·a_13_0 + a_2_0·c_24_4·a_25_5
  1330. a_40_16·a_11_3 − a_2_0·c_36_5·a_13_1 + a_2_0·c_24_4·a_25_5 + a_2_0·c_24_4·a_25_4
  1331. c_24_4·a_28_7 + a_16_5·c_36_5 − a_16_4·c_36_11
  1332. c_24_4·a_28_8 + a_16_6·c_36_5 − a_16_5·c_36_11
  1333. c_24_4·a_28_9 − a_16_5·c_36_11 − a_16_4·c_36_5
  1334. c_24_4·a_28_10 − a_16_6·c_36_11 − a_16_5·c_36_5
  1335. a_12_2·a_40_15
  1336. a_12_2·a_40_16
  1337. a_12_3·a_40_15
  1338. a_12_3·a_40_16
  1339. a_12_4·a_40_15
  1340. a_12_4·a_40_16
  1341. a_12_5·a_40_15
  1342. a_12_5·a_40_16
  1343. a_24_5·a_28_7
  1344. a_24_5·a_28_8
  1345. a_24_5·a_28_9
  1346. a_24_5·a_28_10
  1347. a_24_6·a_28_7
  1348. a_24_6·a_28_8
  1349. a_24_6·a_28_9
  1350. a_24_6·a_28_10
  1351. a_24_7·a_28_7
  1352. a_24_7·a_28_8
  1353. a_24_7·a_28_9
  1354. a_24_7·a_28_10
  1355. a_24_8·a_28_7
  1356. a_24_8·a_28_8
  1357. a_24_8·a_28_9
  1358. a_24_8·a_28_10
  1359. a_13_0·a_39_18
  1360. a_13_0·a_39_19
  1361. a_13_1·a_39_18
  1362. a_13_1·a_39_19
  1363. a_17_2·a_35_4 − c_36_11·a_3_0·a_13_0 − b_4_03·c_24_4·a_3_0·a_13_0
  1364. a_17_2·a_35_5 − c_36_11·a_3_0·a_13_1 − b_4_03·c_24_4·a_3_0·a_13_1
  1365. a_17_2·a_35_7 − c_36_5·a_3_0·a_13_0
  1366. a_17_2·a_35_8 − c_36_5·a_3_0·a_13_1
  1367. a_23_0·a_29_6 + c_36_11·a_3_0·a_13_1 + c_36_11·a_3_0·a_13_0
       + b_4_03·c_24_4·a_3_0·a_13_1 + b_4_03·c_24_4·a_3_0·a_13_0
  1368. a_23_0·a_29_7 + c_36_5·a_3_0·a_13_1 + c_36_5·a_3_0·a_13_0
  1369. a_23_1·a_29_6 + c_36_11·a_3_0·a_13_1 + b_4_03·c_24_4·a_3_0·a_13_1
  1370. a_23_1·a_29_7 + c_36_5·a_3_0·a_13_1
  1371. a_23_4·a_29_6
  1372. a_23_4·a_29_7
  1373. a_23_5·a_29_6
  1374. a_23_5·a_29_7
  1375. a_25_4·a_27_8
  1376. a_25_4·a_27_9
  1377. a_25_5·a_27_8
  1378. a_25_5·a_27_9
  1379. b_18_0·a_34_6 + b_4_02·a_8_1·c_36_11 + b_4_05·a_8_1·c_24_4
  1380. b_18_0·a_34_7 + b_4_02·a_8_1·c_36_5
  1381. a_22_1·b_30_4 − b_4_02·a_8_1·c_36_11 − b_4_05·a_8_1·c_24_4
  1382. a_22_1·b_30_5 − b_4_02·a_8_1·c_36_5
  1383. a_24_5·a_29_6
  1384. a_24_5·a_29_7
  1385. a_24_6·a_29_6
  1386. a_24_6·a_29_7
  1387. a_24_7·a_29_6
  1388. a_24_7·a_29_7
  1389. a_24_8·a_29_6
  1390. a_24_8·a_29_7
  1391. a_28_7·a_25_4
  1392. a_28_7·a_25_5
  1393. a_28_8·a_25_4
  1394. a_28_8·a_25_5
  1395. a_28_9·a_25_4
  1396. a_28_9·a_25_5
  1397. a_28_10·a_25_4
  1398. a_28_10·a_25_5
  1399. a_34_6·a_19_5
  1400. a_34_6·a_19_6
  1401. a_34_7·a_19_5
  1402. a_34_7·a_19_6
  1403. a_40_15·a_13_0
  1404. a_40_15·a_13_1
  1405. a_40_16·a_13_0
  1406. a_40_16·a_13_1
  1407. b_4_06·a_29_6 + c_36_11·a_17_2 + c_24_4·a_29_6 + b_4_03·c_24_4·a_17_2
  1408. b_4_06·a_29_7 + c_36_5·a_17_2 + c_24_4·a_29_7
  1409. b_18_0·a_35_4 − b_4_03·a_3_0·a_13_0·a_25_5 + b_4_03·a_3_0·a_13_0·a_25_4
       − b_4_0·c_36_11·a_13_0 + b_4_03·c_24_4·a_17_2 − b_4_04·c_24_4·a_13_0
       − c_24_4·a_3_0·a_13_0·a_13_1
  1410. b_18_0·a_35_5 + b_4_03·a_3_0·a_13_0·a_25_5 + b_4_03·a_3_0·a_13_0·a_25_4
       − b_4_0·c_36_11·a_13_1 − b_4_04·c_24_4·a_13_1 + c_24_4·a_3_0·a_13_0·a_13_1
  1411. b_18_0·a_35_7 − b_4_03·a_3_0·a_13_0·a_25_4 − b_4_0·c_36_5·a_13_0
       + c_24_4·a_3_0·a_13_0·a_13_1
  1412. b_18_0·a_35_8 + b_4_03·a_3_0·a_13_0·a_25_5 − b_4_0·c_36_5·a_13_1
       − c_24_4·a_3_0·a_13_0·a_13_1
  1413. b_30_4·a_23_0 − b_4_0·c_36_11·a_13_1 − b_4_0·c_36_11·a_13_0 − b_4_04·c_24_4·a_13_1
       − b_4_04·c_24_4·a_13_0 − c_24_4·a_3_0·a_13_0·a_13_1
  1414. b_30_4·a_23_1 + b_4_03·a_3_0·a_13_0·a_25_5 − b_4_0·c_36_11·a_13_1
       − b_4_04·c_24_4·a_13_1
  1415. b_30_4·a_23_4
  1416. b_30_4·a_23_5
  1417. b_30_5·a_23_0 − b_4_0·c_36_5·a_13_1 − b_4_0·c_36_5·a_13_0
  1418. b_30_5·a_23_1 − b_4_03·a_3_0·a_13_0·a_25_5 − b_4_03·a_3_0·a_13_0·a_25_4
       − b_4_0·c_36_5·a_13_1 − c_24_4·a_3_0·a_13_0·a_13_1
  1419. b_30_5·a_23_4
  1420. b_30_5·a_23_5
  1421. a_20_5·a_34_6
  1422. a_20_5·a_34_7
  1423. a_20_6·a_34_6
  1424. a_20_6·a_34_7
  1425. a_7_0·a_47_14 + b_4_0·a_3_0·a_47_14 + c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1
       − a_2_0·a_16_5·c_36_5
  1426. a_7_0·a_47_15 + b_4_0·a_3_0·a_47_15 − c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1
       + a_2_0·a_16_5·c_36_5 + a_2_0·a_16_4·c_36_5
  1427. a_7_1·a_47_14 − c_48_18·a_3_0·a_3_1 + c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_5
       − a_2_0·a_16_4·c_36_5
  1428. a_7_1·a_47_15 + c_48_18·a_3_0·a_3_1 + c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_5
       + a_2_0·a_16_4·c_36_5
  1429. a_7_3·a_47_14 + c_48_13·a_3_0·a_3_1 − a_2_0·a_16_5·c_36_5 − a_2_0·a_16_4·c_36_5
  1430. a_7_3·a_47_15 + c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1 − a_2_0·a_16_5·c_36_5
       + a_2_0·a_16_4·c_36_5
  1431. a_7_4·a_47_14 + c_48_18·a_3_0·a_3_1 − a_2_0·a_16_5·c_36_5 + a_2_0·a_16_4·c_36_5
  1432. a_7_4·a_47_15 + c_48_13·a_3_0·a_3_1
  1433. a_15_4·a_39_18
  1434. a_15_4·a_39_19
  1435. a_15_5·a_39_18
  1436. a_15_5·a_39_19
  1437. a_19_5·a_35_4 − c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1 + a_2_0·a_16_4·c_36_11
       − a_2_0·a_16_4·c_36_5 + c_24_42·a_3_0·a_3_1
  1438. a_19_5·a_35_5 + c_48_18·a_3_0·a_3_1 − a_2_0·a_16_5·c_36_11 + a_2_0·a_16_4·c_36_11
       − a_2_0·a_16_4·c_36_5 + c_24_42·a_3_0·a_3_1
  1439. a_19_5·a_35_7 − c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_5 + a_2_0·a_16_4·c_36_5
  1440. a_19_5·a_35_8 + c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1 + a_2_0·a_16_4·c_36_5
  1441. a_19_6·a_35_4 + c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_11 + a_2_0·a_16_5·c_36_5
       + a_2_0·a_16_4·c_36_11 + c_24_42·a_3_0·a_3_1
  1442. a_19_6·a_35_5 − c_48_18·a_3_0·a_3_1 + c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_11
       + a_2_0·a_16_5·c_36_5 − a_2_0·a_16_4·c_36_11
  1443. a_19_6·a_35_7 − c_48_18·a_3_0·a_3_1 − c_48_13·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_5
       − a_2_0·a_16_4·c_36_5
  1444. a_19_6·a_35_8 + c_48_18·a_3_0·a_3_1 + a_2_0·a_16_5·c_36_5
  1445. a_25_4·a_29_6 + b_4_0·a_3_0·a_47_15 − b_4_0·a_3_0·a_47_14 − b_4_04·a_3_0·a_35_5
       − b_4_04·a_3_0·a_35_4 − b_4_0·c_24_4·a_3_0·a_23_0
  1446. a_25_4·a_29_7 + b_4_0·a_3_0·a_47_14
  1447. a_25_5·a_29_6 + b_4_0·a_3_0·a_47_15 + b_4_0·a_3_0·a_47_14 − b_4_04·a_3_0·a_35_5
       − b_4_0·c_24_4·a_3_0·a_23_1
  1448. a_25_5·a_29_7 + b_4_0·a_3_0·a_47_15
  1449. a_27_8·a_27_9
  1450. a_24_5·b_30_4 − b_4_0·a_3_0·a_47_15 + b_4_0·a_3_0·a_47_14 + b_4_04·a_3_0·a_35_5
       + b_4_04·a_3_0·a_35_4 + b_4_0·c_24_4·a_3_0·a_23_0
  1451. a_24_5·b_30_5 − b_4_0·a_3_0·a_47_14
  1452. a_24_6·b_30_4 − b_4_0·a_3_0·a_47_15 − b_4_0·a_3_0·a_47_14 + b_4_04·a_3_0·a_35_5
       + b_4_0·c_24_4·a_3_0·a_23_1
  1453. a_24_6·b_30_5 − b_4_0·a_3_0·a_47_15
  1454. a_24_7·b_30_4
  1455. a_24_7·b_30_5
  1456. a_24_8·b_30_4
  1457. a_24_8·b_30_5
  1458. b_4_06·b_30_4 − b_4_04·a_3_0·a_35_8 − b_4_04·a_3_0·a_35_7 + b_4_04·a_3_0·a_35_5
       + b_4_04·a_3_0·a_35_4 + c_24_4·b_30_4 + b_18_0·c_36_11 + b_4_03·b_18_0·c_24_4
       − b_4_0·c_24_4·a_3_0·a_23_1 − a_2_0·a_16_5·c_36_11 − a_2_0·a_16_4·c_36_5
       − c_24_42·a_3_0·a_3_1
  1459. b_4_06·b_30_5 + b_4_04·a_3_0·a_35_8 + b_4_04·a_3_0·a_35_7 + b_4_04·a_3_0·a_35_5
       + b_4_04·a_3_0·a_35_4 + c_24_4·b_30_5 + b_18_0·c_36_5 + b_4_0·c_24_4·a_3_0·a_23_0
  1460. c_36_11·a_19_5 − c_36_5·a_19_6 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
       − c_24_42·a_7_3
  1461. c_36_11·a_19_6 + c_36_5·a_19_5 − a_2_0·c_24_4·a_29_6 + c_24_42·a_7_4 + c_24_42·a_7_3
  1462. c_48_18·a_7_3 − c_48_13·a_7_4 + c_36_5·a_19_6 + c_36_5·a_19_5 − a_12_2·c_36_5·a_7_3
       + a_12_2·c_36_5·a_7_0
  1463. c_48_18·a_7_4 − c_48_13·a_7_4 − c_48_13·a_7_3 + c_36_5·a_19_6 − a_12_2·c_36_5·a_7_0
       − a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1464. a_8_1·a_47_14 − a_12_2·c_36_5·a_7_3 + a_12_2·c_36_5·a_7_0 − a_2_0·c_24_4·a_29_7
  1465. a_8_1·a_47_15 + a_12_2·c_36_5·a_7_3 + a_12_2·c_36_5·a_7_0 − a_2_0·c_24_4·a_29_7
  1466. a_8_2·a_47_14 − a_12_2·c_36_5·a_7_0 + a_2_0·c_24_4·a_29_7
  1467. a_8_2·a_47_15 − a_12_2·c_36_5·a_7_3 + a_12_2·c_36_5·a_7_0
  1468. a_8_3·a_47_14 − a_12_2·c_36_5·a_7_3 − a_12_2·c_36_5·a_7_0 + a_2_0·c_24_4·a_29_7
  1469. a_8_3·a_47_15 − a_12_2·c_36_5·a_7_3 − a_2_0·c_24_4·a_29_7
  1470. a_16_4·a_39_18 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1471. a_16_4·a_39_19 − a_2_0·c_24_4·a_29_7
  1472. a_16_5·a_39_18 + a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1473. a_16_5·a_39_19 + a_2_0·c_24_4·a_29_6
  1474. a_16_6·a_39_18 − a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1475. a_16_6·a_39_19 + a_2_0·c_24_4·a_29_7
  1476. a_20_5·a_35_4 − a_12_2·c_36_5·a_7_3 − a_12_2·c_36_5·a_7_0 + a_8_1·c_24_4·a_23_1
       + a_8_1·c_24_4·a_23_0 − a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1477. a_20_5·a_35_5 + a_12_2·c_36_5·a_7_3 − a_12_2·c_36_5·a_7_0 + a_8_1·c_24_4·a_23_1
       − a_8_1·c_24_4·a_23_0 − a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1478. a_20_5·a_35_7 − a_12_2·c_36_5·a_7_0 + a_2_0·c_24_4·a_29_7
  1479. a_20_5·a_35_8 − a_12_2·c_36_5·a_7_3 + a_2_0·c_24_4·a_29_7
  1480. a_20_6·a_35_4 − a_12_2·c_36_5·a_7_0 + a_8_1·c_24_4·a_23_1 − a_2_0·c_24_4·a_29_6
  1481. a_20_6·a_35_5 − a_12_2·c_36_5·a_7_3 + a_8_1·c_24_4·a_23_0 + a_2_0·c_24_4·a_29_7
       + a_2_0·c_24_4·a_29_6
  1482. a_20_6·a_35_7 + a_12_2·c_36_5·a_7_3 + a_12_2·c_36_5·a_7_0 + a_2_0·c_24_4·a_29_7
  1483. a_20_6·a_35_8 − a_12_2·c_36_5·a_7_3 + a_12_2·c_36_5·a_7_0
  1484. a_28_7·a_27_8 − a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1485. a_28_7·a_27_9 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1486. a_28_8·a_27_8 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1487. a_28_8·a_27_9 + a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1488. a_28_9·a_27_8 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1489. a_28_9·a_27_9 + a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1490. a_28_10·a_27_8 + a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1491. a_28_10·a_27_9 − a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1492. a_40_15·a_15_4 − a_2_0·c_24_4·a_29_7 − a_2_0·c_24_4·a_29_6
  1493. a_40_15·a_15_5 − a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1494. a_40_16·a_15_4 − a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1495. a_40_16·a_15_5 + a_2_0·c_24_4·a_29_7 + a_2_0·c_24_4·a_29_6
  1496. b_30_4·a_25_4 − b_4_02·a_47_15 + b_4_02·a_47_14 + b_4_05·a_35_5 + b_4_05·a_35_4
       + b_4_02·c_24_4·a_23_0 + b_4_07·c_24_4·a_3_0 − b_4_02·a_8_1·c_36_11·a_3_0
       + b_4_05·a_8_1·c_24_4·a_3_0
  1497. b_30_4·a_25_5 − b_4_02·a_47_15 − b_4_02·a_47_14 + b_4_05·a_35_5
       + b_4_02·c_24_4·a_23_1 + b_4_02·a_8_1·c_36_11·a_3_0 + b_4_02·a_8_1·c_36_5·a_3_0
  1498. b_30_5·a_25_4 − b_4_02·a_47_14 − b_4_02·a_8_1·c_36_11·a_3_0
  1499. b_30_5·a_25_5 − b_4_02·a_47_15
  1500. a_20_5·c_36_5 − a_8_3·c_48_18 + a_8_3·c_48_13 − a_8_2·c_48_18 + a_8_1·a_12_2·c_36_11
  1501. a_20_5·c_36_11 − a_8_3·c_48_18 + a_8_2·c_48_18 − a_8_2·c_48_13 − a_8_1·a_12_2·c_36_5
       − a_8_3·c_24_42
  1502. a_20_6·c_36_5 + a_8_3·c_48_18 − a_8_2·c_48_18 + a_8_2·c_48_13 + a_8_1·a_12_2·c_36_11
       − a_8_1·a_12_2·c_36_5
  1503. a_20_6·c_36_11 − a_8_3·c_48_18 + a_8_3·c_48_13 − a_8_2·c_48_18 − a_8_1·a_12_2·c_36_11
       − a_8_2·c_24_42
  1504. a_16_4·a_40_15 + a_8_1·a_12_2·c_36_5
  1505. a_16_4·a_40_16 − a_8_1·a_12_2·c_36_11
  1506. a_16_5·a_40_15 − a_8_1·a_12_2·c_36_11
  1507. a_16_5·a_40_16 − a_8_1·a_12_2·c_36_5
  1508. a_16_6·a_40_15 − a_8_1·a_12_2·c_36_5
  1509. a_16_6·a_40_16 + a_8_1·a_12_2·c_36_11
  1510. a_22_1·a_34_6
  1511. a_22_1·a_34_7
  1512. a_28_72 + a_8_1·a_12_2·c_36_11
  1513. a_28_7·a_28_8 + a_8_1·a_12_2·c_36_5
  1514. a_28_7·a_28_9 + a_8_1·a_12_2·c_36_5
  1515. a_28_7·a_28_10 − a_8_1·a_12_2·c_36_11
  1516. a_28_82 − a_8_1·a_12_2·c_36_11
  1517. a_28_8·a_28_9 − a_8_1·a_12_2·c_36_11
  1518. a_28_8·a_28_10 − a_8_1·a_12_2·c_36_5
  1519. a_28_92 − a_8_1·a_12_2·c_36_11
  1520. a_28_9·a_28_10 − a_8_1·a_12_2·c_36_5
  1521. a_28_102 + a_8_1·a_12_2·c_36_11
  1522. a_17_2·a_39_18
  1523. a_17_2·a_39_19
  1524. a_27_8·a_29_6
  1525. a_27_8·a_29_7
  1526. a_27_9·a_29_6
  1527. a_27_9·a_29_7
  1528. a_22_1·a_35_4 − b_4_0·c_24_4·a_3_0·a_13_0·a_13_1
  1529. a_22_1·a_35_5
  1530. a_22_1·a_35_7
  1531. a_22_1·a_35_8
  1532. a_28_7·a_29_6
  1533. a_28_7·a_29_7
  1534. a_28_8·a_29_6
  1535. a_28_8·a_29_7
  1536. a_28_9·a_29_6
  1537. a_28_9·a_29_7
  1538. a_28_10·a_29_6
  1539. a_28_10·a_29_7
  1540. a_34_6·a_23_0
  1541. a_34_6·a_23_1
  1542. a_34_6·a_23_4
  1543. a_34_6·a_23_5
  1544. a_34_7·a_23_0
  1545. a_34_7·a_23_1
  1546. a_34_7·a_23_4
  1547. a_34_7·a_23_5
  1548. a_40_15·a_17_2
  1549. a_40_16·a_17_2
  1550. b_18_0·a_39_18
  1551. b_18_0·a_39_19
  1552. b_30_4·a_27_8
  1553. b_30_4·a_27_9
  1554. b_30_5·a_27_8
  1555. b_30_5·a_27_9
  1556. b_4_05·a_13_0·a_25_4 − c_24_4·a_34_6 + a_22_1·c_36_11 − b_4_02·c_24_4·a_13_0·a_13_1
       − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
  1557. b_4_05·a_13_0·a_25_5 + c_24_4·a_34_7 − c_24_4·a_34_6 + a_22_1·c_36_11 − a_22_1·c_36_5
       − b_4_02·c_24_4·a_13_0·a_13_1 − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_1·c_48_13
       + a_2_0·a_8_2·c_24_42
  1558. a_24_5·a_34_6
  1559. a_24_5·a_34_7
  1560. a_24_6·a_34_6
  1561. a_24_6·a_34_7
  1562. a_24_7·a_34_6
  1563. a_24_7·a_34_7
  1564. a_24_8·a_34_6
  1565. a_24_8·a_34_7
  1566. a_11_2·a_47_14 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
       − a_2_0·a_8_1·c_48_13
  1567. a_11_2·a_47_15 − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
  1568. a_11_3·a_47_14 + a_2_0·a_8_2·c_48_18 + a_2_0·a_8_1·c_48_13
  1569. a_11_3·a_47_15 + a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18 − a_2_0·a_8_1·c_48_13
  1570. a_19_5·a_39_18 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_13
       + a_2_0·a_8_1·c_24_42
  1571. a_19_5·a_39_19 − a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18 + a_2_0·a_8_2·c_24_42
       − a_2_0·a_8_1·c_24_42
  1572. a_19_6·a_39_18 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_1·c_48_18 − a_2_0·a_8_1·c_48_13
       − a_2_0·a_8_2·c_24_42 − a_2_0·a_8_1·c_24_42
  1573. a_19_6·a_39_19 − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
       + a_2_0·a_8_1·c_48_13 − a_2_0·a_8_2·c_24_42
  1574. a_23_0·a_35_4 − a_22_1·c_36_11 + b_4_02·c_24_4·a_13_0·a_13_1
       − b_4_02·c_24_4·a_3_0·a_23_0 + a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
       + a_2_0·a_8_1·c_48_13 + a_2_0·a_8_2·c_24_42 + a_2_0·a_8_1·c_24_42
  1575. a_23_0·a_35_5 + a_22_1·c_36_11 − b_4_02·c_24_4·a_13_0·a_13_1 − a_2_0·a_8_2·c_48_18
       + a_2_0·a_8_1·c_48_18 − a_2_0·a_8_2·c_24_42 − a_2_0·a_8_1·c_24_42
  1576. a_23_0·a_35_7 − a_22_1·c_36_5 − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13
       + a_2_0·a_8_1·c_48_18
  1577. a_23_0·a_35_8 + a_22_1·c_36_5 − a_2_0·a_8_2·c_48_18 + a_2_0·a_8_2·c_48_13
       + a_2_0·a_8_1·c_48_18 − a_2_0·a_8_1·c_48_13
  1578. a_23_1·a_35_4 − a_22_1·c_36_11 + b_4_02·c_24_4·a_13_0·a_13_1
       − b_4_02·c_24_4·a_3_0·a_23_1 − a_2_0·a_8_2·c_48_18 + a_2_0·a_8_2·c_48_13
       − a_2_0·a_8_1·c_48_13 + a_2_0·a_8_2·c_24_42 + a_2_0·a_8_1·c_24_42
  1579. a_23_1·a_35_5 − a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18
  1580. a_23_1·a_35_7 − a_22_1·c_36_5 + a_2_0·a_8_2·c_48_18 + a_2_0·a_8_1·c_48_18
       + a_2_0·a_8_1·c_48_13
  1581. a_23_1·a_35_8 + a_2_0·a_8_2·c_48_18 + a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18
       − a_2_0·a_8_1·c_48_13
  1582. a_23_4·a_35_4 − a_2_0·a_8_2·c_48_18 + a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_13
       + a_2_0·a_8_1·c_24_42
  1583. a_23_4·a_35_5 − a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_18
       + a_2_0·a_8_1·c_48_13 + a_2_0·a_8_2·c_24_42
  1584. a_23_4·a_35_7 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_1·c_48_18 − a_2_0·a_8_1·c_48_13
  1585. a_23_4·a_35_8 − a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18
  1586. a_23_5·a_35_4 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_1·c_48_18 − a_2_0·a_8_1·c_48_13
       + a_2_0·a_8_2·c_24_42 + a_2_0·a_8_1·c_24_42
  1587. a_23_5·a_35_5 − a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18 − a_2_0·a_8_2·c_24_42
       + a_2_0·a_8_1·c_24_42
  1588. a_23_5·a_35_7 + a_2_0·a_8_2·c_48_18 − a_2_0·a_8_2·c_48_13 − a_2_0·a_8_1·c_48_13
  1589. a_23_5·a_35_8 + a_2_0·a_8_2·c_48_18 + a_2_0·a_8_2·c_48_13 + a_2_0·a_8_1·c_48_18
       − a_2_0·a_8_1·c_48_13
  1590. a_29_6·a_29_7
  1591. b_18_0·a_40_15
  1592. b_18_0·a_40_16
  1593. a_28_7·b_30_4
  1594. a_28_7·b_30_5
  1595. a_28_8·b_30_4
  1596. a_28_8·b_30_5
  1597. a_28_9·b_30_4
  1598. a_28_9·b_30_5
  1599. a_28_10·b_30_4
  1600. a_28_10·b_30_5
  1601. c_36_11·a_23_4 + c_36_5·a_23_5 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_18·a_3_0 + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 − c_24_42·a_11_2
  1602. c_36_11·a_23_5 − c_36_5·a_23_4 + a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0 − c_24_42·a_11_3
  1603. c_48_18·a_11_2 − c_48_13·a_11_3 + c_48_13·a_11_2 − c_36_5·a_23_5 + c_36_5·a_23_4
       − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
  1604. c_48_18·a_11_3 + c_48_13·a_11_3 + c_48_13·a_11_2 + c_36_5·a_23_5 + c_36_5·a_23_4
       − a_8_2·c_48_18·a_3_0
  1605. a_12_2·a_47_14 + a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1
  1606. a_12_2·a_47_15 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1
       + a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0 + b_4_03·a_8_1·c_36_11·a_3_0
  1607. a_12_3·a_47_14 + a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 − b_4_03·a_8_1·c_36_11·a_3_0
  1608. a_12_3·a_47_15 + a_8_2·c_48_18·a_3_0 − a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0 + b_4_03·a_8_1·c_36_11·a_3_0
  1609. a_12_4·a_47_14 − a_8_2·c_48_18·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0
  1610. a_12_4·a_47_15 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0
  1611. a_12_5·a_47_14 + a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_18·a_3_0
  1612. a_12_5·a_47_15 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_13·a_3_1
       − a_8_1·c_48_13·a_3_0
  1613. a_20_5·a_39_18
  1614. a_20_5·a_39_19
  1615. a_20_6·a_39_18
  1616. a_20_6·a_39_19
  1617. a_24_5·a_35_4 − a_8_2·c_48_18·a_3_0 − a_8_1·c_48_18·a_3_0 − a_8_1·c_48_13·a_3_1
       + a_8_1·c_48_13·a_3_0 − a_8_2·c_24_42·a_3_0 − a_8_1·c_24_42·a_3_1
  1618. a_24_5·a_35_5 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0
       + a_8_1·c_24_42·a_3_0
  1619. a_24_5·a_35_7 − a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       + a_8_1·c_48_18·a_3_0 + a_8_1·c_48_13·a_3_1
  1620. a_24_5·a_35_8 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_13·a_3_0 + b_4_03·a_8_1·c_36_11·a_3_0
  1621. a_24_6·a_35_4 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
       + a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0 − a_8_2·c_24_42·a_3_0
       − a_8_1·c_24_42·a_3_0
  1622. a_24_6·a_35_5 + a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_18·a_3_0 − a_8_1·c_48_13·a_3_1 + a_8_1·c_24_42·a_3_1
       − a_8_1·c_24_42·a_3_0
  1623. a_24_6·a_35_7 + a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       + a_8_1·c_48_13·a_3_0 − b_4_03·a_8_1·c_36_11·a_3_0
  1624. a_24_6·a_35_8 − a_8_2·c_48_18·a_3_0 − a_8_1·c_48_18·a_3_0 − a_8_1·c_48_13·a_3_1
       + a_8_1·c_48_13·a_3_0 − b_4_03·a_8_1·c_36_11·a_3_0
  1625. a_24_7·a_35_4 − a_8_2·c_48_18·a_3_0 − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
       + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 − a_8_2·c_24_42·a_3_0
  1626. a_24_7·a_35_5 + a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0
       + a_8_1·c_24_42·a_3_1 − a_8_1·c_24_42·a_3_0
  1627. a_24_7·a_35_7 − a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_18·a_3_0
  1628. a_24_7·a_35_8 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_13·a_3_1
       + a_8_1·c_48_13·a_3_0
  1629. a_24_8·a_35_4 − a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1
       − a_8_1·c_48_18·a_3_0 + a_8_1·c_24_42·a_3_1 − a_8_1·c_24_42·a_3_0
  1630. a_24_8·a_35_5 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_13·a_3_1
       + a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0 − a_8_1·c_24_42·a_3_1
       + a_8_1·c_24_42·a_3_0
  1631. a_24_8·a_35_7 + a_8_2·c_48_18·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       − a_8_1·c_48_13·a_3_1 + a_8_1·c_48_13·a_3_0
  1632. a_24_8·a_35_8 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0
  1633. a_34_6·a_25_4
  1634. a_34_6·a_25_5
  1635. a_34_7·a_25_4
  1636. a_34_7·a_25_5
  1637. a_40_15·a_19_5 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0
       + a_8_1·c_24_42·a_3_1 − a_8_1·c_24_42·a_3_0
  1638. a_40_15·a_19_6 − a_8_2·c_48_18·a_3_0 − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_13·a_3_1
       + a_8_1·c_48_13·a_3_0 − a_8_2·c_24_42·a_3_0 + a_8_1·c_24_42·a_3_1
       − a_8_1·c_24_42·a_3_0
  1639. a_40_16·a_19_5 + a_8_2·c_48_18·a_3_0 + a_8_2·c_48_13·a_3_0 + a_8_1·c_48_13·a_3_1
       − a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0 − a_8_1·c_24_42·a_3_1
       + a_8_1·c_24_42·a_3_0
  1640. a_40_16·a_19_6 − a_8_2·c_48_13·a_3_0 + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0
       + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0 + a_8_2·c_24_42·a_3_0
       + a_8_1·c_24_42·a_3_1 − a_8_1·c_24_42·a_3_0
  1641. b_4_06·a_35_4 − c_36_11·a_23_1 + c_36_11·a_23_0 − c_36_5·a_23_4 + c_24_4·a_35_4
       − b_4_03·c_24_4·a_23_1 + b_4_03·c_24_4·a_23_0 + b_4_08·c_24_4·a_3_0
       + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0 + a_8_1·c_48_13·a_3_1 − a_8_1·c_48_13·a_3_0
       − b_4_03·a_8_1·c_36_5·a_3_0 + b_4_06·a_8_1·c_24_4·a_3_0 + b_4_02·c_24_42·a_3_0
       + a_8_1·c_24_42·a_3_1
  1642. b_4_06·a_35_5 + c_36_11·a_23_1 − c_36_5·a_23_4 + c_24_4·a_35_5 + b_4_03·c_24_4·a_23_1
       − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0 + b_4_03·a_8_1·c_36_11·a_3_0
       + b_4_03·a_8_1·c_36_5·a_3_0 + a_8_2·c_24_42·a_3_0 − a_8_1·c_24_42·a_3_0
  1643. b_4_06·a_35_7 − c_36_5·a_23_5 − c_36_5·a_23_1 + c_36_5·a_23_0 + c_24_4·a_35_7
       − a_8_2·c_48_13·a_3_0 − a_8_1·c_48_18·a_3_1 + a_8_1·c_48_18·a_3_0
       + b_4_03·a_8_1·c_36_11·a_3_0 − a_8_2·c_24_42·a_3_0 − a_8_1·c_24_42·a_3_1
  1644. b_4_06·a_35_8 − c_36_5·a_23_5 + c_36_5·a_23_1 + c_24_4·a_35_8 − a_8_2·c_48_13·a_3_0
       + a_8_1·c_48_18·a_3_1 − a_8_1·c_48_18·a_3_0 − b_4_03·a_8_1·c_36_11·a_3_0
       + b_4_03·a_8_1·c_36_5·a_3_0 + a_8_2·c_24_42·a_3_0 + a_8_1·c_24_42·a_3_0
  1645. b_30_4·a_29_6 + b_4_02·c_48_18·a_3_0 + b_4_02·c_24_42·a_3_0
  1646. b_30_4·a_29_7 + b_4_02·c_48_18·a_3_0 − b_4_02·c_48_13·a_3_0
  1647. b_30_5·a_29_6 + b_4_02·c_48_18·a_3_0 − b_4_02·c_48_13·a_3_0
  1648. b_30_5·a_29_7 − b_4_02·c_48_18·a_3_0 − b_4_05·c_36_11·a_3_0
  1649. a_24_5·c_36_5 − a_12_3·c_48_18 + a_12_3·c_48_13 + a_12_2·c_48_18 + a_12_2·c_48_13
       − b_4_02·c_36_11·a_3_0·a_13_0
  1650. a_24_5·c_36_11 − a_12_3·c_48_18 − a_12_2·c_48_13 + b_4_02·c_24_4·a_3_0·a_25_4
       − a_12_3·c_24_42 − a_12_2·c_24_42
  1651. a_24_6·c_36_5 + a_12_3·c_48_18 + a_12_3·c_48_13 + a_12_2·c_48_18
       − b_4_02·c_36_11·a_3_0·a_13_1 + b_4_02·c_36_11·a_3_0·a_13_0
  1652. a_24_6·c_36_11 − a_12_3·c_48_13 − a_12_2·c_48_18 + a_12_2·c_48_13
       + b_4_02·c_24_4·a_3_0·a_25_5 − a_12_3·c_24_42
  1653. a_24_7·c_36_5 − a_12_5·c_48_18 − a_12_4·c_48_18 + a_12_4·c_48_13
  1654. a_24_7·c_36_11 + a_12_5·c_48_18 − a_12_5·c_48_13 − a_12_4·c_48_18 − a_12_4·c_24_42
  1655. a_24_8·c_36_5 − a_12_5·c_48_18 + a_12_5·c_48_13 + a_12_4·c_48_18
  1656. a_24_8·c_36_11 − a_12_5·c_48_18 − a_12_4·c_48_18 + a_12_4·c_48_13 − a_12_5·c_24_42
  1657. a_20_5·a_40_15
  1658. a_20_5·a_40_16
  1659. a_20_6·a_40_15
  1660. a_20_6·a_40_16
  1661. a_13_0·a_47_14 + b_4_0·a_8_1·c_48_18 − b_4_0·a_8_1·c_48_13
  1662. a_13_0·a_47_15 − b_4_0·a_8_1·c_48_18 − b_4_0·a_8_1·c_48_13 + b_4_04·a_8_1·c_36_11
  1663. a_13_1·a_47_14 + b_4_0·a_8_1·c_48_18 + b_4_0·a_8_1·c_48_13 − b_4_04·a_8_1·c_36_11
  1664. a_13_1·a_47_15 + b_4_0·a_8_1·c_48_18 + b_4_04·a_8_1·c_36_11
  1665. a_25_4·a_35_4 − b_4_0·a_8_1·c_48_18 − b_4_02·c_24_4·a_3_0·a_25_4
       − b_4_0·a_8_1·c_24_42
  1666. a_25_4·a_35_5 + b_4_0·a_8_1·c_48_13 + b_4_0·a_8_1·c_24_42
  1667. a_25_4·a_35_7 − b_4_0·a_8_1·c_48_18 + b_4_0·a_8_1·c_48_13
  1668. a_25_4·a_35_8 − b_4_0·a_8_1·c_48_18 − b_4_0·a_8_1·c_48_13 + b_4_04·a_8_1·c_36_11
  1669. a_25_5·a_35_4 − b_4_0·a_8_1·c_48_13 − b_4_02·c_24_4·a_3_0·a_25_5
       − b_4_0·a_8_1·c_24_42
  1670. a_25_5·a_35_5 + b_4_0·a_8_1·c_48_18 − b_4_0·a_8_1·c_48_13
  1671. a_25_5·a_35_7 + b_4_0·a_8_1·c_48_18 + b_4_0·a_8_1·c_48_13 − b_4_04·a_8_1·c_36_11
  1672. a_25_5·a_35_8 − b_4_0·a_8_1·c_48_18 − b_4_04·a_8_1·c_36_11
  1673. b_30_42 + b_4_03·c_48_18 + b_4_03·c_24_42
  1674. b_30_4·b_30_5 + b_4_03·c_48_18 − b_4_03·c_48_13 − b_4_02·c_36_11·a_3_0·a_13_1
       + b_4_02·c_36_11·a_3_0·a_13_0
  1675. b_30_52 − b_4_03·c_48_18 − b_4_06·c_36_11 + b_4_02·c_36_11·a_3_0·a_13_1
       + b_4_02·c_36_11·a_3_0·a_13_0 − b_4_02·c_24_4·a_3_0·a_25_5
       + b_4_02·c_24_4·a_3_0·a_25_4
  1676. c_36_11·a_25_4 − c_36_5·a_25_5 + c_36_5·a_25_4 + b_4_03·c_36_11·a_13_1
       + b_4_03·c_36_11·a_13_0 + b_4_03·c_24_4·a_25_4 − a_8_1·c_36_11·a_17_2
       − a_8_1·c_24_4·a_29_7 + a_8_1·c_24_4·a_29_6 − c_24_42·a_13_1 − c_24_42·a_13_0
  1677. c_36_11·a_25_5 − c_36_5·a_25_5 − c_36_5·a_25_4 + b_4_03·c_36_11·a_13_1
       + b_4_03·c_24_4·a_25_5 + a_8_1·c_24_4·a_29_7 − c_24_42·a_13_1
  1678. c_48_18·a_13_0 + c_48_13·a_13_1 − c_48_13·a_13_0 − c_36_5·a_25_5 − c_36_5·a_25_4
       + b_4_03·c_36_11·a_13_1 − a_8_1·c_36_11·a_17_2 − a_8_1·c_24_4·a_29_6
  1679. c_48_18·a_13_1 + c_48_13·a_13_0 − c_36_5·a_25_5 + c_36_5·a_25_4 + b_4_03·c_36_11·a_13_1
       + b_4_03·c_36_11·a_13_0 − a_8_1·c_36_11·a_17_2 − a_8_1·c_24_4·a_29_6
  1680. a_22_1·a_39_18
  1681. a_22_1·a_39_19
  1682. a_34_6·a_27_8
  1683. a_34_6·a_27_9
  1684. a_34_7·a_27_8
  1685. a_34_7·a_27_9
  1686. a_22_1·a_40_15
  1687. a_22_1·a_40_16
  1688. a_28_7·a_34_6
  1689. a_28_7·a_34_7
  1690. a_28_8·a_34_6
  1691. a_28_8·a_34_7
  1692. a_28_9·a_34_6
  1693. a_28_9·a_34_7
  1694. a_28_10·a_34_6
  1695. a_28_10·a_34_7
  1696. a_15_4·a_47_14 − a_2_0·a_12_3·c_48_18 + a_2_0·a_12_2·c_48_18 + a_2_0·a_12_2·c_48_13
  1697. a_15_4·a_47_15 − a_2_0·a_12_3·c_48_13 + a_2_0·a_12_2·c_48_18
  1698. a_15_5·a_47_14 + a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_13
  1699. a_15_5·a_47_15 − a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18
       + a_2_0·a_12_2·c_48_13
  1700. a_23_0·a_39_18 + a_2_0·a_12_3·c_48_18 + a_2_0·a_12_2·c_48_13 − a_2_0·a_12_3·c_24_42
       − a_2_0·a_12_2·c_24_42
  1701. a_23_0·a_39_19 − a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18
       − a_2_0·a_12_3·c_24_42 + a_2_0·a_12_2·c_24_42
  1702. a_23_1·a_39_18 − a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18
       − a_2_0·a_12_3·c_24_42 + a_2_0·a_12_2·c_24_42
  1703. a_23_1·a_39_19 − a_2_0·a_12_3·c_48_18 + a_2_0·a_12_3·c_48_13 + a_2_0·a_12_2·c_48_18
       + a_2_0·a_12_2·c_48_13 + a_2_0·a_12_2·c_24_42
  1704. a_23_4·a_39_18
  1705. a_23_4·a_39_19
  1706. a_23_5·a_39_18
  1707. a_23_5·a_39_19
  1708. a_27_8·a_35_4 + a_2_0·a_12_3·c_48_18 + a_2_0·a_12_2·c_48_13 + a_2_0·a_12_3·c_24_42
       + a_2_0·a_12_2·c_24_42
  1709. a_27_8·a_35_5 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18 + a_2_0·a_12_2·c_48_13
       − a_2_0·a_12_3·c_24_42
  1710. a_27_8·a_35_7 + a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18
       − a_2_0·a_12_2·c_48_13
  1711. a_27_8·a_35_8 + a_2_0·a_12_3·c_48_18 + a_2_0·a_12_3·c_48_13 + a_2_0·a_12_2·c_48_18
  1712. a_27_9·a_35_4 + a_2_0·a_12_3·c_48_18 − a_2_0·a_12_3·c_48_13 − a_2_0·a_12_2·c_48_18
       − a_2_0·a_12_2·c_48_13 + a_2_0·a_12_2·c_24_42
  1713. a_27_9·a_35_5 + a_2_0·a_12_3·c_48_18 + a_2_0·a_12_3·c_48_13 + a_2_0·a_12_2·c_48_18
       − a_2_0·a_12_3·c_24_42 + a_2_0·a_12_2·c_24_42
  1714. a_27_9·a_35_7 − a_2_0·a_12_3·c_48_18 − a_2_0·a_12_2·c_48_13
  1715. a_27_9·a_35_8 + a_2_0·a_12_3·c_48_13 + a_2_0·a_12_2·c_48_18 − a_2_0·a_12_2·c_48_13
  1716. c_36_5·a_27_8 + c_24_4·a_39_18 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4 + c_24_42·a_15_5
       − a_2_0·c_24_42·a_13_1 − a_2_0·c_24_42·a_13_0
  1717. c_36_5·a_27_9 + c_24_4·a_39_19 − c_24_4·a_39_18 + a_8_1·c_36_5·a_19_6
       + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 − c_24_42·a_15_4 + a_2_0·c_24_42·a_13_0
  1718. c_36_11·a_27_8 − c_24_4·a_39_19 + c_24_4·a_39_18 + a_8_1·c_36_5·a_19_6
       − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 − c_24_42·a_15_4 + a_2_0·c_24_42·a_13_1
       + a_2_0·c_24_42·a_13_0
  1719. c_36_11·a_27_9 + c_24_4·a_39_18 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4 − c_24_42·a_15_5
       − a_2_0·c_24_42·a_13_0
  1720. c_48_18·a_15_4 − c_48_13·a_15_5 + c_48_13·a_15_4 − c_24_4·a_39_19 − c_24_4·a_39_18
       − a_8_1·c_36_5·a_19_6 + a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1
       + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4 + c_24_42·a_15_5
       + c_24_42·a_15_4 − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1721. c_48_18·a_15_5 + c_48_13·a_15_5 + c_48_13·a_15_4 + c_24_4·a_39_19 − a_8_1·c_36_5·a_19_6
       − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4 + c_24_42·a_15_5 − c_24_42·a_15_4 − a_2_0·c_24_42·a_13_1
  1722. a_16_4·a_47_14 + a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1 + a_2_0·c_36_5·a_25_5
  1723. a_16_4·a_47_15 + a_8_1·c_36_5·a_19_6 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4
  1724. a_16_5·a_47_14 + a_8_1·c_36_5·a_19_6 + a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4
  1725. a_16_5·a_47_15 + a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_4
  1726. a_16_6·a_47_14 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1 − a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4
  1727. a_16_6·a_47_15 − a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1
       + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4
  1728. a_24_5·a_39_18 + a_2_0·c_48_13·a_13_1 + a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_1
       − a_2_0·c_24_42·a_13_0
  1729. a_24_5·a_39_19 + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 − a_2_0·c_24_42·a_13_1
  1730. a_24_6·a_39_18 − a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1731. a_24_6·a_39_19 − a_2_0·c_48_13·a_13_1 − a_2_0·c_36_5·a_25_4 + a_2_0·c_24_42·a_13_1
       + a_2_0·c_24_42·a_13_0
  1732. a_24_7·a_39_18 − a_2_0·c_48_13·a_13_1 − a_2_0·c_36_5·a_25_4 + a_2_0·c_24_42·a_13_1
       + a_2_0·c_24_42·a_13_0
  1733. a_24_7·a_39_19 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 + a_2_0·c_24_42·a_13_1
  1734. a_24_8·a_39_18 + a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       + a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_0
  1735. a_24_8·a_39_19 − a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1736. a_28_7·a_35_4 + a_8_1·c_36_5·a_19_6 − a_2_0·c_48_13·a_13_1 + a_2_0·c_48_13·a_13_0
       − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0
  1737. a_28_7·a_35_5 − a_8_1·c_36_5·a_19_6 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_5 − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1738. a_28_7·a_35_7 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1 + a_2_0·c_36_5·a_25_4
  1739. a_28_7·a_35_8 − a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0
  1740. a_28_8·a_35_4 + a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1 + a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4 − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0
       − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1741. a_28_8·a_35_5 − a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1
       + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4
       − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0 + a_2_0·c_24_42·a_13_1
       + a_2_0·c_24_42·a_13_0
  1742. a_28_8·a_35_7 − a_8_1·c_36_5·a_19_6 − a_2_0·c_48_13·a_13_1 + a_2_0·c_48_13·a_13_0
       − a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4
  1743. a_28_8·a_35_8 + a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4
  1744. a_28_9·a_35_4 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1 + a_2_0·c_36_5·a_25_4
       − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0 − a_2_0·c_24_42·a_13_1
       + a_2_0·c_24_42·a_13_0
  1745. a_28_9·a_35_5 − a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0
       + a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1746. a_28_9·a_35_7 − a_8_1·c_36_5·a_19_6 + a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0
  1747. a_28_9·a_35_8 + a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_0
       − a_2_0·c_36_5·a_25_5
  1748. a_28_10·a_35_4 − a_8_1·c_36_5·a_19_6 − a_2_0·c_48_13·a_13_1 + a_2_0·c_48_13·a_13_0
       − a_2_0·c_36_5·a_25_5 − a_2_0·c_36_5·a_25_4 + a_8_1·c_24_42·a_7_0
       + b_4_0·a_8_1·c_24_42·a_3_0 − a_2_0·c_24_42·a_13_0
  1749. a_28_10·a_35_5 + a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_0
  1750. a_28_10·a_35_7 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1 − a_2_0·c_36_5·a_25_5
       + a_2_0·c_36_5·a_25_4
  1751. a_28_10·a_35_8 + a_8_1·c_36_5·a_19_6 + a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4
  1752. a_34_6·a_29_6 − b_4_0·a_8_1·c_48_18·a_3_0 − b_4_0·a_8_1·c_24_42·a_3_0
  1753. a_34_6·a_29_7 − b_4_0·a_8_1·c_48_18·a_3_0 + b_4_0·a_8_1·c_48_13·a_3_0
  1754. a_34_7·a_29_6 − b_4_0·a_8_1·c_48_18·a_3_0 + b_4_0·a_8_1·c_48_13·a_3_0
  1755. a_34_7·a_29_7 + b_4_0·a_8_1·c_48_18·a_3_0 + b_4_04·a_8_1·c_36_11·a_3_0
  1756. a_40_15·a_23_0 − a_8_1·c_36_5·a_19_6 + a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       + a_2_0·c_36_5·a_25_4 − a_8_1·c_24_42·a_7_0 − b_4_0·a_8_1·c_24_42·a_3_0
       + a_2_0·c_24_42·a_13_0
  1757. a_40_15·a_23_1 − a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_0
       + a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4 + a_8_1·c_24_42·a_7_0
       + b_4_0·a_8_1·c_24_42·a_3_0 − a_2_0·c_24_42·a_13_1 − a_2_0·c_24_42·a_13_0
  1758. a_40_15·a_23_4 + a_2_0·c_48_13·a_13_1 + a_2_0·c_48_13·a_13_0 + a_2_0·c_36_5·a_25_5
       + a_2_0·c_36_5·a_25_4 + a_2_0·c_24_42·a_13_1 − a_2_0·c_24_42·a_13_0
  1759. a_40_15·a_23_5 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 + a_2_0·c_24_42·a_13_1
  1760. a_40_16·a_23_0 − a_8_1·c_36_5·a_19_5 + a_2_0·c_48_13·a_13_1 + a_2_0·c_48_13·a_13_0
       − a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4 − a_8_1·c_24_42·a_7_0
       − b_4_0·a_8_1·c_24_42·a_3_0 − a_2_0·c_24_42·a_13_0
  1761. a_40_16·a_23_1 + a_8_1·c_36_5·a_19_6 − a_8_1·c_36_5·a_19_5 − a_2_0·c_48_13·a_13_1
       − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 + a_2_0·c_36_5·a_25_4
       + a_2_0·c_24_42·a_13_0
  1762. a_40_16·a_23_4 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5 + a_2_0·c_24_42·a_13_1
  1763. a_40_16·a_23_5 − a_2_0·c_48_13·a_13_1 − a_2_0·c_48_13·a_13_0 − a_2_0·c_36_5·a_25_5
       − a_2_0·c_36_5·a_25_4 − a_2_0·c_24_42·a_13_1 + a_2_0·c_24_42·a_13_0
  1764. c_24_4·a_40_15 + a_16_6·c_48_18 − a_16_6·c_48_13 + a_16_5·c_48_18 − a_16_4·c_48_18
       + a_16_4·c_48_13 − a_16_5·c_24_42
  1765. c_24_4·a_40_16 − a_16_6·c_48_18 + a_16_5·c_48_18 − a_16_5·c_48_13 + a_16_4·c_48_18
       − a_16_6·c_24_42
  1766. a_28_7·c_36_5 − a_16_5·c_48_18 − a_16_4·c_48_18 + a_16_4·c_48_13
  1767. a_28_7·c_36_11 + a_16_5·c_48_18 − a_16_5·c_48_13 − a_16_4·c_48_18 − a_16_4·c_24_42
  1768. a_28_8·c_36_5 − a_16_6·c_48_18 − a_16_5·c_48_18 + a_16_5·c_48_13
  1769. a_28_8·c_36_11 + a_16_6·c_48_18 − a_16_6·c_48_13 − a_16_5·c_48_18 − a_16_5·c_24_42
  1770. a_28_9·c_36_5 − a_16_5·c_48_18 + a_16_5·c_48_13 + a_16_4·c_48_18
  1771. a_28_9·c_36_11 − a_16_5·c_48_18 − a_16_4·c_48_18 + a_16_4·c_48_13 − a_16_5·c_24_42
  1772. a_28_10·c_36_5 − a_16_6·c_48_18 + a_16_6·c_48_13 + a_16_5·c_48_18
  1773. a_28_10·c_36_11 − a_16_6·c_48_18 − a_16_5·c_48_18 + a_16_5·c_48_13 − a_16_6·c_24_42
  1774. a_24_5·a_40_15
  1775. a_24_5·a_40_16
  1776. a_24_6·a_40_15
  1777. a_24_6·a_40_16
  1778. a_24_7·a_40_15
  1779. a_24_7·a_40_16
  1780. a_24_8·a_40_15
  1781. a_24_8·a_40_16
  1782. a_17_2·a_47_14 − c_36_5·a_3_0·a_25_4
  1783. a_17_2·a_47_15 − c_36_5·a_3_0·a_25_5
  1784. a_25_4·a_39_18
  1785. a_25_4·a_39_19
  1786. a_25_5·a_39_18
  1787. a_25_5·a_39_19
  1788. a_29_6·a_35_4 − c_48_13·a_3_0·a_13_1 + c_48_13·a_3_0·a_13_0 + c_36_5·a_3_0·a_25_5
       + c_36_5·a_3_0·a_25_4 − b_4_03·c_36_11·a_3_0·a_13_1 + c_24_42·a_3_0·a_13_0
  1789. a_29_6·a_35_5 − c_48_13·a_3_0·a_13_0 + c_36_5·a_3_0·a_25_5 − c_36_5·a_3_0·a_25_4
       − b_4_03·c_36_11·a_3_0·a_13_1 − b_4_03·c_36_11·a_3_0·a_13_0 + c_24_42·a_3_0·a_13_1
  1790. a_29_6·a_35_7 − c_48_13·a_3_0·a_13_1 + c_36_5·a_3_0·a_25_5 + c_36_5·a_3_0·a_25_4
       − b_4_03·c_36_11·a_3_0·a_13_1
  1791. a_29_6·a_35_8 − c_48_13·a_3_0·a_13_1 − c_48_13·a_3_0·a_13_0 + c_36_5·a_3_0·a_25_5
       − c_36_5·a_3_0·a_25_4 − b_4_03·c_36_11·a_3_0·a_13_1 − b_4_03·c_36_11·a_3_0·a_13_0
  1792. a_29_7·a_35_4 − c_48_13·a_3_0·a_13_1 + c_36_5·a_3_0·a_25_5 + c_36_5·a_3_0·a_25_4
       − b_4_03·c_36_11·a_3_0·a_13_1
  1793. a_29_7·a_35_5 − c_48_13·a_3_0·a_13_1 − c_48_13·a_3_0·a_13_0 + c_36_5·a_3_0·a_25_5
       − c_36_5·a_3_0·a_25_4 − b_4_03·c_36_11·a_3_0·a_13_1 − b_4_03·c_36_11·a_3_0·a_13_0
  1794. a_29_7·a_35_7 + c_48_13·a_3_0·a_13_1 − c_48_13·a_3_0·a_13_0 − c_36_5·a_3_0·a_25_5
       − c_36_5·a_3_0·a_25_4 + b_4_03·c_36_11·a_3_0·a_13_1 − b_4_03·c_36_11·a_3_0·a_13_0
  1795. a_29_7·a_35_8 + c_48_13·a_3_0·a_13_0 − c_36_5·a_3_0·a_25_5 + c_36_5·a_3_0·a_25_4
       + b_4_03·c_36_11·a_3_0·a_13_0
  1796. b_30_4·a_34_6 − b_4_02·a_8_1·c_48_18 − b_4_02·a_8_1·c_24_42
  1797. b_30_4·a_34_7 − b_4_02·a_8_1·c_48_18 + b_4_02·a_8_1·c_48_13
  1798. b_30_5·a_34_6 − b_4_02·a_8_1·c_48_18 + b_4_02·a_8_1·c_48_13
  1799. b_30_5·a_34_7 + b_4_02·a_8_1·c_48_18 + b_4_05·a_8_1·c_36_11
  1800. c_36_11·a_29_6 + c_36_5·a_29_7 − b_4_03·c_36_11·a_17_2 + b_4_03·c_24_4·a_29_6
       + c_24_42·a_17_2
  1801. c_36_11·a_29_7 − c_36_5·a_29_6 + b_4_03·c_24_4·a_29_7
  1802. c_48_13·a_17_2 − c_36_5·a_29_7 − c_36_5·a_29_6 + b_4_03·c_36_11·a_17_2
  1803. c_48_18·a_17_2 − c_36_5·a_29_7 + b_4_03·c_36_11·a_17_2
  1804. a_40_15·a_25_4
  1805. a_40_15·a_25_5
  1806. a_40_16·a_25_4
  1807. a_40_16·a_25_5
  1808. b_18_0·a_47_14 − b_4_0·c_36_5·a_25_4 − c_36_11·a_3_0·a_13_0·a_13_1
       + c_24_4·a_3_0·a_13_0·a_25_5 − c_24_4·a_3_0·a_13_0·a_25_4
  1809. b_18_0·a_47_15 − b_4_0·c_36_5·a_25_5 − c_36_11·a_3_0·a_13_0·a_13_1
       + c_24_4·a_3_0·a_13_0·a_25_5 − c_24_4·a_3_0·a_13_0·a_25_4
  1810. b_30_4·a_35_4 − b_4_0·c_48_13·a_13_1 + b_4_0·c_48_13·a_13_0 + b_4_0·c_36_5·a_25_5
       + b_4_0·c_36_5·a_25_4 + b_4_03·c_24_4·a_29_6 − b_4_04·c_36_11·a_13_1
       − c_36_11·a_3_0·a_13_0·a_13_1 + c_24_4·a_3_0·a_13_0·a_25_4 + b_4_0·c_24_42·a_13_0
  1811. b_30_4·a_35_5 − b_4_0·c_48_13·a_13_0 + b_4_0·c_36_5·a_25_5 − b_4_0·c_36_5·a_25_4
       − b_4_04·c_36_11·a_13_1 − b_4_04·c_36_11·a_13_0 − c_36_11·a_3_0·a_13_0·a_13_1
       + b_4_0·c_24_42·a_13_1
  1812. b_30_4·a_35_7 − b_4_0·c_48_13·a_13_1 + b_4_0·c_36_5·a_25_5 + b_4_0·c_36_5·a_25_4
       − b_4_04·c_36_11·a_13_1 + c_24_4·a_3_0·a_13_0·a_25_4
  1813. b_30_4·a_35_8 − b_4_0·c_48_13·a_13_1 − b_4_0·c_48_13·a_13_0 + b_4_0·c_36_5·a_25_5
       − b_4_0·c_36_5·a_25_4 − b_4_04·c_36_11·a_13_1 − b_4_04·c_36_11·a_13_0
       + c_24_4·a_3_0·a_13_0·a_25_4
  1814. b_30_5·a_35_4 − b_4_0·c_48_13·a_13_1 + b_4_0·c_36_5·a_25_5 + b_4_0·c_36_5·a_25_4
       + b_4_03·c_24_4·a_29_7 − b_4_04·c_36_11·a_13_1 + c_24_4·a_3_0·a_13_0·a_25_4
  1815. b_30_5·a_35_5 − b_4_0·c_48_13·a_13_1 − b_4_0·c_48_13·a_13_0 + b_4_0·c_36_5·a_25_5
       − b_4_0·c_36_5·a_25_4 − b_4_04·c_36_11·a_13_1 − b_4_04·c_36_11·a_13_0
       + c_24_4·a_3_0·a_13_0·a_25_5
  1816. b_30_5·a_35_7 + b_4_0·c_48_13·a_13_1 − b_4_0·c_48_13·a_13_0 − b_4_0·c_36_5·a_25_5
       − b_4_0·c_36_5·a_25_4 + b_4_04·c_36_11·a_13_1 − b_4_04·c_36_11·a_13_0
       + c_24_4·a_3_0·a_13_0·a_25_5 + c_24_4·a_3_0·a_13_0·a_25_4
  1817. b_30_5·a_35_8 + b_4_0·c_48_13·a_13_0 − b_4_0·c_36_5·a_25_5 + b_4_0·c_36_5·a_25_4
       + b_4_04·c_36_11·a_13_0 − c_36_11·a_3_0·a_13_0·a_13_1 − c_24_4·a_3_0·a_13_0·a_25_5
       + c_24_4·a_3_0·a_13_0·a_25_4
  1818. b_30_5·c_36_5 + b_30_4·c_36_11 + b_4_03·c_24_4·b_30_4 − b_4_03·b_18_0·c_36_11
       − b_4_0·c_36_11·a_3_0·a_23_1 − b_4_0·c_36_11·a_3_0·a_23_0 − b_4_0·c_24_4·a_3_0·a_35_5
       − a_2_0·a_16_5·c_48_18 − a_2_0·a_16_4·c_48_18 + a_2_0·a_16_4·c_48_13 + b_18_0·c_24_42
       − c_24_4·c_36_11·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_42
  1819. b_30_5·c_36_11 − b_30_4·c_36_5 + b_4_03·c_24_4·b_30_5 + b_4_0·c_36_11·a_3_0·a_23_0
       − b_4_0·c_24_4·a_3_0·a_35_8 + a_2_0·a_16_5·c_48_18 − a_2_0·a_16_5·c_48_13
       − a_2_0·a_16_4·c_48_18 + c_24_4·c_36_5·a_3_0·a_3_1
  1820. b_4_04·a_3_0·a_47_14 + b_30_4·c_36_11 + b_18_0·c_48_18 + b_4_03·c_24_4·b_30_4
       − b_4_0·c_36_11·a_3_0·a_23_1 + b_4_0·c_36_11·a_3_0·a_23_0 − b_4_0·c_24_4·a_3_0·a_35_5
       + b_4_0·c_24_4·a_3_0·a_35_4 − a_2_0·a_16_5·c_48_18 − a_2_0·a_16_4·c_48_18
       + a_2_0·a_16_4·c_48_13 + b_18_0·c_24_42 − c_24_4·c_36_11·a_3_0·a_3_1
       − a_2_0·a_16_5·c_24_42
  1821. b_4_04·a_3_0·a_47_15 + b_30_4·c_36_11 − b_30_4·c_36_5 + b_18_0·c_48_13
       + b_4_03·c_24_4·b_30_4 + b_4_0·c_36_11·a_3_0·a_23_1 + b_4_0·c_36_11·a_3_0·a_23_0
       − b_4_0·c_24_4·a_3_0·a_35_5 + b_4_0·c_24_4·a_3_0·a_35_4 − a_2_0·a_16_5·c_48_13
       + a_2_0·a_16_4·c_48_18 + a_2_0·a_16_4·c_48_13 + b_18_0·c_24_42
       − c_24_4·c_36_11·a_3_0·a_3_1 + c_24_4·c_36_5·a_3_0·a_3_1 − a_2_0·a_16_5·c_24_42
  1822. a_19_5·a_47_14 + a_2_0·a_16_5·c_48_13 − a_2_0·a_16_4·c_48_18 + a_2_0·a_16_4·c_48_13
       − c_24_4·c_36_5·a_3_0·a_3_1
  1823. a_19_5·a_47_15 + a_2_0·a_16_5·c_48_18 + a_2_0·a_16_5·c_48_13 − a_2_0·a_16_4·c_48_18
       − a_2_0·a_16_4·c_48_13 + c_24_4·c_36_5·a_3_0·a_3_1
  1824. a_19_6·a_47_14 + a_2_0·a_16_5·c_48_18 + a_2_0·a_16_5·c_48_13 − a_2_0·a_16_4·c_48_18
       + c_24_4·c_36_5·a_3_0·a_3_1
  1825. a_19_6·a_47_15 − a_2_0·a_16_5·c_48_13 + a_2_0·a_16_4·c_48_13
  1826. a_27_8·a_39_18
  1827. a_27_8·a_39_19
  1828. a_27_9·a_39_18
  1829. a_27_9·a_39_19
  1830. c_48_18·a_19_5 − c_48_13·a_19_6 + c_48_13·a_19_5 + a_2_0·c_36_5·a_29_7
       − a_2_0·c_36_5·a_29_6 + c_24_4·c_36_11·a_7_4 + c_24_4·c_36_11·a_7_3
       + c_24_4·c_36_5·a_7_4 + c_24_42·a_19_6 − a_12_2·c_24_42·a_7_0 + a_2_0·c_24_42·a_17_2
  1831. c_48_18·a_19_6 + c_48_13·a_19_6 + c_48_13·a_19_5 + a_2_0·c_36_5·a_29_7
       + c_24_4·c_36_11·a_7_3 + c_24_4·c_36_5·a_7_4 − c_24_4·c_36_5·a_7_3 − c_24_42·a_19_5
       + a_12_2·c_24_42·a_7_3 + a_12_2·c_24_42·a_7_0 + a_2_0·c_24_42·a_17_2
  1832. a_20_5·a_47_14 + a_12_2·c_48_13·a_7_3 + a_2_0·c_36_5·a_29_7 + c_24_4·c_36_11·a_7_4
       + c_24_4·c_36_11·a_7_3 + c_24_4·c_36_5·a_7_3 + c_24_42·a_19_6 + a_12_2·c_24_42·a_7_3
       − a_12_2·c_24_42·a_7_0
  1833. a_20_5·a_47_15 + a_12_2·c_48_13·a_7_0 + a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6
       + c_24_4·c_36_11·a_7_4 + c_24_4·c_36_5·a_7_4 − c_24_4·c_36_5·a_7_3 + c_24_42·a_19_6
       + c_24_42·a_19_5 − a_12_2·c_24_42·a_7_3 − a_12_2·c_24_42·a_7_0
       + a_2_0·c_24_42·a_17_2
  1834. a_20_6·a_47_14 + a_12_2·c_48_13·a_7_3 − a_12_2·c_48_13·a_7_0 − a_2_0·c_36_5·a_29_7
       + c_24_4·c_36_11·a_7_3 − c_24_4·c_36_5·a_7_4 − c_24_4·c_36_5·a_7_3 − c_24_42·a_19_5
       − a_12_2·c_24_42·a_7_3 − a_2_0·c_24_42·a_17_2
  1835. a_20_6·a_47_15 − a_12_2·c_48_13·a_7_3 − a_12_2·c_48_13·a_7_0 − a_2_0·c_36_5·a_29_7
       + a_2_0·c_36_5·a_29_6 + c_24_4·c_36_11·a_7_4 − c_24_4·c_36_11·a_7_3
       − c_24_4·c_36_5·a_7_4 + c_24_42·a_19_6 − c_24_42·a_19_5 − a_12_2·c_24_42·a_7_0
       − a_2_0·c_24_42·a_17_2
  1836. a_28_7·a_39_18 + a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 − a_2_0·c_24_42·a_17_2
  1837. a_28_7·a_39_19 + a_2_0·c_36_5·a_29_6
  1838. a_28_8·a_39_18 − a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1839. a_28_8·a_39_19 + a_2_0·c_36_5·a_29_7 − a_2_0·c_24_42·a_17_2
  1840. a_28_9·a_39_18 − a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1841. a_28_9·a_39_19 + a_2_0·c_36_5·a_29_7 − a_2_0·c_24_42·a_17_2
  1842. a_28_10·a_39_18 − a_2_0·c_36_5·a_29_7 + a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1843. a_28_10·a_39_19 − a_2_0·c_36_5·a_29_6
  1844. a_40_15·a_27_8 + a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 − a_2_0·c_24_42·a_17_2
  1845. a_40_15·a_27_9 − a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1846. a_40_16·a_27_8 − a_2_0·c_36_5·a_29_7 − a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1847. a_40_16·a_27_9 − a_2_0·c_36_5·a_29_7 + a_2_0·c_36_5·a_29_6 + a_2_0·c_24_42·a_17_2
  1848. a_20_6·c_48_13 + a_20_5·c_48_18 + a_20_5·c_48_13 + a_8_1·a_12_2·c_48_13
       + a_8_3·c_24_4·c_36_5 + a_8_2·c_24_4·c_36_5
  1849. a_20_6·c_48_18 − a_20_5·c_48_18 + a_20_5·c_48_13 + a_8_3·c_24_4·c_36_5
  1850. a_28_7·a_40_15 − a_8_1·a_12_2·c_48_18 + a_8_1·a_12_2·c_48_13
  1851. a_28_7·a_40_16 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_24_42
  1852. a_28_8·a_40_15 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_24_42
  1853. a_28_8·a_40_16 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_48_13
  1854. a_28_9·a_40_15 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_24_42
  1855. a_28_9·a_40_16 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_48_13
  1856. a_28_10·a_40_15 + a_8_1·a_12_2·c_48_18 − a_8_1·a_12_2·c_48_13
  1857. a_28_10·a_40_16 − a_8_1·a_12_2·c_48_18 + a_8_1·a_12_2·c_24_42
  1858. a_34_62
  1859. a_34_6·a_34_7
  1860. a_34_72
  1861. a_29_6·a_39_18
  1862. a_29_6·a_39_19
  1863. a_29_7·a_39_18
  1864. a_29_7·a_39_19
  1865. a_22_1·a_47_14
  1866. a_22_1·a_47_15
  1867. a_34_6·a_35_4 − b_4_0·c_24_4·a_3_0·a_13_0·a_25_4
  1868. a_34_6·a_35_5
  1869. a_34_6·a_35_7
  1870. a_34_6·a_35_8
  1871. a_34_7·a_35_4 + b_4_0·c_24_4·a_3_0·a_13_0·a_25_5 − b_4_0·c_24_4·a_3_0·a_13_0·a_25_4
  1872. a_34_7·a_35_5
  1873. a_34_7·a_35_7
  1874. a_34_7·a_35_8
  1875. a_40_15·a_29_6
  1876. a_40_15·a_29_7
  1877. a_40_16·a_29_6
  1878. a_40_16·a_29_7
  1879. b_30_4·a_39_18
  1880. b_30_4·a_39_19
  1881. b_30_5·a_39_18
  1882. b_30_5·a_39_19
  1883. a_34_6·c_36_5 − a_22_1·c_48_18 + a_22_1·c_48_13 + a_2_0·a_20_5·c_48_18
       − a_2_0·a_20_5·c_48_13 + a_2_0·a_8_2·c_24_4·c_36_5 − a_2_0·a_8_1·c_24_4·c_36_5
  1884. a_34_6·c_36_11 − a_22_1·c_48_18 − b_4_02·c_24_4·a_13_0·a_25_4 + a_2_0·a_20_5·c_48_18
       − a_22_1·c_24_42 − a_2_0·a_8_2·c_24_4·c_36_5
  1885. a_34_7·c_36_5 + a_22_1·c_48_18 − b_4_02·c_36_11·a_13_0·a_13_1 − a_2_0·a_20_5·c_48_18
       + a_2_0·a_8_2·c_24_4·c_36_5
  1886. a_34_7·c_36_11 − a_22_1·c_48_18 + a_22_1·c_48_13 + b_4_02·c_24_4·a_13_0·a_25_5
       − b_4_02·c_24_4·a_13_0·a_25_4 + a_2_0·a_20_5·c_48_18 − a_2_0·a_20_5·c_48_13
       + a_2_0·a_8_2·c_24_4·c_36_11
  1887. a_23_0·a_47_14 − a_22_1·c_48_18 + b_4_02·c_36_11·a_13_0·a_13_1 + a_2_0·a_20_5·c_48_18
  1888. a_23_0·a_47_15 − a_22_1·c_48_13 + b_4_02·c_36_11·a_13_0·a_13_1 + a_2_0·a_20_5·c_48_13
       + a_2_0·a_8_2·c_24_4·c_36_5
  1889. a_23_1·a_47_14 + a_22_1·c_48_18 + a_22_1·c_48_13 + b_4_02·c_36_11·a_13_0·a_13_1
       − a_2_0·a_20_5·c_48_18 − a_2_0·a_20_5·c_48_13 − a_2_0·a_8_2·c_24_4·c_36_5
  1890. a_23_1·a_47_15 + a_22_1·c_48_18 − b_4_02·c_36_11·a_13_0·a_13_1 − a_2_0·a_20_5·c_48_18
  1891. a_23_4·a_47_14 + a_2_0·a_8_2·c_24_4·c_36_5 + a_2_0·a_8_1·c_24_4·c_36_5
  1892. a_23_4·a_47_15 + a_2_0·a_8_2·c_24_4·c_36_5
  1893. a_23_5·a_47_14 − a_2_0·a_8_1·c_24_4·c_36_5
  1894. a_23_5·a_47_15 − a_2_0·a_8_2·c_24_4·c_36_5 + a_2_0·a_8_1·c_24_4·c_36_5
  1895. a_35_4·a_35_5 − a_22_1·c_48_18 + b_4_02·c_24_4·a_3_0·a_35_5 + a_2_0·a_20_5·c_48_18
       − a_22_1·c_24_42 + a_2_0·a_8_2·c_24_4·c_36_11 − a_2_0·a_8_2·c_24_4·c_36_5
       + a_2_0·a_8_1·c_24_4·c_36_11
  1896. a_35_4·a_35_7 + b_4_02·c_24_4·a_3_0·a_35_7 − a_2_0·a_8_2·c_24_4·c_36_5
       − a_2_0·a_8_1·c_24_4·c_36_5
  1897. a_35_4·a_35_8 − a_22_1·c_48_18 + a_22_1·c_48_13 + b_4_02·c_24_4·a_3_0·a_35_8
       + a_2_0·a_20_5·c_48_18 − a_2_0·a_20_5·c_48_13 + a_2_0·a_8_2·c_24_4·c_36_5
       − a_2_0·a_8_1·c_24_4·c_36_5
  1898. a_35_5·a_35_7 + a_22_1·c_48_18 − a_22_1·c_48_13 − a_2_0·a_20_5·c_48_18
       + a_2_0·a_20_5·c_48_13 − a_2_0·a_8_2·c_24_4·c_36_5 − a_2_0·a_8_1·c_24_4·c_36_5
  1899. a_35_5·a_35_8 + a_2_0·a_8_2·c_24_4·c_36_5 − a_2_0·a_8_1·c_24_4·c_36_5
  1900. a_35_7·a_35_8 + a_22_1·c_48_18 − b_4_02·c_36_11·a_13_0·a_13_1 − a_2_0·a_20_5·c_48_18
  1901. b_30_4·a_40_15
  1902. b_30_4·a_40_16
  1903. b_30_5·a_40_15
  1904. b_30_5·a_40_16
  1905. c_36_11·a_35_4 + c_36_5·a_35_7 + b_4_03·c_36_11·a_23_1 − b_4_03·c_36_11·a_23_0
       + b_4_03·c_24_4·a_35_4 − c_24_4·c_36_5·a_11_2 − c_24_42·a_23_1 + c_24_42·a_23_0
       + b_4_02·c_24_4·c_36_11·a_3_0 + b_4_05·c_24_42·a_3_0 − a_8_2·c_24_4·c_36_5·a_3_0
       + a_8_1·c_24_4·c_36_11·a_3_0 + b_4_03·a_8_1·c_24_42·a_3_0
  1906. c_36_11·a_35_5 + c_36_5·a_35_8 − b_4_03·c_36_11·a_23_1 + b_4_03·c_24_4·a_35_5
       − c_24_4·c_36_5·a_11_2 + c_24_42·a_23_1 + a_8_2·c_24_4·c_36_11·a_3_0
       − a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_11·a_3_0
       + b_4_03·a_8_1·c_24_42·a_3_0
  1907. c_36_11·a_35_7 − c_36_5·a_35_4 + b_4_03·c_24_4·a_35_7 − b_4_06·a_8_1·c_36_11·a_3_0
       − c_24_4·c_36_5·a_11_3 − b_4_02·c_24_4·c_36_5·a_3_0 − a_8_2·c_24_4·c_36_11·a_3_0
       + a_8_2·c_24_4·c_36_5·a_3_0 − a_8_1·c_24_4·c_36_11·a_3_1 − a_8_1·c_24_4·c_36_5·a_3_1
  1908. c_36_11·a_35_8 − c_36_5·a_35_5 + b_4_03·c_24_4·a_35_8 + b_4_06·a_8_1·c_36_11·a_3_0
       − c_24_4·c_36_5·a_11_3 + a_8_2·c_24_4·c_36_11·a_3_0 + a_8_1·c_24_4·c_36_11·a_3_0
       + a_8_1·c_24_4·c_36_5·a_3_0
  1909. c_48_13·a_23_1 + c_48_13·a_23_0 + c_36_5·a_35_8 − c_36_5·a_35_7 + c_36_5·a_35_5
       − c_36_5·a_35_4 + b_4_03·c_36_11·a_23_1 + b_4_03·c_36_11·a_23_0
       − a_16_4·c_48_13·a_7_3 − a_16_4·c_48_13·a_7_0 + b_4_03·a_8_1·c_48_18·a_3_0
       − b_4_03·a_8_1·c_48_13·a_3_0 − b_4_02·c_24_4·c_36_5·a_3_0
       + a_8_2·c_24_4·c_36_11·a_3_0 + a_8_2·c_24_4·c_36_5·a_3_0 − a_8_1·c_24_4·c_36_11·a_3_1
       − a_8_1·c_24_4·c_36_11·a_3_0 − a_8_1·c_24_4·c_36_5·a_3_0
       + b_4_03·a_8_1·c_24_42·a_3_0
  1910. c_48_13·a_23_5 + c_48_13·a_23_0 − c_36_5·a_35_8 − c_36_5·a_35_7 − c_36_5·a_35_5
       − c_36_5·a_35_4 + b_4_03·c_36_11·a_23_0 + a_16_4·c_48_13·a_7_3 − a_16_4·c_48_13·a_7_0
       + b_4_06·a_8_1·c_36_11·a_3_0 + c_24_4·c_36_5·a_11_3 − b_4_02·c_24_4·c_36_5·a_3_0
       + a_8_2·c_24_4·c_36_5·a_3_0 − a_8_1·c_24_4·c_36_11·a_3_1 + a_8_1·c_24_4·c_36_11·a_3_0
       − a_8_1·c_24_4·c_36_5·a_3_1 − a_8_1·c_24_4·c_36_5·a_3_0
       − b_4_03·a_8_1·c_24_42·a_3_0
  1911. c_48_18·a_23_0 + c_48_13·a_23_4 + c_48_13·a_23_0 + c_36_5·a_35_8 + c_36_5·a_35_7
       − c_36_5·a_35_5 − c_36_5·a_35_4 − b_4_03·c_36_11·a_23_0 − a_16_4·c_48_13·a_7_3
       + b_4_06·a_8_1·c_36_11·a_3_0 + c_24_4·c_36_5·a_11_2 − b_4_02·c_24_4·c_36_5·a_3_0
       + a_8_2·c_24_4·c_36_5·a_3_0 − a_8_1·c_24_4·c_36_11·a_3_1 + a_8_1·c_24_4·c_36_5·a_3_0
       + b_4_03·a_8_1·c_24_42·a_3_0
  1912. c_48_18·a_23_1 − c_48_13·a_23_4 − c_48_13·a_23_0 + c_36_5·a_35_7 + c_36_5·a_35_5
       + c_36_5·a_35_4 + b_4_03·c_36_11·a_23_1 − b_4_03·c_36_11·a_23_0
       − a_16_4·c_48_13·a_7_3 − a_16_4·c_48_13·a_7_0 + b_4_03·a_8_1·c_48_13·a_3_0
       − b_4_06·a_8_1·c_36_11·a_3_0 − c_24_4·c_36_5·a_11_2 + b_4_02·c_24_4·c_36_5·a_3_0
       − a_8_2·c_24_4·c_36_11·a_3_0 − a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_11·a_3_1
       + a_8_1·c_24_4·c_36_5·a_3_1 + a_8_1·c_24_4·c_36_5·a_3_0
  1913. c_48_18·a_23_4 + c_48_13·a_23_4 − c_48_13·a_23_0 + c_36_5·a_35_8 + c_36_5·a_35_7
       + c_36_5·a_35_5 + c_36_5·a_35_4 − b_4_03·c_36_11·a_23_0 + a_16_4·c_48_13·a_7_3
       − a_16_4·c_48_13·a_7_0 − b_4_06·a_8_1·c_36_11·a_3_0 + c_24_4·c_36_5·a_11_2
       + b_4_02·c_24_4·c_36_5·a_3_0 + a_8_2·c_24_4·c_36_5·a_3_0
       + a_8_1·c_24_4·c_36_11·a_3_1 − a_8_1·c_24_4·c_36_11·a_3_0 − a_8_1·c_24_4·c_36_5·a_3_0
       + b_4_03·a_8_1·c_24_42·a_3_0
  1914. c_48_18·a_23_5 − c_48_13·a_23_4 − c_48_13·a_23_0 + c_36_5·a_35_8 + c_36_5·a_35_7
       + c_36_5·a_35_5 + c_36_5·a_35_4 − b_4_03·c_36_11·a_23_0 + a_16_4·c_48_13·a_7_3
       + a_16_4·c_48_13·a_7_0 − b_4_06·a_8_1·c_36_11·a_3_0 − c_24_4·c_36_5·a_11_2
       + b_4_02·c_24_4·c_36_5·a_3_0 + a_8_2·c_24_4·c_36_5·a_3_0
       + a_8_1·c_24_4·c_36_11·a_3_1 − a_8_1·c_24_4·c_36_11·a_3_0 − a_8_1·c_24_4·c_36_5·a_3_1
       + b_4_03·a_8_1·c_24_42·a_3_0
  1915. a_24_5·a_47_14 − a_8_1·c_24_4·c_36_5·a_3_1 + a_8_1·c_24_4·c_36_5·a_3_0
  1916. a_24_5·a_47_15 − b_4_03·a_8_1·c_48_18·a_3_0 + b_4_03·a_8_1·c_48_13·a_3_0
       + a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_5·a_3_0
  1917. a_24_6·a_47_14 + b_4_03·a_8_1·c_48_18·a_3_0 − b_4_03·a_8_1·c_48_13·a_3_0
       − a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_5·a_3_1 + a_8_1·c_24_4·c_36_5·a_3_0
  1918. a_24_6·a_47_15 + a_8_1·c_24_4·c_36_5·a_3_1 − a_8_1·c_24_4·c_36_5·a_3_0
  1919. a_24_7·a_47_14 + a_8_1·c_24_4·c_36_5·a_3_1 − a_8_1·c_24_4·c_36_5·a_3_0
  1920. a_24_7·a_47_15 + a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_5·a_3_1
       − a_8_1·c_24_4·c_36_5·a_3_0
  1921. a_24_8·a_47_14 + a_8_2·c_24_4·c_36_5·a_3_0
  1922. a_24_8·a_47_15 + a_8_2·c_24_4·c_36_5·a_3_0 − a_8_1·c_24_4·c_36_5·a_3_1
       + a_8_1·c_24_4·c_36_5·a_3_0
  1923. b_4_06·a_47_14 + c_36_5·a_35_7 − c_36_5·a_35_5 − c_36_5·a_35_4 + c_24_4·a_47_14
       + b_4_03·a_8_1·c_48_13·a_3_0 − b_4_06·a_8_1·c_36_11·a_3_0
       − b_4_02·c_24_4·c_36_5·a_3_0 + a_8_2·c_24_4·c_36_11·a_3_0
       − a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_11·a_3_1 − a_8_1·c_24_4·c_36_5·a_3_1
  1924. b_4_06·a_47_15 + c_36_5·a_35_8 − c_36_5·a_35_7 − c_36_5·a_35_5 + c_24_4·a_47_15
       + b_4_03·a_8_1·c_48_18·a_3_0 − b_4_03·a_8_1·c_48_13·a_3_0
       + b_4_06·a_8_1·c_36_11·a_3_0 + a_8_2·c_24_4·c_36_11·a_3_0
       + a_8_2·c_24_4·c_36_5·a_3_0 + a_8_1·c_24_4·c_36_11·a_3_0 + a_8_1·c_24_4·c_36_5·a_3_1
       + a_8_1·c_24_4·c_36_5·a_3_0
  1925. a_24_6·c_48_13 − a_24_5·c_48_18 + a_24_5·c_48_13 − b_4_02·c_48_13·a_3_0·a_13_0
       + b_4_02·c_36_5·a_3_0·a_25_5 − b_4_02·c_36_5·a_3_0·a_25_4
       − b_4_05·c_36_11·a_3_0·a_13_1 − b_4_05·c_36_11·a_3_0·a_13_0 + a_24_6·c_24_42
       − a_12_3·c_24_4·c_36_11
  1926. a_24_6·c_48_18 − a_24_5·c_48_13 + b_4_02·c_48_13·a_3_0·a_13_1
       − b_4_02·c_48_13·a_3_0·a_13_0 − b_4_02·c_36_5·a_3_0·a_25_5
       − b_4_02·c_36_5·a_3_0·a_25_4 + b_4_05·c_36_11·a_3_0·a_13_1 + a_24_6·c_24_42
       − a_24_5·c_24_42 + a_12_2·c_24_4·c_36_11
  1927. a_24_8·c_48_13 + a_24_7·c_48_18 + a_24_7·c_48_13 + a_12_5·c_24_4·c_36_5
       + a_12_4·c_24_4·c_36_5
  1928. a_24_8·c_48_18 − a_24_7·c_48_18 + a_24_7·c_48_13 + a_12_4·c_24_4·c_36_5
  1929. b_4_09·c_36_11 − b_4_05·c_36_11·a_3_0·a_13_0 + c_36_112 + c_36_52
       − a_12_5·c_24_4·c_36_11 − a_12_5·c_24_4·c_36_5 − a_12_4·c_24_4·c_36_5
       + a_12_3·c_24_4·c_36_5 + a_12_2·c_24_4·c_36_11 + a_12_2·c_24_4·c_36_5
       − b_4_02·c_24_42·a_3_0·a_13_0 − c_24_43
  1930. b_4_06·c_48_13 + a_24_7·c_48_18 − a_24_7·c_48_13 + b_4_02·c_48_13·a_3_0·a_13_1
       − b_4_02·c_48_13·a_3_0·a_13_0 + b_4_02·c_36_5·a_3_0·a_25_5
       − b_4_05·c_36_11·a_3_0·a_13_1 − b_4_05·c_36_11·a_3_0·a_13_0 − c_36_112
       + c_36_5·c_36_11 + c_24_4·c_48_13 + b_4_03·c_24_4·c_36_11 + b_4_03·c_24_4·c_36_5
       + a_12_5·c_24_4·c_36_11 + a_12_5·c_24_4·c_36_5 + a_12_3·c_24_4·c_36_11
       − a_12_3·c_24_4·c_36_5 + c_24_43
  1931. b_4_06·c_48_18 + a_24_7·c_48_13 + b_4_02·c_48_13·a_3_0·a_13_1
       + b_4_02·c_48_13·a_3_0·a_13_0 − b_4_02·c_36_5·a_3_0·a_25_4
       + b_4_05·c_36_11·a_3_0·a_13_0 − c_36_112 + c_24_4·c_48_18 + b_4_03·c_24_4·c_36_11
       − a_12_5·c_24_4·c_36_11 − a_12_3·c_24_4·c_36_11 + c_24_43
  1932. a_25_4·a_47_14
  1933. a_25_4·a_47_15 − b_4_04·a_8_1·c_48_18 + b_4_04·a_8_1·c_48_13
       + b_4_0·a_8_1·c_24_4·c_36_5
  1934. a_25_5·a_47_14 + b_4_04·a_8_1·c_48_18 − b_4_04·a_8_1·c_48_13
       − b_4_0·a_8_1·c_24_4·c_36_5
  1935. a_25_5·a_47_15
  1936. c_48_18·a_25_4 − c_48_13·a_25_5 − c_48_13·a_25_4 + b_4_03·c_48_13·a_13_0
       − b_4_03·c_36_5·a_25_5 + b_4_03·c_36_5·a_25_4 + b_4_06·c_36_11·a_13_1
       + b_4_06·c_36_11·a_13_0 + a_8_1·c_36_5·a_29_7 − b_4_02·c_36_11·a_3_0·a_13_0·a_13_1
       + b_4_02·c_24_4·a_3_0·a_13_0·a_25_5 − b_4_02·c_24_4·a_3_0·a_13_0·a_25_4
       + c_24_4·c_36_11·a_13_1 − c_24_42·a_25_5 + a_8_1·c_24_42·a_17_2
  1937. c_48_18·a_25_5 − c_48_13·a_25_4 + b_4_03·c_48_13·a_13_1 − b_4_03·c_48_13·a_13_0
       − b_4_03·c_36_5·a_25_5 − b_4_03·c_36_5·a_25_4 + b_4_06·c_36_11·a_13_1
       − a_8_1·c_36_5·a_29_7 + a_8_1·c_36_5·a_29_6 + c_24_4·c_36_11·a_13_0 + c_24_42·a_25_5
       − c_24_42·a_25_4 + a_8_1·c_24_42·a_17_2
  1938. a_34_6·a_39_18
  1939. a_34_6·a_39_19
  1940. a_34_7·a_39_18
  1941. a_34_7·a_39_19
  1942. a_34_6·a_40_15
  1943. a_34_6·a_40_16
  1944. a_34_7·a_40_15
  1945. a_34_7·a_40_16
  1946. a_27_8·a_47_14 + a_2_0·a_12_2·c_24_4·c_36_5
  1947. a_27_8·a_47_15 − a_2_0·a_12_3·c_24_4·c_36_5
  1948. a_27_9·a_47_14 − a_2_0·a_12_3·c_24_4·c_36_5 − a_2_0·a_12_2·c_24_4·c_36_5
  1949. a_27_9·a_47_15 − a_2_0·a_12_3·c_24_4·c_36_5 + a_2_0·a_12_2·c_24_4·c_36_5
  1950. a_35_4·a_39_18 + a_2_0·c_36_5·c_36_11 + a_2_0·c_36_52 + a_2_0·c_24_4·c_48_13
       + a_2_0·a_12_3·c_24_4·c_36_11 + a_2_0·a_12_3·c_24_4·c_36_5
       − a_2_0·a_12_2·c_24_4·c_36_5
  1951. a_35_4·a_39_19 − a_2_0·c_36_52 − a_2_0·c_24_4·c_48_18 − a_2_0·a_12_3·c_24_4·c_36_11
       + a_2_0·a_12_3·c_24_4·c_36_5 + a_2_0·a_12_2·c_24_4·c_36_5
  1952. a_35_5·a_39_18 + a_2_0·c_36_5·c_36_11 − a_2_0·c_24_4·c_48_18 + a_2_0·c_24_4·c_48_13
       − a_2_0·a_12_3·c_24_4·c_36_5
  1953. a_35_5·a_39_19 + a_2_0·c_36_5·c_36_11 + a_2_0·c_36_52 + a_2_0·c_24_4·c_48_13
       + a_2_0·a_12_3·c_24_4·c_36_11 + a_2_0·a_12_3·c_24_4·c_36_5
       − a_2_0·a_12_2·c_24_4·c_36_5
  1954. a_35_7·a_39_18 − a_2_0·c_36_5·c_36_11 + a_2_0·c_36_52 − a_2_0·c_24_4·c_48_18
       − a_2_0·c_24_4·c_48_13 − a_2_0·a_12_2·c_24_4·c_36_11
  1955. a_35_7·a_39_19 + a_2_0·c_36_5·c_36_11 − a_2_0·c_24_4·c_48_18 + a_2_0·c_24_4·c_48_13
       − a_2_0·a_12_3·c_24_4·c_36_11 + a_2_0·a_12_3·c_24_4·c_36_5
       + a_2_0·a_12_2·c_24_4·c_36_11
  1956. a_35_8·a_39_18 + a_2_0·c_36_52 + a_2_0·c_24_4·c_48_18 − a_2_0·a_12_3·c_24_4·c_36_11
       + a_2_0·a_12_3·c_24_4·c_36_5
  1957. a_35_8·a_39_19 − a_2_0·c_36_5·c_36_11 + a_2_0·c_36_52 − a_2_0·c_24_4·c_48_18
       − a_2_0·c_24_4·c_48_13 − a_2_0·a_12_2·c_24_4·c_36_11
  1958. c_36_11·a_39_18 + c_36_5·a_39_19 − c_36_5·a_39_18 − c_24_42·a_27_9
       + a_2_0·c_24_42·a_25_5
  1959. c_36_11·a_39_19 + c_36_5·a_39_19 + c_36_5·a_39_18 − c_24_42·a_27_9 + c_24_42·a_27_8
       − a_2_0·c_24_42·a_25_5 + a_2_0·c_24_42·a_25_4
  1960. c_48_13·a_27_8 + c_36_5·a_39_19 + c_36_5·a_39_18 + a_2_0·c_48_13·a_25_5
       + c_36_5·c_36_11·a_3_1 − c_36_5·c_36_11·a_3_0 − c_36_52·a_3_1 + c_36_52·a_3_0
       + c_24_4·c_48_18·a_3_1 − c_24_4·c_48_18·a_3_0 + c_24_4·c_48_13·a_3_1
       − c_24_4·c_48_13·a_3_0 − c_24_4·c_36_5·a_15_5 + c_24_4·c_36_5·a_15_4
       − a_8_1·c_24_42·a_19_5 + a_2_0·c_24_4·c_36_5·a_13_1 + a_2_0·c_24_4·c_36_5·a_13_0
  1961. c_48_13·a_27_9 − c_36_5·a_39_19 + a_2_0·c_48_13·a_25_5 + a_2_0·c_48_13·a_25_4
       − c_36_5·c_36_11·a_3_1 + c_36_5·c_36_11·a_3_0 − c_36_52·a_3_1 + c_36_52·a_3_0
       − c_24_4·c_48_13·a_3_1 + c_24_4·c_48_13·a_3_0 + c_24_4·c_36_5·a_15_5
       + c_24_4·c_36_5·a_15_4 + a_8_1·c_24_42·a_19_6 + a_8_1·c_24_42·a_19_5
       + a_2_0·c_24_4·c_36_5·a_13_0 − a_2_0·c_24_42·a_25_5 − a_2_0·c_24_42·a_25_4
  1962. c_48_18·a_27_8 − c_36_5·a_39_18 + a_2_0·c_48_13·a_25_4 + c_36_5·c_36_11·a_3_1
       − c_36_5·c_36_11·a_3_0 − c_24_4·c_48_18·a_3_1 + c_24_4·c_48_18·a_3_0
       + c_24_4·c_48_13·a_3_1 − c_24_4·c_48_13·a_3_0 − c_24_4·c_36_5·a_15_5
       + a_8_1·c_24_42·a_19_6 − a_8_1·c_24_42·a_19_5 − a_2_0·c_24_4·c_36_5·a_13_1
       + a_2_0·c_24_4·c_36_5·a_13_0 − a_2_0·c_24_42·a_25_5 − a_2_0·c_24_42·a_25_4
  1963. c_48_18·a_27_9 − c_36_5·a_39_19 + c_36_5·a_39_18 + a_2_0·c_48_13·a_25_5
       − a_2_0·c_48_13·a_25_4 − c_36_52·a_3_1 + c_36_52·a_3_0 − c_24_4·c_48_18·a_3_1
       + c_24_4·c_48_18·a_3_0 + c_24_4·c_36_5·a_15_4 − a_8_1·c_24_42·a_19_6
       − a_2_0·c_24_4·c_36_5·a_13_0 + a_2_0·c_24_42·a_25_5 + a_2_0·c_24_42·a_25_4
  1964. a_28_7·a_47_14 + a_2_0·c_48_13·a_25_5 + a_8_1·c_24_42·a_19_6 + a_8_1·c_24_42·a_19_5
       + a_2_0·c_24_4·c_36_5·a_13_0 − a_2_0·c_24_42·a_25_4
  1965. a_28_7·a_47_15 − a_2_0·c_48_13·a_25_5 + a_2_0·c_48_13·a_25_4
       − a_2_0·c_24_4·c_36_5·a_13_1 − a_2_0·c_24_4·c_36_5·a_13_0
  1966. a_28_8·a_47_14 + a_2_0·c_48_13·a_25_5 + a_2_0·c_48_13·a_25_4 − a_8_1·c_24_42·a_19_6
       − a_8_1·c_24_42·a_19_5 − a_2_0·c_24_4·c_36_5·a_13_1 + a_2_0·c_24_42·a_25_4
  1967. a_28_8·a_47_15 + a_2_0·c_48_13·a_25_4 + a_8_1·c_24_42·a_19_6 + a_8_1·c_24_42·a_19_5
       − a_2_0·c_24_4·c_36_5·a_13_1 − a_2_0·c_24_4·c_36_5·a_13_0 − a_2_0·c_24_42·a_25_4
  1968. a_28_9·a_47_14 − a_2_0·c_48_13·a_25_5 − a_2_0·c_48_13·a_25_4 − a_8_1·c_24_42·a_19_6
       − a_8_1·c_24_42·a_19_5 + a_2_0·c_24_4·c_36_5·a_13_1 + a_2_0·c_24_4·c_36_5·a_13_0
       + a_2_0·c_24_42·a_25_4
  1969. a_28_9·a_47_15 − a_2_0·c_48_13·a_25_4 + a_8_1·c_24_42·a_19_6 + a_8_1·c_24_42·a_19_5
       − a_2_0·c_24_42·a_25_4
  1970. a_28_10·a_47_14 + a_2_0·c_48_13·a_25_5 − a_8_1·c_24_42·a_19_6 − a_8_1·c_24_42·a_19_5
       + a_2_0·c_24_4·c_36_5·a_13_1 + a_2_0·c_24_4·c_36_5·a_13_0 + a_2_0·c_24_42·a_25_4
  1971. a_28_10·a_47_15 − a_2_0·c_48_13·a_25_5 + a_2_0·c_48_13·a_25_4
  1972. a_40_15·a_35_4 − c_36_52·a_3_1 + c_36_52·a_3_0 − c_24_4·c_48_18·a_3_1
       + c_24_4·c_48_18·a_3_0 − a_8_1·c_24_42·a_19_6 + a_8_1·c_24_42·a_19_5
       + a_2_0·c_24_4·c_36_5·a_13_1 − a_2_0·c_24_4·c_36_5·a_13_0
  1973. a_40_15·a_35_5 + c_36_5·c_36_11·a_3_1 − c_36_5·c_36_11·a_3_0 + c_36_52·a_3_1
       − c_36_52·a_3_0 + c_24_4·c_48_13·a_3_1 − c_24_4·c_48_13·a_3_0 + a_8_1·c_24_42·a_19_5
       − a_2_0·c_24_4·c_36_5·a_13_1 − a_2_0·c_24_4·c_36_5·a_13_0 + a_2_0·c_24_42·a_25_4
  1974. a_40_15·a_35_7 + c_36_5·c_36_11·a_3_1 − c_36_5·c_36_11·a_3_0 − c_24_4·c_48_18·a_3_1
       + c_24_4·c_48_18·a_3_0 + c_24_4·c_48_13·a_3_1 − c_24_4·c_48_13·a_3_0
       − a_8_1·c_24_42·a_19_6 + a_2_0·c_24_4·c_36_5·a_13_1 + a_2_0·c_24_42·a_25_5
       + a_2_0·c_24_42·a_25_4
  1975. a_40_15·a_35_8 − c_36_5·c_36_11·a_3_1 + c_36_5·c_36_11·a_3_0 + c_36_52·a_3_1
       − c_36_52·a_3_0 − c_24_4·c_48_18·a_3_1 + c_24_4·c_48_18·a_3_0 − c_24_4·c_48_13·a_3_1
       + c_24_4·c_48_13·a_3_0 + a_8_1·c_24_42·a_19_6 − a_8_1·c_24_42·a_19_5
       − a_2_0·c_24_4·c_36_5·a_13_1 − a_2_0·c_24_42·a_25_5
  1976. a_40_16·a_35_4 + c_36_5·c_36_11·a_3_1 − c_36_5·c_36_11·a_3_0 − c_24_4·c_48_18·a_3_1
       + c_24_4·c_48_18·a_3_0 + c_24_4·c_48_13·a_3_1 − c_24_4·c_48_13·a_3_0
       − a_8_1·c_24_42·a_19_6 − a_8_1·c_24_42·a_19_5 + a_2_0·c_24_4·c_36_5·a_13_1
       − a_2_0·c_24_4·c_36_5·a_13_0 + a_2_0·c_24_42·a_25_4
  1977. a_40_16·a_35_5 − c_36_5·c_36_11·a_3_1 + c_36_5·c_36_11·a_3_0 + c_36_52·a_3_1
       − c_36_52·a_3_0 − c_24_4·c_48_18·a_3_1 + c_24_4·c_48_18·a_3_0 − c_24_4·c_48_13·a_3_1
       + c_24_4·c_48_13·a_3_0 − a_8_1·c_24_42·a_19_6 + a_2_0·c_24_4·c_36_5·a_13_1
       − a_2_0·c_24_4·c_36_5·a_13_0 + a_2_0·c_24_42·a_25_4
  1978. a_40_16·a_35_7 + c_36_52·a_3_1 − c_36_52·a_3_0 + c_24_4·c_48_18·a_3_1
       − c_24_4·c_48_18·a_3_0 − a_8_1·c_24_42·a_19_5 + a_2_0·c_24_4·c_36_5·a_13_0
       + a_2_0·c_24_42·a_25_4
  1979. a_40_16·a_35_8 − c_36_5·c_36_11·a_3_1 + c_36_5·c_36_11·a_3_0 − c_36_52·a_3_1
       + c_36_52·a_3_0 − c_24_4·c_48_13·a_3_1 + c_24_4·c_48_13·a_3_0 + a_8_1·c_24_42·a_19_6
       + a_8_1·c_24_42·a_19_5 − a_2_0·c_24_42·a_25_5 + a_2_0·c_24_42·a_25_4
  1980. a_28_9·c_48_13 + a_28_7·c_48_18 + a_28_7·c_48_13 + a_16_5·c_24_4·c_36_5
       + a_16_4·c_24_4·c_36_5
  1981. a_28_9·c_48_18 − a_28_7·c_48_18 + a_28_7·c_48_13 + a_16_4·c_24_4·c_36_5
  1982. a_28_10·c_48_13 + a_28_8·c_48_18 + a_28_8·c_48_13 + a_16_6·c_24_4·c_36_5
       + a_16_5·c_24_4·c_36_5
  1983. a_28_10·c_48_18 − a_28_8·c_48_18 + a_28_8·c_48_13 + a_16_5·c_24_4·c_36_5
  1984. c_36_5·a_40_15 − a_28_8·c_48_18 + a_28_8·c_48_13 + a_28_7·c_48_18
  1985. c_36_5·a_40_16 + a_28_8·c_48_18 + a_28_7·c_48_18 − a_28_7·c_48_13 − a_16_6·c_24_4·c_36_5
       − a_16_4·c_24_4·c_36_5
  1986. c_36_11·a_40_15 − a_28_8·c_48_18 − a_28_7·c_48_18 + a_28_7·c_48_13
       + a_16_6·c_24_4·c_36_5 − a_16_5·c_24_4·c_36_11
  1987. c_36_11·a_40_16 − a_28_8·c_48_18 + a_28_8·c_48_13 + a_28_7·c_48_18
       − a_16_6·c_24_4·c_36_11 − a_16_5·c_24_4·c_36_5
  1988. a_29_6·a_47_14 + c_48_13·a_3_0·a_25_5 − b_4_03·c_48_13·a_3_0·a_13_0
       + b_4_03·c_36_5·a_3_0·a_25_5 − b_4_03·c_36_5·a_3_0·a_25_4
       − b_4_06·c_36_11·a_3_0·a_13_1 − b_4_06·c_36_11·a_3_0·a_13_0
       − c_24_4·c_36_11·a_3_0·a_13_1 + c_24_42·a_3_0·a_25_5
  1989. a_29_6·a_47_15 − c_48_13·a_3_0·a_25_5 + c_48_13·a_3_0·a_25_4
       − b_4_03·c_48_13·a_3_0·a_13_1 + b_4_03·c_48_13·a_3_0·a_13_0
       + b_4_03·c_36_5·a_3_0·a_25_5 + b_4_03·c_36_5·a_3_0·a_25_4
       − b_4_06·c_36_11·a_3_0·a_13_1 − c_24_4·c_36_11·a_3_0·a_13_0 − c_24_42·a_3_0·a_25_5
       + c_24_42·a_3_0·a_25_4
  1990. a_29_7·a_47_14 − c_48_13·a_3_0·a_25_5 − c_48_13·a_3_0·a_25_4
       + b_4_03·c_48_13·a_3_0·a_13_0 + b_4_03·c_36_5·a_3_0·a_25_5
       − b_4_03·c_36_5·a_3_0·a_25_4 − b_4_06·c_36_11·a_3_0·a_13_1
       − b_4_06·c_36_11·a_3_0·a_13_0 − c_24_4·c_36_11·a_3_0·a_13_1
       + c_24_4·c_36_11·a_3_0·a_13_0 − c_24_4·c_36_5·a_3_0·a_13_0 − c_24_42·a_3_0·a_25_5
       − c_24_42·a_3_0·a_25_4
  1991. a_29_7·a_47_15 − c_48_13·a_3_0·a_25_4 + b_4_03·c_48_13·a_3_0·a_13_1
       − b_4_03·c_48_13·a_3_0·a_13_0 + b_4_03·c_36_5·a_3_0·a_25_5
       + b_4_03·c_36_5·a_3_0·a_25_4 − b_4_06·c_36_11·a_3_0·a_13_1
       + c_24_4·c_36_11·a_3_0·a_13_1 + c_24_4·c_36_11·a_3_0·a_13_0
       − c_24_4·c_36_5·a_3_0·a_13_1 + c_24_4·c_36_5·a_3_0·a_13_0 − c_24_42·a_3_0·a_25_4
  1992. c_48_18·a_29_6 + c_48_13·a_29_7 + c_48_13·a_29_6 + b_4_03·c_36_5·a_29_7
       − b_4_06·c_36_11·a_17_2 − c_24_4·c_36_11·a_17_2 + c_24_42·a_29_7 − c_24_42·a_29_6
  1993. c_48_18·a_29_7 + c_48_13·a_29_7 − c_48_13·a_29_6 + b_4_03·c_36_5·a_29_7
       − b_4_06·c_36_11·a_17_2 − c_24_4·c_36_11·a_17_2 − c_24_42·a_29_7 − c_24_42·a_29_6
  1994. b_30_4·a_47_14 + b_4_0·c_48_13·a_25_5 − b_4_04·c_48_13·a_13_0 + b_4_04·c_36_5·a_25_5
       − b_4_04·c_36_5·a_25_4 − b_4_07·c_36_11·a_13_1 − b_4_07·c_36_11·a_13_0
       + c_36_5·a_3_0·a_13_0·a_25_5 + c_36_5·a_3_0·a_13_0·a_25_4
       + b_4_03·c_36_11·a_3_0·a_13_0·a_13_1 + b_4_03·c_24_4·a_3_0·a_13_0·a_25_5
       − b_4_03·c_24_4·a_3_0·a_13_0·a_25_4 − b_4_0·c_24_4·c_36_11·a_13_1
       + b_4_0·c_24_42·a_25_5 + c_24_42·a_3_0·a_13_0·a_13_1
  1995. b_30_4·a_47_15 − b_4_0·c_48_13·a_25_5 + b_4_0·c_48_13·a_25_4 − b_4_04·c_48_13·a_13_1
       + b_4_04·c_48_13·a_13_0 + b_4_04·c_36_5·a_25_5 + b_4_04·c_36_5·a_25_4
       − b_4_07·c_36_11·a_13_1 − c_36_5·a_3_0·a_13_0·a_25_4
       − b_4_03·c_36_11·a_3_0·a_13_0·a_13_1 − b_4_03·c_24_4·a_3_0·a_13_0·a_25_4
       − b_4_0·c_24_4·c_36_11·a_13_0 − b_4_0·c_24_42·a_25_5 + b_4_0·c_24_42·a_25_4
       − c_24_42·a_3_0·a_13_0·a_13_1
  1996. b_30_5·a_47_14 − b_4_0·c_48_13·a_25_5 − b_4_0·c_48_13·a_25_4 + b_4_04·c_48_13·a_13_0
       + b_4_04·c_36_5·a_25_5 − b_4_04·c_36_5·a_25_4 − b_4_07·c_36_11·a_13_1
       − b_4_07·c_36_11·a_13_0 − c_36_5·a_3_0·a_13_0·a_25_5
       − b_4_03·c_24_4·a_3_0·a_13_0·a_25_5 − b_4_0·c_24_4·c_36_11·a_13_1
       + b_4_0·c_24_4·c_36_11·a_13_0 − b_4_0·c_24_4·c_36_5·a_13_0 − b_4_0·c_24_42·a_25_5
       − b_4_0·c_24_42·a_25_4 − c_24_42·a_3_0·a_13_0·a_13_1
  1997. b_30_5·a_47_15 − b_4_0·c_48_13·a_25_4 + b_4_04·c_48_13·a_13_1
       − b_4_04·c_48_13·a_13_0 + b_4_04·c_36_5·a_25_5 + b_4_04·c_36_5·a_25_4
       − b_4_07·c_36_11·a_13_1 − c_36_5·a_3_0·a_13_0·a_25_5
       − b_4_03·c_36_11·a_3_0·a_13_0·a_13_1 − b_4_03·c_24_4·a_3_0·a_13_0·a_25_4
       + b_4_0·c_24_4·c_36_11·a_13_1 + b_4_0·c_24_4·c_36_11·a_13_0
       − b_4_0·c_24_4·c_36_5·a_13_1 + b_4_0·c_24_4·c_36_5·a_13_0 − b_4_0·c_24_42·a_25_4
       − c_24_42·a_3_0·a_13_0·a_13_1
  1998. b_30_5·c_48_13 + b_30_4·c_48_18 + b_30_4·c_48_13 + b_4_03·b_18_0·c_48_18
       + b_4_0·c_36_5·a_3_0·a_35_8 − b_4_0·c_36_5·a_3_0·a_35_7 − b_4_0·c_36_5·a_3_0·a_35_5
       + b_4_04·c_36_11·a_3_0·a_23_1 + b_4_04·c_36_11·a_3_0·a_23_0
       − b_4_04·c_24_4·a_3_0·a_35_7 − b_4_04·c_24_4·a_3_0·a_35_5
       − b_4_04·c_24_4·a_3_0·a_35_4 − a_2_0·a_28_7·c_48_13 + c_24_42·b_30_5
       − c_24_42·b_30_4 − b_18_0·c_24_4·c_36_11 − c_24_4·c_48_18·a_3_0·a_3_1
       − c_24_4·c_48_13·a_3_0·a_3_1 − b_4_0·c_24_42·a_3_0·a_23_0
       + a_2_0·a_16_5·c_24_4·c_36_11 + a_2_0·a_16_5·c_24_4·c_36_5 + c_24_43·a_3_0·a_3_1
  1999. b_30_5·c_48_18 − b_30_4·c_48_18 + b_30_4·c_48_13 − b_4_0·c_36_5·a_3_0·a_35_8
       + b_4_0·c_36_5·a_3_0·a_35_7 − b_4_04·c_36_11·a_3_0·a_23_1
       − b_4_04·c_36_11·a_3_0·a_23_0 − b_4_04·c_24_4·a_3_0·a_35_5
       + b_4_04·c_24_4·a_3_0·a_35_4 − a_2_0·a_28_7·c_48_18 + c_24_42·b_30_5
       + c_24_4·c_48_18·a_3_0·a_3_1 − c_24_4·c_48_13·a_3_0·a_3_1
       + b_4_0·c_24_42·a_3_0·a_23_1 + b_4_0·c_24_42·a_3_0·a_23_0
       + a_2_0·a_16_5·c_24_4·c_36_5
  2000. a_39_18·a_39_19
  2001. a_40_15·a_39_18 − c_36_5·c_36_11·a_7_1 − c_36_52·a_7_4 − c_36_52·a_7_3
       + c_36_52·a_7_1 − c_24_4·c_48_18·a_7_1 + c_24_4·c_48_13·a_7_4 − c_24_4·c_48_13·a_7_3
       − c_24_4·c_48_13·a_7_1 − c_24_4·c_36_5·a_19_6 + c_24_4·c_36_5·a_19_5
       + a_12_2·c_24_4·c_36_5·a_7_3 + a_8_1·c_24_42·a_23_1 − a_8_1·c_24_42·a_23_0
       − a_2_0·c_24_42·a_29_6
  2002. a_40_15·a_39_19 − c_36_5·c_36_11·a_7_1 + c_36_52·a_7_3 − c_36_52·a_7_1
       + c_24_4·c_48_13·a_7_4 − c_24_4·c_48_13·a_7_1 − c_24_4·c_36_5·a_19_6
       − c_24_4·c_36_5·a_19_5 − a_12_2·c_24_4·c_36_5·a_7_0 + a_8_1·c_24_42·a_23_1
       − a_8_1·c_24_42·a_23_0 − a_2_0·c_24_42·a_29_7
  2003. a_40_16·a_39_18 + c_36_52·a_7_4 − c_36_52·a_7_3 + c_36_52·a_7_1
       + c_24_4·c_48_18·a_7_1 + c_24_4·c_48_13·a_7_3 + c_24_4·c_36_5·a_19_5
       − a_12_2·c_24_4·c_36_5·a_7_3 − a_12_2·c_24_4·c_36_5·a_7_0 − a_2_0·c_24_42·a_29_7
       + a_2_0·c_24_42·a_29_6
  2004. a_40_16·a_39_19 + c_36_5·c_36_11·a_7_1 − c_36_52·a_7_4 − c_24_4·c_48_18·a_7_1
       − c_24_4·c_48_13·a_7_4 − c_24_4·c_48_13·a_7_3 + c_24_4·c_48_13·a_7_1
       + c_24_4·c_36_5·a_19_6 + a_12_2·c_24_4·c_36_5·a_7_3 − a_12_2·c_24_4·c_36_5·a_7_0
       − a_8_1·c_24_42·a_23_1 + a_8_1·c_24_42·a_23_0 − a_2_0·c_24_42·a_29_7
       − a_2_0·c_24_42·a_29_6
  2005. a_40_152 − a_8_2·c_36_5·c_36_11 − a_8_2·c_36_52 − a_8_2·c_24_4·c_48_13
       − a_8_1·a_12_2·c_24_4·c_36_11 − a_8_1·a_12_2·c_24_4·c_36_5
  2006. a_40_15·a_40_16 + a_8_2·c_36_5·c_36_11 − a_8_2·c_36_52 + a_8_2·c_24_4·c_48_18
       + a_8_2·c_24_4·c_48_13 + a_8_1·a_12_2·c_24_4·c_36_11 − a_8_1·a_12_2·c_24_4·c_36_5
  2007. a_40_162 + a_8_2·c_36_5·c_36_11 + a_8_2·c_36_52 + a_8_2·c_24_4·c_48_13
       + a_8_1·a_12_2·c_24_4·c_36_11 + a_8_1·a_12_2·c_24_4·c_36_5
  2008. a_34_6·a_47_14
  2009. a_34_6·a_47_15
  2010. a_34_7·a_47_14
  2011. a_34_7·a_47_15
  2012. a_34_7·c_48_13 + a_34_6·c_48_18 + a_34_6·c_48_13 + b_4_02·c_36_5·a_13_0·a_25_5
       − b_4_02·c_36_5·a_13_0·a_25_4 − b_4_05·c_36_11·a_13_0·a_13_1 + c_24_42·a_34_7
       − c_24_42·a_34_6 + a_22_1·c_24_4·c_36_11 + a_2_0·a_8_2·c_24_4·c_48_13
       + a_2_0·a_8_1·c_24_4·c_48_18 − a_2_0·a_8_1·c_24_4·c_48_13 + a_2_0·a_8_2·c_24_43
  2013. a_34_7·c_48_18 − a_34_6·c_48_18 + a_34_6·c_48_13 + c_24_42·a_34_7
       + a_2_0·a_8_2·c_24_4·c_48_13 + a_2_0·a_8_1·c_24_4·c_48_18
       − a_2_0·a_8_1·c_24_4·c_48_13 + a_2_0·a_8_2·c_24_43
  2014. a_35_4·a_47_14 − a_34_6·c_48_18 + a_34_6·c_48_13 + b_4_02·c_24_4·a_3_0·a_47_14
       − a_2_0·a_8_2·c_24_4·c_48_13 − a_2_0·a_8_1·c_24_4·c_48_13
  2015. a_35_4·a_47_15 + a_34_6·c_48_18 + a_34_6·c_48_13 + b_4_02·c_36_5·a_13_0·a_25_5
       − b_4_02·c_36_5·a_13_0·a_25_4 + b_4_02·c_24_4·a_3_0·a_47_15
       − b_4_05·c_36_11·a_13_0·a_13_1 − c_24_42·a_34_6 + a_22_1·c_24_4·c_36_11
       + a_2_0·a_8_2·c_24_4·c_48_18 + a_2_0·a_8_2·c_24_4·c_48_13
       + a_2_0·a_8_1·c_24_4·c_48_18 − a_2_0·a_8_1·c_24_4·c_48_13
  2016. a_35_5·a_47_14 − a_34_6·c_48_18 − a_34_6·c_48_13 − b_4_02·c_36_5·a_13_0·a_25_5
       + b_4_02·c_36_5·a_13_0·a_25_4 + b_4_05·c_36_11·a_13_0·a_13_1 + c_24_42·a_34_6
       − a_22_1·c_24_4·c_36_11 − a_2_0·a_8_2·c_24_4·c_48_13 + a_2_0·a_8_1·c_24_4·c_48_18
       + a_2_0·a_8_1·c_24_4·c_48_13
  2017. a_35_5·a_47_15 − a_34_6·c_48_18 + b_4_02·c_36_5·a_13_0·a_25_5
       − b_4_02·c_36_5·a_13_0·a_25_4 − b_4_05·c_36_11·a_13_0·a_13_1 − c_24_42·a_34_6
       + a_22_1·c_24_4·c_36_11 − a_2_0·a_8_2·c_24_4·c_48_13
  2018. a_35_7·a_47_14 + a_34_6·c_48_18 − b_4_02·c_36_5·a_13_0·a_25_5
       + b_4_02·c_36_5·a_13_0·a_25_4 + b_4_05·c_36_11·a_13_0·a_13_1 + c_24_42·a_34_6
       − a_22_1·c_24_4·c_36_11 + a_2_0·a_8_2·c_24_4·c_48_13 + a_2_0·a_8_1·c_24_4·c_48_18
  2019. a_35_7·a_47_15 + a_34_6·c_48_13 − b_4_02·c_36_5·a_13_0·a_25_5
       − b_4_02·c_36_5·a_13_0·a_25_4 + b_4_05·c_36_11·a_13_0·a_13_1 + c_24_42·a_34_6
       − a_22_1·c_24_4·c_36_11 + a_22_1·c_24_4·c_36_5 + a_2_0·a_8_2·c_24_4·c_48_13
       − a_2_0·a_8_1·c_24_4·c_48_18
  2020. a_35_8·a_47_14 − a_34_6·c_48_13 + b_4_02·c_36_5·a_13_0·a_25_5
       + b_4_02·c_36_5·a_13_0·a_25_4 − b_4_05·c_36_11·a_13_0·a_13_1 − c_24_42·a_34_6
       + a_22_1·c_24_4·c_36_11 − a_22_1·c_24_4·c_36_5 + a_2_0·a_8_2·c_24_4·c_48_18
       − a_2_0·a_8_2·c_24_4·c_48_13 + a_2_0·a_8_1·c_24_4·c_48_18
  2021. a_35_8·a_47_15 − a_34_6·c_48_18 + a_34_6·c_48_13 + b_4_02·c_36_5·a_13_0·a_25_4
       + a_22_1·c_24_4·c_36_5 − a_2_0·a_8_1·c_24_4·c_48_18
  2022. c_36_11·a_47_14 − c_36_5·a_47_15 + c_36_5·a_47_14 + b_4_03·c_36_5·a_35_5
       + b_4_03·c_36_5·a_35_4 + b_4_03·c_24_4·a_47_14 − c_24_4·c_48_13·a_11_2
       − c_24_4·c_36_5·a_23_4 + c_24_4·c_36_5·a_23_0 + b_4_05·c_24_4·c_36_5·a_3_0
       − a_8_2·c_24_4·c_48_13·a_3_0 + a_8_1·c_36_112·a_3_0 − a_8_1·c_24_4·c_48_18·a_3_1
       − a_8_1·c_24_4·c_48_18·a_3_0 − a_8_1·c_24_4·c_48_13·a_3_1
       − a_8_1·c_24_4·c_48_13·a_3_0 + b_4_03·a_8_1·c_24_4·c_36_5·a_3_0
       + a_8_2·c_24_43·a_3_0 + a_8_1·c_24_43·a_3_1 − a_8_1·c_24_43·a_3_0
  2023. c_36_11·a_47_15 − c_36_5·a_47_15 − c_36_5·a_47_14 + b_4_03·c_36_5·a_35_5
       + b_4_03·c_24_4·a_47_15 + c_24_4·c_48_13·a_11_3 − c_24_4·c_48_13·a_11_2
       + c_24_4·c_36_5·a_23_5 − c_24_4·c_36_5·a_23_4 + c_24_4·c_36_5·a_23_1
       − a_8_2·c_24_4·c_48_18·a_3_0 − a_8_2·c_24_4·c_48_13·a_3_0 + a_8_1·c_36_112·a_3_0
       − a_8_1·c_36_5·c_36_11·a_3_0 + a_8_1·c_36_52·a_3_0 + a_8_1·c_24_4·c_48_18·a_3_1
       + a_8_1·c_24_4·c_48_13·a_3_1 − a_8_1·c_24_4·c_48_13·a_3_0
       − b_4_03·a_8_1·c_24_4·c_36_11·a_3_0 + a_8_2·c_24_43·a_3_0
  2024. c_48_13·a_35_7 − c_48_13·a_35_5 − c_48_13·a_35_4 − c_36_5·a_47_15
       + b_4_03·c_36_5·a_35_8 + b_4_03·c_36_5·a_35_7 + b_4_03·c_36_5·a_35_5
       − b_4_03·c_36_5·a_35_4 − b_4_06·c_36_11·a_23_0 − c_24_4·c_48_13·a_11_2
       − c_24_4·c_36_11·a_23_0 − c_24_4·c_36_5·a_23_5 + c_24_4·c_36_5·a_23_4
       − c_24_4·c_36_5·a_23_1 − c_24_4·c_36_5·a_23_0 + c_24_42·a_35_7 − c_24_42·a_35_5
       − c_24_42·a_35_4 − b_4_02·c_24_4·c_48_13·a_3_0 − b_4_05·c_24_4·c_36_5·a_3_0
       + a_8_2·c_24_4·c_48_18·a_3_0 − a_8_2·c_24_4·c_48_13·a_3_0
       + a_8_1·c_36_5·c_36_11·a_3_0 − a_8_1·c_36_52·a_3_0 − a_8_1·c_24_4·c_48_18·a_3_1
       + a_8_1·c_24_4·c_48_18·a_3_0 − a_8_1·c_24_4·c_48_13·a_3_1
       + a_8_1·c_24_4·c_48_13·a_3_0 − b_4_03·a_8_1·c_24_4·c_36_11·a_3_0
       − b_4_03·a_8_1·c_24_4·c_36_5·a_3_0 + b_4_06·a_8_1·c_24_42·a_3_0
       − b_4_02·c_24_43·a_3_0 + a_8_2·c_24_43·a_3_0 − a_8_1·c_24_43·a_3_0
  2025. c_48_13·a_35_8 + c_48_13·a_35_5 − c_48_13·a_35_4 − c_36_5·a_47_14
       − b_4_03·c_36_5·a_35_8 + b_4_03·c_36_5·a_35_7 + b_4_03·c_36_5·a_35_4
       − b_4_06·c_36_11·a_23_1 − b_4_06·c_36_11·a_23_0 + c_24_4·c_48_13·a_11_3
       + c_24_4·c_48_13·a_11_2 − c_24_4·c_36_11·a_23_1 − c_24_4·c_36_11·a_23_0
       + c_24_4·c_36_5·a_23_4 − c_24_4·c_36_5·a_23_1 + c_24_4·c_36_5·a_23_0 + c_24_42·a_35_8
       + c_24_42·a_35_5 − c_24_42·a_35_4 − b_4_02·c_24_4·c_48_13·a_3_0
       + b_4_05·c_24_4·c_36_5·a_3_0 + a_8_2·c_24_4·c_48_13·a_3_0 + a_8_1·c_36_112·a_3_0
       − a_8_1·c_36_5·c_36_11·a_3_0 − a_8_1·c_36_52·a_3_0
       + b_4_03·a_8_1·c_24_4·c_36_11·a_3_0 − b_4_06·a_8_1·c_24_42·a_3_0
       − b_4_02·c_24_43·a_3_0 + a_8_1·c_24_43·a_3_1 + a_8_1·c_24_43·a_3_0
  2026. c_48_18·a_35_4 + c_48_13·a_35_5 − c_48_13·a_35_4 + c_36_5·a_47_15
       − b_4_03·c_36_5·a_35_8 − b_4_03·c_36_5·a_35_5 + b_4_03·c_36_5·a_35_4
       + b_4_06·c_36_11·a_23_1 + c_24_4·c_36_11·a_23_1 − c_24_4·c_36_5·a_23_4
       + c_24_4·c_36_5·a_23_1 + c_24_4·c_36_5·a_23_0 + c_24_42·a_35_5
       + b_4_02·c_24_4·c_48_18·a_3_0 − b_4_02·c_24_4·c_48_13·a_3_0
       + b_4_05·c_24_4·c_36_5·a_3_0 − a_8_2·c_24_4·c_48_13·a_3_0 − a_8_1·c_36_112·a_3_0
       + a_8_1·c_36_52·a_3_0 − a_8_1·c_24_4·c_48_18·a_3_1 − a_8_1·c_24_4·c_48_18·a_3_0
       + a_8_1·c_24_4·c_48_13·a_3_1 + a_8_1·c_24_4·c_48_13·a_3_0
       + b_4_03·a_8_1·c_24_4·c_36_11·a_3_0 − b_4_03·a_8_1·c_24_4·c_36_5·a_3_0
       − b_4_06·a_8_1·c_24_42·a_3_0 + a_8_2·c_24_43·a_3_0 − a_8_1·c_24_43·a_3_1
       + a_8_1·c_24_43·a_3_0
  2027. c_48_18·a_35_5 + c_48_13·a_35_4 + c_36_5·a_47_14 − b_4_03·c_36_5·a_35_8
       − b_4_03·c_36_5·a_35_7 − b_4_03·c_36_5·a_35_4 + b_4_06·c_36_11·a_23_0
       − c_24_4·c_48_13·a_11_3 + c_24_4·c_48_13·a_11_2 + c_24_4·c_36_11·a_23_0
       − c_24_4·c_36_5·a_23_5 − c_24_4·c_36_5·a_23_4 + c_24_4·c_36_5·a_23_1
       − c_24_4·c_36_5·a_23_0 + c_24_42·a_35_5 + c_24_42·a_35_4
       + b_4_02·c_24_4·c_48_13·a_3_0 − b_4_05·c_24_4·c_36_5·a_3_0
       − a_8_2·c_24_4·c_48_18·a_3_0 − a_8_1·c_36_112·a_3_0 − a_8_1·c_36_5·c_36_11·a_3_0
       + a_8_1·c_36_52·a_3_0 + a_8_1·c_24_4·c_48_18·a_3_1 − a_8_1·c_24_4·c_48_18·a_3_0
       + a_8_1·c_24_4·c_48_13·a_3_1 − a_8_1·c_24_4·c_48_13·a_3_0
       − b_4_03·a_8_1·c_24_4·c_36_5·a_3_0 − b_4_06·a_8_1·c_24_42·a_3_0
       + b_4_02·c_24_43·a_3_0 − a_8_1·c_24_43·a_3_1 − a_8_1·c_24_43·a_3_0
  2028. c_48_18·a_35_7 + c_48_13·a_35_5 + c_36_5·a_47_15 − b_4_03·c_36_5·a_35_8
       − b_4_03·c_36_5·a_35_5 + b_4_03·c_36_5·a_35_4 + b_4_06·c_36_11·a_23_1
       − c_24_4·c_48_13·a_11_3 + c_24_4·c_48_13·a_11_2 + c_24_4·c_36_11·a_23_1
       + c_24_4·c_36_5·a_23_5 + c_24_4·c_36_5·a_23_1 + c_24_4·c_36_5·a_23_0 + c_24_42·a_35_7
       + c_24_42·a_35_5 + b_4_05·c_24_4·c_36_5·a_3_0 + a_8_2·c_24_4·c_48_18·a_3_0
       + a_8_2·c_24_4·c_48_13·a_3_0 + a_8_1·c_36_52·a_3_0 − a_8_1·c_24_4·c_48_18·a_3_1
       − a_8_1·c_24_4·c_48_18·a_3_0 − a_8_1·c_24_4·c_48_13·a_3_1
       − b_4_03·a_8_1·c_24_4·c_36_11·a_3_0 − b_4_03·a_8_1·c_24_4·c_36_5·a_3_0
       − b_4_06·a_8_1·c_24_42·a_3_0 − a_8_2·c_24_43·a_3_0 − a_8_1·c_24_43·a_3_1
       + a_8_1·c_24_43·a_3_0
  2029. c_48_18·a_35_8 + c_48_13·a_35_5 + c_48_13·a_35_4 + c_36_5·a_47_14
       − b_4_03·c_36_5·a_35_8 − b_4_03·c_36_5·a_35_7 − b_4_03·c_36_5·a_35_4
       + b_4_06·c_36_11·a_23_0 + c_24_4·c_48_13·a_11_3 − c_24_4·c_48_13·a_11_2
       + c_24_4·c_36_11·a_23_0 + c_24_4·c_36_5·a_23_1 − c_24_4·c_36_5·a_23_0 + c_24_42·a_35_8
       + c_24_42·a_35_5 + c_24_42·a_35_4 + b_4_02·c_24_4·c_48_13·a_3_0
       − b_4_05·c_24_4·c_36_5·a_3_0 − a_8_2·c_24_4·c_48_18·a_3_0
       − a_8_2·c_24_4·c_48_13·a_3_0 − a_8_1·c_36_5·c_36_11·a_3_0 + a_8_1·c_36_52·a_3_0
       + a_8_1·c_24_4·c_48_18·a_3_0 + a_8_1·c_24_4·c_48_13·a_3_1
       + a_8_1·c_24_4·c_48_13·a_3_0 + b_4_03·a_8_1·c_24_4·c_36_11·a_3_0
       − b_4_03·a_8_1·c_24_4·c_36_5·a_3_0 − b_4_06·a_8_1·c_24_42·a_3_0
       + b_4_02·c_24_43·a_3_0 − a_8_2·c_24_43·a_3_0 − a_8_1·c_24_43·a_3_1
       − a_8_1·c_24_43·a_3_0
  2030. c_36_11·c_48_13 − c_36_5·c_48_18 − c_36_5·c_48_13 + b_4_03·c_36_112
       + b_4_03·c_24_4·c_48_13 + b_4_06·c_24_4·c_36_11 − a_12_5·c_24_4·c_48_18
       + a_12_3·c_36_112 − a_12_3·c_24_4·c_48_18 − a_12_2·c_36_112 − a_12_2·c_36_5·c_36_11
       + a_12_2·c_24_4·c_48_18 + a_12_2·c_24_4·c_48_13 − b_4_02·c_24_4·c_36_11·a_3_0·a_13_0
       + c_24_42·c_36_5 − a_12_2·c_24_43
  2031. c_36_11·c_48_18 + c_36_5·c_48_18 − c_36_5·c_48_13 + b_4_03·c_36_112
       + b_4_03·c_24_4·c_48_18 + b_4_06·c_24_4·c_36_11 + a_12_5·c_24_4·c_48_18
       + a_12_4·c_24_4·c_48_18 − a_12_4·c_24_4·c_48_13 − a_12_3·c_36_112
       + a_12_3·c_24_4·c_48_18 + a_12_3·c_24_4·c_48_13 − a_12_2·c_36_112
       − a_12_2·c_36_5·c_36_11 + a_12_2·c_24_4·c_48_18 + a_12_2·c_24_4·c_48_13
       + b_4_02·c_24_4·c_36_11·a_3_0·a_13_1 − b_4_02·c_24_4·c_36_11·a_3_0·a_13_0
       + a_12_5·c_24_43 − a_12_2·c_24_43
  2032. a_39_18·a_47_14 − a_2_0·a_12_3·c_24_4·c_48_18 + a_2_0·a_12_3·c_24_4·c_48_13
       + a_2_0·a_12_2·c_24_4·c_48_18 + a_2_0·a_12_2·c_24_4·c_48_13
  2033. a_39_18·a_47_15 + a_2_0·a_12_3·c_24_4·c_48_13 + a_2_0·a_12_2·c_24_4·c_48_18
       − a_2_0·a_12_2·c_24_4·c_48_13
  2034. a_39_19·a_47_14 + a_2_0·a_12_3·c_24_4·c_48_13 + a_2_0·a_12_2·c_24_4·c_48_18
       − a_2_0·a_12_2·c_24_4·c_48_13
  2035. a_39_19·a_47_15 − a_2_0·a_12_3·c_24_4·c_48_18 − a_2_0·a_12_2·c_24_4·c_48_13
  2036. c_48_18·a_39_18 + c_48_13·a_39_19 − c_24_42·a_39_19 − c_24_42·a_39_18
       − a_8_1·c_24_4·c_36_5·a_19_6 + a_8_1·c_24_4·c_36_5·a_19_5
       − a_2_0·c_24_4·c_48_13·a_13_1 − a_2_0·c_24_4·c_48_13·a_13_0
       + a_2_0·c_24_4·c_36_5·a_25_4 + c_24_43·a_15_5 + c_24_43·a_15_4
       − a_2_0·c_24_43·a_13_1 − a_2_0·c_24_43·a_13_0
  2037. c_48_18·a_39_19 − c_48_13·a_39_19 + c_48_13·a_39_18 − c_24_42·a_39_18
       − a_8_1·c_24_4·c_36_5·a_19_5 − a_2_0·c_24_4·c_48_13·a_13_1
       + a_2_0·c_24_4·c_36_5·a_25_5 − c_24_43·a_15_5 − a_2_0·c_24_43·a_13_1
  2038. a_40_15·a_47_14 − a_8_1·c_24_4·c_36_5·a_19_5 + a_2_0·c_24_4·c_48_13·a_13_1
       + a_2_0·c_24_4·c_48_13·a_13_0 − a_2_0·c_24_4·c_36_5·a_25_5
       + a_2_0·c_24_4·c_36_5·a_25_4
  2039. a_40_15·a_47_15 + a_8_1·c_24_4·c_36_5·a_19_6 − a_8_1·c_24_4·c_36_5·a_19_5
       − a_2_0·c_24_4·c_48_13·a_13_1 − a_2_0·c_24_4·c_48_13·a_13_0
       − a_2_0·c_24_4·c_36_5·a_25_5 + a_2_0·c_24_4·c_36_5·a_25_4
  2040. a_40_16·a_47_14 + a_8_1·c_24_4·c_36_5·a_19_6 − a_2_0·c_24_4·c_48_13·a_13_0
       + a_2_0·c_24_4·c_36_5·a_25_5
  2041. a_40_16·a_47_15 + a_8_1·c_24_4·c_36_5·a_19_6 + a_8_1·c_24_4·c_36_5·a_19_5
       + a_2_0·c_24_4·c_48_13·a_13_0 − a_2_0·c_24_4·c_36_5·a_25_4
  2042. a_40_16·c_48_13 + a_40_15·c_48_18 + a_40_15·c_48_13 + a_16_6·c_24_4·c_48_18
       − a_16_6·c_24_4·c_48_13 − a_16_5·c_24_4·c_48_13 − a_16_4·c_24_4·c_48_18
  2043. a_40_16·c_48_18 − a_40_15·c_48_18 + a_40_15·c_48_13 + a_16_5·c_24_4·c_48_18
       − a_16_5·c_24_4·c_48_13 − a_16_4·c_24_4·c_48_18
  2044. a_47_14·a_47_15 + b_4_02·c_48_13·a_13_0·a_25_5 + b_4_02·c_48_13·a_13_0·a_25_4
       + a_22_1·c_36_112 + b_4_02·c_24_4·c_36_11·a_13_0·a_13_1
       + b_4_02·c_24_42·a_13_0·a_25_5 + b_4_02·c_24_42·a_13_0·a_25_4
       + a_2_0·a_8_2·c_36_5·c_48_18 − a_2_0·a_8_2·c_36_5·c_48_13
       − a_2_0·a_8_1·c_36_5·c_48_18 − a_2_0·a_8_1·c_36_5·c_48_13 − a_22_1·c_24_43
  2045. c_48_18·a_47_14 − c_48_13·a_47_15 − c_48_13·a_47_14 + b_4_03·c_48_13·a_35_5
       + b_4_03·c_48_13·a_35_4 + b_4_03·c_36_5·a_47_14 − c_36_112·a_23_0
       + c_36_5·c_48_13·a_11_3 + c_36_5·c_48_13·a_11_2 − c_36_5·c_36_11·a_23_1
       + c_36_5·c_36_11·a_23_0 + c_24_4·c_48_13·a_23_4 + c_24_4·c_48_13·a_23_0
       − c_24_42·a_47_15 − b_4_03·c_24_4·c_36_11·a_23_0 + b_4_03·c_24_42·a_35_5
       + b_4_03·c_24_42·a_35_4 + b_4_05·c_24_4·c_48_13·a_3_0 − a_8_2·c_36_5·c_48_18·a_3_0
       + a_8_2·c_36_5·c_48_13·a_3_0 + a_8_1·c_36_5·c_48_18·a_3_1
       + a_8_1·c_36_5·c_48_18·a_3_0 − a_8_1·c_36_5·c_48_13·a_3_1
       + a_8_1·c_36_5·c_48_13·a_3_0 − b_4_03·a_8_1·c_36_112·a_3_0
       − b_4_03·a_8_1·c_36_5·c_36_11·a_3_0 + b_4_03·a_8_1·c_24_4·c_48_18·a_3_0
       + b_4_03·a_8_1·c_24_4·c_48_13·a_3_0 + c_24_42·c_36_5·a_11_2 + c_24_43·a_23_0
       + b_4_05·c_24_43·a_3_0 − a_8_2·c_24_42·c_36_11·a_3_0 − a_8_2·c_24_42·c_36_5·a_3_0
       + a_8_1·c_24_42·c_36_11·a_3_1 − b_4_03·a_8_1·c_24_43·a_3_0
  2046. c_48_18·a_47_15 − c_48_13·a_47_14 + b_4_03·c_48_13·a_35_5 + b_4_03·c_36_5·a_47_15
       − c_36_112·a_23_1 − c_36_5·c_48_13·a_11_2 − c_36_5·c_36_11·a_23_1
       − c_36_5·c_36_11·a_23_0 + c_24_4·c_48_13·a_23_4 + c_24_4·c_36_5·a_35_8
       + c_24_4·c_36_5·a_35_5 + c_24_42·a_47_15 − c_24_42·a_47_14
       + b_4_03·c_24_4·c_36_11·a_23_1 + b_4_03·c_24_42·a_35_5
       + a_8_2·c_36_5·c_48_18·a_3_0 + a_8_1·c_36_5·c_48_18·a_3_1
       − a_8_1·c_36_5·c_48_18·a_3_0 + b_4_03·a_8_1·c_24_4·c_48_13·a_3_0
       + b_4_06·a_8_1·c_24_4·c_36_11·a_3_0 + c_24_42·c_36_5·a_11_2 + c_24_43·a_23_1
       + a_8_2·c_24_42·c_36_5·a_3_0 − a_8_1·c_24_42·c_36_11·a_3_1
       − a_8_1·c_24_42·c_36_5·a_3_1 − a_8_1·c_24_42·c_36_5·a_3_0
       − b_4_03·a_8_1·c_24_43·a_3_0
  2047. c_48_182 − c_48_13·c_48_18 − c_48_132 + b_4_03·c_36_5·c_48_18
       − b_4_03·c_36_5·c_48_13 + b_4_06·c_36_112 + a_24_5·c_24_4·c_48_18
       − a_24_5·c_24_4·c_48_13 − a_12_5·c_36_5·c_48_18 + a_12_3·c_36_5·c_48_18
       + a_12_3·c_36_5·c_48_13 + a_12_2·c_36_5·c_48_13 + b_4_02·c_36_112·a_3_0·a_13_1
       + b_4_02·c_36_112·a_3_0·a_13_0 − b_4_02·c_36_5·c_36_11·a_3_0·a_13_0
       + b_4_02·c_24_4·c_48_13·a_3_0·a_13_1 + b_4_02·c_24_4·c_48_13·a_3_0·a_13_0
       − b_4_02·c_24_4·c_36_5·a_3_0·a_25_5 + b_4_02·c_24_4·c_36_5·a_3_0·a_25_4
       + b_4_05·c_24_4·c_36_11·a_3_0·a_13_1 − c_24_4·c_36_52 + c_24_42·c_48_18
       + b_4_03·c_24_42·c_36_11 + a_12_5·c_24_42·c_36_11 + a_12_4·c_24_42·c_36_5
       − a_12_3·c_24_42·c_36_11 + a_12_3·c_24_42·c_36_5 + a_12_2·c_24_42·c_36_11


About the group Ring generators Ring relations Completion information Restriction maps

Data used for the Symonds test

  • We proved completion in degree 96 using the Symonds criterion.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_24_4, an element of degree 24
    2. c_48_18, an element of degree 48
    3. b_4_0, an element of degree 4
  • A Duflot regular sequence is given by c_24_4, c_48_18.
  • The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 68, 73].
  • We used the following parameters for the Symonds criterion:
    1. c_48_18, an element of degree 48
    2. c_24_4, an element of degree 24
    3. b_4_0, an element of degree 4
  • As a module over these parameters, the cohomology is generated in degree at most 73.


About the group Ring generators Ring relations Completion information Restriction maps

Restriction maps

Expressing the generators as elements of H*(SmallGroup(243,9); GF(3))

  1. a_2_0a_2_2 + a_2_1 + a_2_0
  2. a_3_1a_3_3 + a_2_0·a_1_0
  3. a_3_0a_3_4 − a_2_0·a_1_0
  4. b_4_0b_4_5 − a_2_1·a_2_2 + a_2_0·a_2_2
  5. a_7_4a_2_0·a_5_5 − c_6_9·a_1_1 − c_6_9·a_1_0 + c_6_8·a_1_1 − c_6_8·a_1_0
  6. a_7_3a_2_0·a_5_6 + a_2_0·a_5_4 + c_6_9·a_1_1 + c_6_8·a_1_0
  7. a_7_1a_7_8 + a_2_0·a_5_4 + c_6_9·a_1_1 + c_6_8·a_1_1 − c_6_8·a_1_0
  8. a_7_0a_7_9 − a_2_0·a_5_4 + c_6_9·a_1_1 − c_6_8·a_1_0
  9. a_8_3a_2_1·c_6_9 − a_2_0·c_6_9 − a_2_0·c_6_8
  10. a_8_2a_2_0·a_6_3 + a_2_1·c_6_8 + a_2_0·c_6_9 − a_2_0·c_6_8
  11. a_8_1a_8_11 − a_3_3·a_5_6 + a_3_3·a_5_5 − a_2_2·a_6_4 + a_2_2·c_6_9 − a_2_1·c_6_8 − a_2_0·c_6_9
  12. a_11_3c_6_9·a_5_3 − c_6_9·a_5_2 + c_6_8·a_5_4 − a_2_0·c_6_8·a_3_4 + a_2_0·c_6_8·a_3_3
  13. a_11_2c_6_9·a_5_4 − c_6_8·a_5_3 + c_6_8·a_5_2 − a_2_0·c_6_8·a_3_3
  14. a_12_5a_6_5·c_6_8 − a_6_4·c_6_8 + a_6_3·c_6_9 − c_6_9·a_1_0·a_5_6 + c_6_8·a_1_0·a_5_6
       − a_2_2·a_4_3·c_6_9 + a_2_2·a_4_3·c_6_8 − a_2_2·a_4_2·c_6_8
  15. a_12_4a_6_5·c_6_9 − a_6_4·c_6_9 − a_6_3·c_6_8 + c_6_9·a_1_0·a_5_6 + c_6_8·a_1_0·a_5_6
       + a_2_2·a_4_3·c_6_9 + a_2_2·a_4_3·c_6_8 − a_2_2·a_4_2·c_6_9
  16. a_12_3b_4_5·a_3_3·a_5_5 + a_6_6·c_6_8 + a_6_4·c_6_9 + a_6_4·c_6_8 − a_6_3·c_6_9 − a_6_3·c_6_8
       − a_2_2·a_4_3·c_6_9 + a_2_2·a_4_3·c_6_8 + a_2_2·a_4_2·c_6_9
  17. a_12_2b_4_5·a_3_3·a_5_6 + a_6_6·c_6_9 + a_6_6·c_6_8 − a_6_4·c_6_9 + a_6_3·c_6_9
       − a_2_2·a_4_3·c_6_8 + a_2_2·a_4_2·c_6_9 − a_2_2·a_4_2·c_6_8
  18. a_13_1b_4_52·a_5_5 + c_6_9·a_7_10 − c_6_9·a_7_9 + c_6_9·a_7_8 + c_6_8·a_7_11 + c_6_8·a_7_10
       − c_6_8·a_7_9 − c_6_8·a_7_8 − b_4_5·c_6_9·a_3_3 − b_4_5·c_6_8·a_3_3 − a_2_0·c_6_9·a_5_5
       + a_2_0·c_6_9·a_5_4 + a_2_0·c_6_8·a_5_6 + a_2_0·c_6_8·a_5_5 + a_2_0·c_6_8·a_5_4
       − c_6_92·a_1_1 − c_6_92·a_1_0 − c_6_8·c_6_9·a_1_1 − c_6_8·c_6_9·a_1_0 − c_6_82·a_1_1
  19. a_13_0b_4_52·a_5_6 + b_4_52·a_5_2 + a_3_3·a_5_5·a_5_6 + c_6_9·a_7_11 − c_6_9·a_7_10
       + c_6_9·a_7_9 + c_6_8·a_7_11 + c_6_8·a_7_8 + b_4_5·c_6_9·a_3_3 + a_2_0·c_6_9·a_5_6
       − a_2_0·c_6_9·a_5_4 + a_2_0·c_6_8·a_5_6 − a_2_0·c_6_8·a_5_5 + c_6_92·a_1_1
       − c_6_8·c_6_9·a_1_1 − c_6_82·a_1_1 − c_6_82·a_1_0
  20. a_15_5a_2_0·c_6_8·a_7_8 − c_6_92·a_3_2 + c_6_8·c_6_9·a_3_2 − c_6_8·c_6_9·a_3_1
       + c_6_82·a_3_2 + a_2_0·c_6_8·c_6_9·a_1_0 − a_2_0·c_6_82·a_1_0
  21. a_15_4a_2_0·c_6_8·a_7_9 − c_6_92·a_3_2 + c_6_92·a_3_1 − c_6_8·c_6_9·a_3_2 + c_6_82·a_3_2
       − c_6_82·a_3_1 − a_2_0·c_6_82·a_1_0
  22. a_16_6a_4_4·c_6_82 + a_4_3·c_6_8·c_6_9 + a_4_2·c_6_92 − a_2_1·a_2_2·c_6_92
       + a_2_1·a_2_2·c_6_8·c_6_9 − a_2_1·a_2_2·c_6_82 + a_2_0·a_2_2·c_6_92
       + a_2_0·a_2_2·c_6_8·c_6_9
  23. a_16_5a_4_4·c_6_8·c_6_9 − a_4_3·c_6_92 + a_4_3·c_6_82 − a_4_2·c_6_8·c_6_9
       − a_2_1·a_2_2·c_6_92 + a_2_1·a_2_2·c_6_82 − a_2_0·a_2_2·c_6_92
       − a_2_0·a_2_2·c_6_8·c_6_9 + a_2_0·a_2_2·c_6_82
  24. a_16_4a_4_4·c_6_92 − a_4_3·c_6_8·c_6_9 + a_4_2·c_6_82 − a_2_1·a_2_2·c_6_92
       − a_2_1·a_2_2·c_6_8·c_6_9 − a_2_1·a_2_2·c_6_82 − a_2_0·a_2_2·c_6_8·c_6_9
       + a_2_0·a_2_2·c_6_82
  25. a_17_2b_4_53·a_5_2 + b_4_52·c_6_9·a_3_3 − c_6_92·a_5_2 − c_6_82·a_5_2
       + a_2_0·c_6_92·a_3_4 + a_2_0·c_6_82·a_3_4
  26. b_18_0b_4_53·b_6_7 + b_4_53·c_6_9 − b_4_5·c_6_9·a_3_3·a_5_6 + b_4_5·c_6_9·a_3_3·a_5_5
       + b_4_5·c_6_8·a_3_3·a_5_6 + b_4_5·c_6_8·a_3_3·a_5_5 − b_6_7·c_6_92 − b_6_7·c_6_82
       + a_6_6·c_6_92 + a_6_6·c_6_82 + a_6_4·c_6_92 + a_6_4·c_6_82 + a_6_3·c_6_92
       + a_6_3·c_6_82 + c_6_92·a_1_0·a_5_6 + c_6_82·a_1_0·a_5_6 − a_2_2·a_4_2·c_6_92
       − a_2_2·a_4_2·c_6_82
  27. a_19_6c_6_93·a_1_0 − c_6_83·a_1_1
  28. a_19_5c_6_93·a_1_1 + c_6_83·a_1_0
  29. a_20_6a_2_1·c_6_83 + a_2_0·c_6_93 − a_2_0·c_6_83
  30. a_20_5a_2_1·c_6_93 − a_2_0·c_6_93 − a_2_0·c_6_83
  31. a_22_1b_4_53·a_5_5·a_5_6 − b_4_53·a_3_3·a_7_10 − b_4_5·c_6_9·a_5_5·a_7_11
       − c_6_92·a_5_5·a_5_6 + c_6_92·a_3_3·a_7_10 − c_6_82·a_5_5·a_5_6
       + c_6_82·a_3_3·a_7_10 − a_2_1·a_2_2·c_6_82·c_6_9 + a_2_0·a_2_2·c_6_8·c_6_92
       + a_2_0·a_2_2·c_6_82·c_6_9
  32. a_23_5c_6_93·a_5_3 − c_6_93·a_5_2 + c_6_83·a_5_4 − a_2_0·c_6_83·a_3_4
       + a_2_0·c_6_83·a_3_3
  33. a_23_4c_6_93·a_5_4 − c_6_83·a_5_3 + c_6_83·a_5_2 − a_2_0·c_6_83·a_3_3
  34. a_23_1b_4_54·a_7_10 − b_4_53·c_6_8·a_5_6 + b_4_53·c_6_8·a_5_5 − b_4_53·c_6_8·a_5_2
       − b_4_5·c_6_9·a_3_3·a_5_5·a_5_6 − b_4_5·c_6_8·a_3_3·a_5_5·a_5_6
       + b_4_5·c_6_8·c_6_9·a_7_11 + b_4_5·c_6_8·c_6_9·a_7_10 − b_4_5·c_6_82·a_7_10
       + a_6_4·c_6_92·a_5_6 + a_6_4·c_6_8·c_6_9·a_5_6 + c_6_93·a_5_5 + c_6_8·c_6_92·a_5_6
       − c_6_8·c_6_92·a_5_5 + c_6_8·c_6_92·a_5_2 + c_6_82·c_6_9·a_5_5 − c_6_82·c_6_9·a_5_3
       + c_6_82·c_6_9·a_5_2 + c_6_83·a_5_6 − c_6_83·a_5_5 + c_6_83·a_5_4 + c_6_83·a_5_2
       + a_2_0·c_6_8·c_6_92·a_3_4 − a_2_0·c_6_82·c_6_9·a_3_4 + a_2_0·c_6_82·c_6_9·a_3_3
       + a_2_0·c_6_83·a_3_4 − a_2_0·c_6_83·a_3_3
  35. a_23_0b_4_54·a_7_11 + b_4_53·c_6_8·a_5_6 + b_4_53·c_6_8·a_5_2
       − b_4_5·c_6_9·a_3_3·a_5_5·a_5_6 − b_4_5·c_6_8·a_3_3·a_5_5·a_5_6
       − b_4_5·c_6_8·c_6_9·a_7_11 + b_4_5·c_6_8·c_6_9·a_7_10 − b_4_5·c_6_82·a_7_11
       + a_6_4·c_6_92·a_5_6 + a_6_4·c_6_8·c_6_9·a_5_6 + a_6_4·c_6_82·a_5_6 + c_6_93·a_5_6
       + c_6_93·a_5_5 + c_6_93·a_5_2 − c_6_8·c_6_92·a_5_6 + c_6_8·c_6_92·a_5_3
       + c_6_8·c_6_92·a_5_2 + c_6_82·c_6_9·a_5_6 + c_6_82·c_6_9·a_5_5 + c_6_82·c_6_9·a_5_3
       − c_6_83·a_5_6 − c_6_83·a_5_4 + c_6_83·a_5_3 + c_6_83·a_5_2
       − a_2_0·c_6_8·c_6_92·a_3_4 − a_2_0·c_6_8·c_6_92·a_3_3 + a_2_0·c_6_82·c_6_9·a_3_4
       + a_2_0·c_6_82·c_6_9·a_3_3 + a_2_0·c_6_83·a_3_3
  36. a_24_8a_6_5·c_6_83 − a_6_4·c_6_83 + a_6_3·c_6_93 − c_6_93·a_1_0·a_5_6
       + c_6_83·a_1_0·a_5_6 − a_2_2·a_4_3·c_6_93 + a_2_2·a_4_3·c_6_83
       − a_2_2·a_4_2·c_6_83
  37. a_24_7a_6_5·c_6_93 − a_6_4·c_6_93 − a_6_3·c_6_83 + c_6_93·a_1_0·a_5_6
       + c_6_83·a_1_0·a_5_6 + a_2_2·a_4_3·c_6_93 + a_2_2·a_4_3·c_6_83
       − a_2_2·a_4_2·c_6_93
  38. a_24_6b_4_52·c_6_9·a_3_3·a_7_10 + b_4_52·c_6_8·a_3_3·a_7_11 + b_4_52·c_6_8·a_3_3·a_7_10
       + a_6_6·c_6_83 + a_6_4·c_6_93 + a_6_4·c_6_83 − a_6_3·c_6_93 − a_6_3·c_6_83
       − a_2_2·a_4_3·c_6_93 + a_2_2·a_4_3·c_6_83 + a_2_2·a_4_2·c_6_93
  39. a_24_5b_4_52·c_6_9·a_3_3·a_7_11 − b_4_52·c_6_8·a_3_3·a_7_11 + b_4_52·c_6_8·a_3_3·a_7_10
       + a_6_6·c_6_93 − a_6_6·c_6_83 + a_6_4·c_6_83 − a_6_3·c_6_83
       − a_2_2·a_4_3·c_6_93 − a_2_2·a_4_2·c_6_93 − a_2_2·a_4_2·c_6_83
  40. c_24_4b_4_53·b_6_7·c_6_9 + b_4_52·c_6_8·a_3_3·a_7_11 − b_4_52·c_6_8·a_3_3·a_7_10
       + b_4_53·c_6_82 + b_4_5·c_6_8·c_6_9·a_3_3·a_5_6 + b_4_5·c_6_8·c_6_9·a_3_3·a_5_5
       + b_4_5·c_6_82·a_3_3·a_5_6 − b_4_5·c_6_82·a_3_3·a_5_5 − b_6_7·c_6_93
       − b_6_7·c_6_82·c_6_9 − a_6_6·c_6_93 − a_6_6·c_6_8·c_6_92 − a_6_6·c_6_82·c_6_9
       − a_6_6·c_6_83 − a_6_5·c_6_8·c_6_92 + a_6_5·c_6_82·c_6_9 − a_6_4·c_6_93
       + a_6_4·c_6_8·c_6_92 + a_6_4·c_6_82·c_6_9 + a_6_3·c_6_93 − a_6_3·c_6_8·c_6_92
       − c_6_82·c_6_9·a_1_0·a_5_6 + a_2_2·a_4_3·c_6_93 + a_2_2·a_4_3·c_6_8·c_6_92
       + a_2_2·a_4_3·c_6_83 − a_2_2·a_4_2·c_6_8·c_6_92 − a_2_2·a_4_2·c_6_82·c_6_9
       + a_2_2·a_4_2·c_6_83 + c_6_94 − c_6_82·c_6_92 + c_6_84
  41. a_25_5b_4_53·c_6_9·a_7_10 + b_4_53·c_6_8·a_7_11 + b_4_53·c_6_8·a_7_10
       − b_4_5·c_6_9·a_3_3·a_5_5·a_7_11 − b_4_5·c_6_8·a_3_3·a_5_5·a_7_11 + c_6_93·a_7_10
       − c_6_93·a_7_9 + c_6_93·a_7_8 + c_6_83·a_7_11 + c_6_83·a_7_10 − c_6_83·a_7_9
       − c_6_83·a_7_8 − b_4_5·c_6_93·a_3_3 − b_4_5·c_6_83·a_3_3 − a_2_0·c_6_93·a_5_5
       + a_2_0·c_6_93·a_5_4 + a_2_0·c_6_83·a_5_6 + a_2_0·c_6_83·a_5_5 + a_2_0·c_6_83·a_5_4
       − c_6_94·a_1_1 − c_6_94·a_1_0 + c_6_8·c_6_93·a_1_0 − c_6_83·c_6_9·a_1_1
       + c_6_83·c_6_9·a_1_0 − c_6_84·a_1_1
  42. a_25_4b_4_53·c_6_9·a_7_11 − b_4_53·c_6_8·a_7_11 + b_4_53·c_6_8·a_7_10
       + b_4_5·c_6_9·a_3_3·a_5_5·a_7_11 − b_4_5·c_6_8·a_3_3·a_5_5·a_7_11
       + c_6_92·a_3_3·a_5_5·a_5_6 + c_6_82·a_3_3·a_5_5·a_5_6 + c_6_93·a_7_11
       + c_6_93·a_7_8 − c_6_83·a_7_11 + c_6_83·a_7_10 − c_6_83·a_7_9 − b_4_5·c_6_83·a_3_3
       + a_2_0·c_6_93·a_5_6 − a_2_0·c_6_93·a_5_5 − a_2_0·c_6_83·a_5_6 + a_2_0·c_6_83·a_5_4
       − c_6_94·a_1_0 − c_6_8·c_6_93·a_1_1 − c_6_8·c_6_93·a_1_0 − c_6_83·c_6_9·a_1_1
       + c_6_84·a_1_1 − c_6_84·a_1_0
  43. a_27_9a_2_0·c_6_83·a_7_8 + c_6_94·a_3_2 + c_6_8·c_6_93·a_3_2 − c_6_8·c_6_93·a_3_1
       + c_6_83·c_6_9·a_3_2 − c_6_83·c_6_9·a_3_1 − c_6_84·a_3_2 + a_2_0·c_6_84·a_1_0
  44. a_27_8a_2_0·c_6_83·a_7_9 + c_6_94·a_3_2 − c_6_94·a_3_1 − c_6_8·c_6_93·a_3_2
       − c_6_83·c_6_9·a_3_2 − c_6_84·a_3_2 + c_6_84·a_3_1 − a_2_0·c_6_83·c_6_9·a_1_0
  45. a_28_10a_4_4·c_6_84 − a_4_3·c_6_8·c_6_93 − a_4_3·c_6_83·c_6_9 + a_4_2·c_6_94
       − a_2_1·a_2_2·c_6_94 − a_2_1·a_2_2·c_6_8·c_6_93 − a_2_1·a_2_2·c_6_83·c_6_9
       − a_2_1·a_2_2·c_6_84 + a_2_0·a_2_2·c_6_94 − a_2_0·a_2_2·c_6_8·c_6_93
       − a_2_0·a_2_2·c_6_83·c_6_9
  46. a_28_9a_4_4·c_6_83·c_6_9 − a_4_3·c_6_94 + a_4_3·c_6_84 − a_4_2·c_6_8·c_6_93
       − a_2_1·a_2_2·c_6_94 + a_2_1·a_2_2·c_6_8·c_6_93 − a_2_1·a_2_2·c_6_83·c_6_9
       + a_2_1·a_2_2·c_6_84 − a_2_0·a_2_2·c_6_94 − a_2_0·a_2_2·c_6_8·c_6_93
       + a_2_0·a_2_2·c_6_84
  47. a_28_8a_4_4·c_6_8·c_6_93 − a_4_3·c_6_94 + a_4_3·c_6_84 − a_4_2·c_6_83·c_6_9
       − a_2_1·a_2_2·c_6_94 − a_2_1·a_2_2·c_6_8·c_6_93 + a_2_1·a_2_2·c_6_83·c_6_9
       + a_2_1·a_2_2·c_6_84 − a_2_0·a_2_2·c_6_94 − a_2_0·a_2_2·c_6_83·c_6_9
       + a_2_0·a_2_2·c_6_84
  48. a_28_7a_4_4·c_6_94 + a_4_3·c_6_8·c_6_93 + a_4_3·c_6_83·c_6_9 + a_4_2·c_6_84
       − a_2_1·a_2_2·c_6_94 + a_2_1·a_2_2·c_6_8·c_6_93 + a_2_1·a_2_2·c_6_83·c_6_9
       − a_2_1·a_2_2·c_6_84 + a_2_0·a_2_2·c_6_8·c_6_93 + a_2_0·a_2_2·c_6_83·c_6_9
       + a_2_0·a_2_2·c_6_84
  49. a_29_7b_4_55·c_6_8·a_3_3 + b_4_52·c_6_83·a_3_3 − c_6_8·c_6_93·a_5_2
       + c_6_83·c_6_9·a_5_2 + a_2_0·c_6_8·c_6_93·a_3_4 − a_2_0·c_6_83·c_6_9·a_3_4
  50. a_29_6b_4_55·c_6_9·a_3_3 + b_4_53·c_6_92·a_5_2 + b_4_53·c_6_82·a_5_2
       + b_4_52·c_6_93·a_3_3 + c_6_94·a_5_2 + c_6_84·a_5_2 − a_2_0·c_6_94·a_3_4
       − a_2_0·c_6_84·a_3_4
  51. b_30_5b_4_56·c_6_8 + b_4_54·c_6_8·a_3_3·a_5_6 − b_4_52·c_6_8·c_6_9·a_3_3·a_7_11
       + b_4_52·c_6_8·c_6_9·a_3_3·a_7_10 − b_4_52·c_6_82·a_3_3·a_7_11 + b_4_53·c_6_83
       − b_4_5·c_6_8·c_6_92·a_3_3·a_5_6 + b_4_5·c_6_82·c_6_9·a_3_3·a_5_6
       + b_4_5·c_6_82·c_6_9·a_3_3·a_5_5 + b_4_5·c_6_83·a_3_3·a_5_6
       + b_4_5·c_6_83·a_3_3·a_5_5 − b_6_7·c_6_8·c_6_93 + b_6_7·c_6_83·c_6_9
       + a_6_6·c_6_8·c_6_93 − a_6_6·c_6_83·c_6_9 + a_6_4·c_6_8·c_6_93
       − a_6_4·c_6_83·c_6_9 + a_6_3·c_6_8·c_6_93 − a_6_3·c_6_83·c_6_9
       + c_6_8·c_6_93·a_1_0·a_5_6 − c_6_83·c_6_9·a_1_0·a_5_6 − a_2_2·a_4_2·c_6_8·c_6_93
       + a_2_2·a_4_2·c_6_83·c_6_9
  52. b_30_4b_4_56·c_6_9 + b_4_54·c_6_9·a_3_3·a_5_6 − b_4_54·c_6_9·a_3_3·a_5_5
       − b_4_54·c_6_8·a_3_3·a_5_6 + b_4_54·c_6_8·a_3_3·a_5_5 + b_4_53·b_6_7·c_6_92
       + b_4_53·b_6_7·c_6_82 − b_4_52·c_6_92·a_3_3·a_7_11
       − b_4_52·c_6_92·a_3_3·a_7_10 + b_4_52·c_6_8·c_6_9·a_3_3·a_7_10 + b_4_53·c_6_93
       + b_4_5·c_6_93·a_3_3·a_5_6 − b_4_5·c_6_93·a_3_3·a_5_5
       + b_4_5·c_6_8·c_6_92·a_3_3·a_5_5 − b_4_5·c_6_82·c_6_9·a_3_3·a_5_6
       + b_4_5·c_6_82·c_6_9·a_3_3·a_5_5 + b_4_5·c_6_83·a_3_3·a_5_6
       − b_4_5·c_6_83·a_3_3·a_5_5 + b_6_7·c_6_94 + b_6_7·c_6_84 − a_6_6·c_6_94
       − a_6_6·c_6_84 − a_6_4·c_6_94 − a_6_4·c_6_84 − a_6_3·c_6_94 − a_6_3·c_6_84
       − c_6_82·c_6_92·a_1_0·a_5_6 − a_2_2·a_4_3·c_6_82·c_6_92 − a_2_2·a_4_3·c_6_84
       − a_2_2·a_4_2·c_6_94 − a_2_2·a_4_2·c_6_8·c_6_93 − a_2_2·a_4_2·c_6_82·c_6_92
       − a_2_2·a_4_2·c_6_83·c_6_9 − a_2_2·a_4_2·c_6_84
  53. a_34_7b_4_54·c_6_8·a_5_5·a_7_11 + b_4_5·c_6_83·a_5_5·a_7_11 + c_6_8·c_6_93·a_5_5·a_5_6
       − c_6_8·c_6_93·a_3_3·a_7_10 − c_6_83·c_6_9·a_5_5·a_5_6 + c_6_83·c_6_9·a_3_3·a_7_10
       − a_2_1·a_2_2·c_6_85 − a_2_0·a_2_2·c_6_95 + a_2_0·a_2_2·c_6_85
  54. a_34_6b_4_54·c_6_9·a_5_5·a_7_11 − b_4_53·c_6_92·a_5_5·a_5_6
       + b_4_53·c_6_92·a_3_3·a_7_10 − b_4_53·c_6_82·a_5_5·a_5_6
       + b_4_53·c_6_82·a_3_3·a_7_10 + b_4_5·c_6_93·a_5_5·a_7_11 − c_6_94·a_5_5·a_5_6
       + c_6_94·a_3_3·a_7_10 − c_6_84·a_5_5·a_5_6 + c_6_84·a_3_3·a_7_10
       − a_2_1·a_2_2·c_6_82·c_6_93 + a_2_0·a_2_2·c_6_82·c_6_93
       + a_2_0·a_2_2·c_6_83·c_6_92
  55. a_35_8b_4_56·c_6_8·a_5_5 − b_4_54·c_6_8·a_3_3·a_5_5·a_5_6 + b_4_54·c_6_8·c_6_9·a_7_10
       + b_4_54·c_6_82·a_7_11 + b_4_54·c_6_82·a_7_10
       − b_4_52·c_6_8·c_6_9·a_3_3·a_5_5·a_7_11 + b_4_52·c_6_82·a_3_3·a_5_5·a_7_11
       + b_4_53·c_6_83·a_5_5 − b_4_5·c_6_82·c_6_9·a_3_3·a_5_5·a_5_6
       + b_4_5·c_6_83·a_3_3·a_5_5·a_5_6 − b_4_5·c_6_8·c_6_93·a_7_10
       − b_4_5·c_6_83·c_6_9·a_7_10 + b_4_5·c_6_84·a_7_11 + b_4_5·c_6_84·a_7_10
       − a_6_4·c_6_8·c_6_93·a_5_6 + a_6_4·c_6_82·c_6_92·a_5_6 − a_6_4·c_6_83·c_6_9·a_5_6
       + a_6_4·c_6_84·a_5_6 + c_6_8·c_6_94·a_5_5 − c_6_8·c_6_94·a_5_3 + c_6_8·c_6_94·a_5_2
       + c_6_82·c_6_93·a_5_6 − c_6_82·c_6_93·a_5_5 + c_6_82·c_6_93·a_5_2
       − c_6_83·c_6_92·a_5_5 + c_6_83·c_6_92·a_5_3 − c_6_83·c_6_92·a_5_2
       − c_6_84·c_6_9·a_5_6 + c_6_84·c_6_9·a_5_5 − c_6_84·c_6_9·a_5_2
       − a_2_0·c_6_8·c_6_94·a_3_4 − a_2_0·c_6_82·c_6_93·a_3_4
       + a_2_0·c_6_83·c_6_92·a_3_3 − a_2_0·c_6_84·c_6_9·a_3_4 − a_2_0·c_6_84·c_6_9·a_3_3
       − a_2_0·c_6_85·a_3_4
  56. a_35_7b_4_56·c_6_8·a_5_6 + b_4_56·c_6_8·a_5_2 + b_4_54·c_6_8·a_3_3·a_5_5·a_5_6
       + b_4_54·c_6_8·c_6_9·a_7_11 − b_4_54·c_6_8·c_6_9·a_7_10 + b_4_54·c_6_82·a_7_11
       + b_4_52·c_6_8·c_6_9·a_3_3·a_5_5·a_7_11 + b_4_52·c_6_82·a_3_3·a_5_5·a_7_11
       + b_4_53·c_6_83·a_5_6 + b_4_53·c_6_83·a_5_2
       + b_4_5·c_6_82·c_6_9·a_3_3·a_5_5·a_5_6 − b_4_5·c_6_83·a_3_3·a_5_5·a_5_6
       − b_4_5·c_6_8·c_6_93·a_7_11 + b_4_5·c_6_8·c_6_93·a_7_10
       − b_4_5·c_6_83·c_6_9·a_7_11 + b_4_5·c_6_83·c_6_9·a_7_10 + b_4_5·c_6_84·a_7_11
       + a_6_4·c_6_8·c_6_93·a_5_6 − a_6_4·c_6_82·c_6_92·a_5_6 + a_6_4·c_6_83·c_6_9·a_5_6
       + c_6_8·c_6_94·a_5_6 − c_6_8·c_6_94·a_5_3 − c_6_8·c_6_94·a_5_2
       + c_6_82·c_6_93·a_5_6 + c_6_82·c_6_93·a_5_5 + c_6_82·c_6_93·a_5_3
       − c_6_83·c_6_92·a_5_6 + c_6_83·c_6_92·a_5_3 + c_6_83·c_6_92·a_5_2
       − c_6_84·c_6_9·a_5_6 − c_6_84·c_6_9·a_5_5 − c_6_84·c_6_9·a_5_3
       − a_2_0·c_6_8·c_6_94·a_3_4 − a_2_0·c_6_8·c_6_94·a_3_3 + a_2_0·c_6_82·c_6_93·a_3_3
       + a_2_0·c_6_83·c_6_92·a_3_3 − a_2_0·c_6_84·c_6_9·a_3_4 − a_2_0·c_6_84·c_6_9·a_3_3
       + a_2_0·c_6_85·a_3_4 + a_2_0·c_6_85·a_3_3
  57. a_35_5b_4_56·c_6_9·a_5_5 + b_4_54·c_6_8·a_3_3·a_5_5·a_5_6 − b_4_54·c_6_92·a_7_10
       + b_4_54·c_6_8·c_6_9·a_7_11 + b_4_54·c_6_8·c_6_9·a_7_10 + b_4_54·c_6_82·a_7_10
       − b_4_53·c_6_8·c_6_92·a_5_6 + b_4_53·c_6_8·c_6_92·a_5_5
       − b_4_53·c_6_8·c_6_92·a_5_2 − b_4_53·c_6_82·c_6_9·a_5_5 − b_4_53·c_6_83·a_5_6
       + b_4_53·c_6_83·a_5_5 − b_4_53·c_6_83·a_5_2 + b_4_5·c_6_93·a_3_3·a_5_5·a_5_6
       − b_4_5·c_6_83·a_3_3·a_5_5·a_5_6 − b_4_5·c_6_94·a_7_10 + b_4_5·c_6_8·c_6_93·a_7_11
       + b_4_5·c_6_8·c_6_93·a_7_10 + b_4_5·c_6_84·a_7_10 − a_6_4·c_6_94·a_5_6
       − a_6_4·c_6_8·c_6_93·a_5_6 − a_6_4·c_6_83·c_6_9·a_5_6 + a_6_4·c_6_84·a_5_6
       − c_6_95·a_5_5 − c_6_8·c_6_94·a_5_6 + c_6_8·c_6_94·a_5_5 − c_6_8·c_6_94·a_5_4
       − c_6_8·c_6_94·a_5_2 + c_6_82·c_6_93·a_5_3 − c_6_82·c_6_93·a_5_2
       + c_6_83·c_6_92·a_5_4 − c_6_84·c_6_9·a_5_5 − c_6_85·a_5_6 + c_6_85·a_5_5
       − c_6_85·a_5_4 − c_6_85·a_5_2 − a_2_0·c_6_8·c_6_94·a_3_4 − a_2_0·c_6_8·c_6_94·a_3_3
       − a_2_0·c_6_82·c_6_93·a_3_4 + a_2_0·c_6_82·c_6_93·a_3_3
       + a_2_0·c_6_84·c_6_9·a_3_4 − a_2_0·c_6_84·c_6_9·a_3_3 + a_2_0·c_6_85·a_3_4
  58. a_35_4b_4_56·c_6_9·a_5_6 + b_4_54·c_6_8·a_3_3·a_5_5·a_5_6 − b_4_54·c_6_92·a_7_11
       + b_4_54·c_6_92·a_7_10 + b_4_54·c_6_8·c_6_9·a_7_11 + b_4_54·c_6_82·a_7_11
       − b_4_54·c_6_82·a_7_10 − b_4_55·c_6_82·a_3_3 − b_4_52·c_6_92·a_3_3·a_5_5·a_7_11
       + b_4_53·c_6_93·a_5_2 − b_4_53·c_6_8·c_6_92·a_5_6 − b_4_53·c_6_8·c_6_92·a_5_5
       − b_4_53·c_6_8·c_6_92·a_5_2 − b_4_53·c_6_82·c_6_9·a_5_6 − b_4_53·c_6_83·a_5_6
       − b_4_53·c_6_83·a_5_5 − b_4_53·c_6_83·a_5_2
       + b_4_5·c_6_82·c_6_9·a_3_3·a_5_5·a_5_6 + b_4_5·c_6_83·a_3_3·a_5_5·a_5_6
       − b_4_5·c_6_94·a_7_11 + b_4_5·c_6_94·a_7_10 + b_4_5·c_6_8·c_6_93·a_7_11
       + b_4_5·c_6_84·a_7_11 − b_4_5·c_6_84·a_7_10 − b_4_52·c_6_94·a_3_3
       + b_4_52·c_6_82·c_6_92·a_3_3 − b_4_52·c_6_84·a_3_3 − a_6_4·c_6_94·a_5_6
       − a_6_4·c_6_8·c_6_93·a_5_6 − a_6_4·c_6_82·c_6_92·a_5_6 + a_6_4·c_6_83·c_6_9·a_5_6
       − c_6_95·a_5_6 − c_6_95·a_5_2 − c_6_8·c_6_94·a_5_6 − c_6_8·c_6_94·a_5_5
       − c_6_8·c_6_94·a_5_4 − c_6_8·c_6_94·a_5_3 + c_6_82·c_6_93·a_5_3
       − c_6_82·c_6_93·a_5_2 + c_6_83·c_6_92·a_5_4 − c_6_84·c_6_9·a_5_6
       − c_6_84·c_6_9·a_5_2 − c_6_85·a_5_6 − c_6_85·a_5_5 − c_6_85·a_5_4 − c_6_85·a_5_3
       − a_2_0·c_6_8·c_6_94·a_3_4 − a_2_0·c_6_8·c_6_94·a_3_3 + a_2_0·c_6_82·c_6_93·a_3_4
       − a_2_0·c_6_82·c_6_93·a_3_3 + a_2_0·c_6_84·c_6_9·a_3_4 − a_2_0·c_6_85·a_3_3
  59. c_36_11b_4_56·c_6_82 − b_4_54·c_6_92·a_3_3·a_5_6 + b_4_54·c_6_8·c_6_9·a_3_3·a_5_6
       + b_4_54·c_6_8·c_6_9·a_3_3·a_5_5 + b_4_54·c_6_82·a_3_3·a_5_5
       − b_4_53·b_6_7·c_6_93 + b_4_53·b_6_7·c_6_82·c_6_9 − b_4_52·c_6_93·a_3_3·a_7_11
       − b_4_52·c_6_82·c_6_9·a_3_3·a_7_11 − b_4_52·c_6_82·c_6_9·a_3_3·a_7_10
       + b_4_52·c_6_83·a_3_3·a_7_11 − b_4_53·c_6_84 − b_4_5·c_6_94·a_3_3·a_5_6
       − b_4_5·c_6_8·c_6_93·a_3_3·a_5_6 − b_4_5·c_6_8·c_6_93·a_3_3·a_5_5
       − b_4_5·c_6_83·c_6_9·a_3_3·a_5_6 − b_4_5·c_6_83·c_6_9·a_3_3·a_5_5
       + b_4_5·c_6_84·a_3_3·a_5_5 − b_6_7·c_6_82·c_6_93 + b_6_7·c_6_84·c_6_9
       + a_6_6·c_6_95 − a_6_6·c_6_8·c_6_94 + a_6_6·c_6_82·c_6_93
       + a_6_6·c_6_83·c_6_92 − a_6_6·c_6_84·c_6_9 + a_6_6·c_6_85
       + a_6_5·c_6_82·c_6_93 − a_6_5·c_6_84·c_6_9 − a_6_5·c_6_85 − a_6_4·c_6_95
       − a_6_4·c_6_82·c_6_93 + a_6_4·c_6_84·c_6_9 + a_6_4·c_6_85 + a_6_3·c_6_8·c_6_94
       − a_6_3·c_6_83·c_6_92 + c_6_95·a_1_0·a_5_6 − c_6_8·c_6_94·a_1_0·a_5_6
       + c_6_82·c_6_93·a_1_0·a_5_6 + c_6_83·c_6_92·a_1_0·a_5_6
       − c_6_84·c_6_9·a_1_0·a_5_6 − c_6_85·a_1_0·a_5_6 + a_2_2·a_4_3·c_6_95
       − a_2_2·a_4_3·c_6_82·c_6_93 + a_2_2·a_4_3·c_6_84·c_6_9 + a_2_2·a_4_3·c_6_85
       + a_2_2·a_4_2·c_6_95 + a_2_2·a_4_2·c_6_8·c_6_94 + a_2_2·a_4_2·c_6_82·c_6_93
       − a_2_2·a_4_2·c_6_83·c_6_92 − a_2_2·a_4_2·c_6_84·c_6_9 + c_6_96
       + c_6_82·c_6_94 + c_6_84·c_6_92 + c_6_86
  60. c_36_5b_4_56·b_6_7·c_6_8 + b_4_56·c_6_8·c_6_9 + b_4_54·c_6_92·a_3_3·a_5_6
       + b_4_54·c_6_92·a_3_3·a_5_5 + b_4_54·c_6_8·c_6_9·a_3_3·a_5_5
       + b_4_54·c_6_82·a_3_3·a_5_6 + b_4_54·c_6_82·a_3_3·a_5_5
       − b_4_53·b_6_7·c_6_8·c_6_92 − b_4_52·c_6_93·a_3_3·a_7_11
       + b_4_52·c_6_8·c_6_92·a_3_3·a_7_11 + b_4_52·c_6_8·c_6_92·a_3_3·a_7_10
       + b_4_52·c_6_83·a_3_3·a_7_11 − b_4_52·c_6_83·a_3_3·a_7_10
       + b_4_53·c_6_8·c_6_93 + b_4_5·c_6_94·a_3_3·a_5_6 + b_4_5·c_6_94·a_3_3·a_5_5
       − b_4_5·c_6_8·c_6_93·a_3_3·a_5_5 − b_4_5·c_6_83·c_6_9·a_3_3·a_5_6
       − b_4_5·c_6_84·a_3_3·a_5_6 − b_4_5·c_6_84·a_3_3·a_5_5 − b_6_7·c_6_8·c_6_94
       − b_6_7·c_6_85 − a_6_6·c_6_95 + a_6_6·c_6_8·c_6_94 − a_6_6·c_6_82·c_6_93
       + a_6_6·c_6_83·c_6_92 − a_6_6·c_6_84·c_6_9 + a_6_6·c_6_85
       + a_6_5·c_6_82·c_6_93 + a_6_5·c_6_83·c_6_92 − a_6_4·c_6_82·c_6_93
       + a_6_4·c_6_83·c_6_92 + a_6_3·c_6_82·c_6_93 − c_6_83·c_6_92·a_1_0·a_5_6
       + a_2_2·a_4_3·c_6_95 + a_2_2·a_4_3·c_6_8·c_6_94 + a_2_2·a_4_3·c_6_82·c_6_93
       − a_2_2·a_4_3·c_6_83·c_6_92 + a_2_2·a_4_3·c_6_84·c_6_9 + a_2_2·a_4_3·c_6_85
       + a_2_2·a_4_2·c_6_95 − a_2_2·a_4_2·c_6_8·c_6_94 + a_2_2·a_4_2·c_6_84·c_6_9
       − a_2_2·a_4_2·c_6_85 − c_6_8·c_6_95 + c_6_85·c_6_9
  61. a_39_19c_6_96·a_3_1 + c_6_83·c_6_93·a_3_2 + c_6_83·c_6_93·a_3_1 − c_6_86·a_3_1
       − a_2_0·c_6_86·a_1_0
  62. a_39_18c_6_96·a_3_2 − c_6_83·c_6_93·a_3_2 + c_6_83·c_6_93·a_3_1 − c_6_86·a_3_2
       + a_2_0·c_6_83·c_6_93·a_1_0 + a_2_0·c_6_86·a_1_0
  63. a_40_16a_4_4·c_6_86 + a_4_3·c_6_83·c_6_93 + a_4_2·c_6_96 − a_2_1·a_2_2·c_6_96
       + a_2_1·a_2_2·c_6_83·c_6_93 − a_2_1·a_2_2·c_6_86 + a_2_0·a_2_2·c_6_96
       + a_2_0·a_2_2·c_6_83·c_6_93
  64. a_40_15a_4_4·c_6_83·c_6_93 − a_4_3·c_6_96 + a_4_3·c_6_86 − a_4_2·c_6_83·c_6_93
       − a_2_1·a_2_2·c_6_96 + a_2_1·a_2_2·c_6_86 − a_2_0·a_2_2·c_6_96
       − a_2_0·a_2_2·c_6_83·c_6_93 + a_2_0·a_2_2·c_6_86
  65. a_47_15b_4_57·c_6_8·c_6_9·a_7_10 + b_4_57·c_6_82·a_7_11 + b_4_57·c_6_82·a_7_10
       + b_4_55·c_6_8·c_6_9·a_3_3·a_5_5·a_7_11 − b_4_54·c_6_8·c_6_92·a_3_3·a_5_5·a_5_6
       − b_4_54·c_6_83·a_3_3·a_5_5·a_5_6 + b_4_54·c_6_8·c_6_93·a_7_10
       + b_4_54·c_6_83·c_6_9·a_7_10 − b_4_54·c_6_84·a_7_11 − b_4_54·c_6_84·a_7_10
       − b_4_52·c_6_8·c_6_93·a_3_3·a_5_5·a_7_11
       + b_4_52·c_6_82·c_6_92·a_3_3·a_5_5·a_7_11 + b_4_52·c_6_84·a_3_3·a_5_5·a_7_11
       + b_4_53·c_6_8·c_6_94·a_5_5 + b_4_53·c_6_82·c_6_93·a_5_6
       − b_4_53·c_6_82·c_6_93·a_5_5 + b_4_53·c_6_82·c_6_93·a_5_2
       − b_4_53·c_6_83·c_6_92·a_5_5 − b_4_53·c_6_84·c_6_9·a_5_6
       + b_4_53·c_6_84·c_6_9·a_5_5 − b_4_53·c_6_84·c_6_9·a_5_2
       − b_4_5·c_6_8·c_6_94·a_3_3·a_5_5·a_5_6 − b_4_5·c_6_82·c_6_93·a_3_3·a_5_5·a_5_6
       + b_4_5·c_6_84·c_6_9·a_3_3·a_5_5·a_5_6 − b_4_5·c_6_85·a_3_3·a_5_5·a_5_6
       + b_4_5·c_6_83·c_6_93·a_7_10 + b_4_5·c_6_86·a_7_11 + b_4_5·c_6_86·a_7_10
       + a_6_4·c_6_8·c_6_95·a_5_6 − a_6_4·c_6_82·c_6_94·a_5_6
       + a_6_4·c_6_83·c_6_93·a_5_6 − a_6_4·c_6_84·c_6_92·a_5_6
       − a_6_4·c_6_85·c_6_9·a_5_6 + a_6_4·c_6_86·a_5_6 + c_6_8·c_6_96·a_5_5
       + c_6_82·c_6_95·a_5_4 − c_6_83·c_6_94·a_5_5 + c_6_83·c_6_94·a_5_3
       − c_6_83·c_6_94·a_5_2 + c_6_84·c_6_93·a_5_6 − c_6_84·c_6_93·a_5_5
       + c_6_84·c_6_93·a_5_2 − c_6_85·c_6_92·a_5_3 + c_6_85·c_6_92·a_5_2
       − c_6_86·c_6_9·a_5_6 + c_6_86·c_6_9·a_5_5 − c_6_86·c_6_9·a_5_4 − c_6_86·c_6_9·a_5_2
       − a_2_0·c_6_82·c_6_95·a_3_4 − a_2_0·c_6_82·c_6_95·a_3_3
       + a_2_0·c_6_83·c_6_94·a_3_4 − a_2_0·c_6_83·c_6_94·a_3_3
       − a_2_0·c_6_84·c_6_93·a_3_3 + a_2_0·c_6_85·c_6_92·a_3_4
       − a_2_0·c_6_85·c_6_92·a_3_3 − a_2_0·c_6_86·c_6_9·a_3_4 + a_2_0·c_6_86·c_6_9·a_3_3
       − a_2_0·c_6_87·a_3_4
  66. a_47_14b_4_57·c_6_8·c_6_9·a_7_11 − b_4_57·c_6_82·a_7_11 + b_4_57·c_6_82·a_7_10
       + b_4_54·c_6_93·a_3_3·a_5_5·a_5_6 − b_4_54·c_6_82·c_6_9·a_3_3·a_5_5·a_5_6
       + b_4_54·c_6_8·c_6_93·a_7_11 + b_4_54·c_6_83·c_6_9·a_7_11
       + b_4_54·c_6_84·a_7_11 − b_4_54·c_6_84·a_7_10
       − b_4_52·c_6_84·a_3_3·a_5_5·a_7_11 + b_4_53·c_6_8·c_6_94·a_5_6
       + b_4_53·c_6_8·c_6_94·a_5_5 + b_4_53·c_6_8·c_6_94·a_5_2
       − b_4_53·c_6_82·c_6_93·a_5_6 − b_4_53·c_6_82·c_6_93·a_5_2
       − b_4_53·c_6_83·c_6_92·a_5_6 − b_4_53·c_6_83·c_6_92·a_5_5
       − b_4_53·c_6_83·c_6_92·a_5_2 + b_4_53·c_6_84·c_6_9·a_5_6
       + b_4_53·c_6_84·c_6_9·a_5_2 + b_4_5·c_6_82·c_6_93·a_3_3·a_5_5·a_5_6
       − b_4_5·c_6_84·c_6_9·a_3_3·a_5_5·a_5_6 + b_4_5·c_6_83·c_6_93·a_7_11
       − b_4_5·c_6_86·a_7_11 + b_4_5·c_6_86·a_7_10 + a_6_4·c_6_96·a_5_6
       + a_6_4·c_6_82·c_6_94·a_5_6 + a_6_4·c_6_84·c_6_92·a_5_6 − a_6_4·c_6_86·a_5_6
       + c_6_8·c_6_96·a_5_6 + c_6_8·c_6_96·a_5_5 + c_6_8·c_6_96·a_5_2
       − c_6_82·c_6_95·a_5_4 − c_6_83·c_6_94·a_5_6 − c_6_83·c_6_94·a_5_5
       − c_6_83·c_6_94·a_5_3 − c_6_84·c_6_93·a_5_6 + c_6_84·c_6_93·a_5_3
       + c_6_84·c_6_93·a_5_2 + c_6_85·c_6_92·a_5_3 − c_6_85·c_6_92·a_5_2
       + c_6_86·c_6_9·a_5_6 + c_6_86·c_6_9·a_5_4 − c_6_86·c_6_9·a_5_3 − c_6_86·c_6_9·a_5_2
       + a_2_0·c_6_82·c_6_95·a_3_4 − a_2_0·c_6_83·c_6_94·a_3_3
       + a_2_0·c_6_85·c_6_92·a_3_4 − a_2_0·c_6_85·c_6_92·a_3_3
       − a_2_0·c_6_86·c_6_9·a_3_4 − a_2_0·c_6_86·c_6_9·a_3_3 + a_2_0·c_6_87·a_3_3
  67. c_48_18b_4_57·c_6_8·c_6_9·a_3_3·a_5_6 + b_4_57·c_6_8·c_6_9·a_3_3·a_5_5
       + b_4_56·b_6_7·c_6_93 − b_4_56·b_6_7·c_6_82·c_6_9
       − b_4_55·c_6_82·c_6_9·a_3_3·a_7_11 − b_4_55·c_6_82·c_6_9·a_3_3·a_7_10
       + b_4_55·c_6_83·a_3_3·a_7_10 − b_4_54·c_6_94·a_3_3·a_5_6
       + b_4_54·c_6_94·a_3_3·a_5_5 + b_4_54·c_6_8·c_6_93·a_3_3·a_5_6
       − b_4_54·c_6_8·c_6_93·a_3_3·a_5_5 + b_4_54·c_6_82·c_6_92·a_3_3·a_5_6
       − b_4_54·c_6_82·c_6_92·a_3_3·a_5_5 + b_4_54·c_6_83·c_6_9·a_3_3·a_5_6
       − b_4_53·b_6_7·c_6_82·c_6_93 + b_4_53·b_6_7·c_6_84·c_6_9
       − b_4_52·c_6_8·c_6_94·a_3_3·a_7_11 + b_4_52·c_6_82·c_6_93·a_3_3·a_7_11
       + b_4_52·c_6_82·c_6_93·a_3_3·a_7_10 + b_4_52·c_6_83·c_6_92·a_3_3·a_7_11
       − b_4_52·c_6_85·a_3_3·a_7_10 − b_4_53·c_6_96 − b_4_53·c_6_82·c_6_94
       − b_4_53·c_6_84·c_6_92 − b_4_5·c_6_96·a_3_3·a_5_6 + b_4_5·c_6_96·a_3_3·a_5_5
       + b_4_5·c_6_82·c_6_94·a_3_3·a_5_6 − b_4_5·c_6_82·c_6_94·a_3_3·a_5_5
       + b_4_5·c_6_83·c_6_93·a_3_3·a_5_6 − b_4_5·c_6_83·c_6_93·a_3_3·a_5_5
       − b_4_5·c_6_85·c_6_9·a_3_3·a_5_5 + b_6_7·c_6_84·c_6_93 − b_6_7·c_6_86·c_6_9
       − a_6_6·c_6_97 − a_6_6·c_6_8·c_6_96 − a_6_6·c_6_82·c_6_95
       + a_6_6·c_6_83·c_6_94 + a_6_6·c_6_86·c_6_9 − a_6_5·c_6_84·c_6_93
       + a_6_5·c_6_86·c_6_9 − a_6_5·c_6_87 − a_6_4·c_6_97 + a_6_4·c_6_8·c_6_96
       − a_6_4·c_6_82·c_6_95 + a_6_4·c_6_83·c_6_94 + a_6_4·c_6_84·c_6_93
       + a_6_4·c_6_85·c_6_92 − a_6_4·c_6_87 + a_6_3·c_6_8·c_6_96
       + a_6_3·c_6_82·c_6_95 − a_6_3·c_6_85·c_6_92 − a_6_3·c_6_86·c_6_9
       − a_6_3·c_6_87 + c_6_97·a_1_0·a_5_6 + c_6_8·c_6_96·a_1_0·a_5_6
       − c_6_83·c_6_94·a_1_0·a_5_6 − c_6_84·c_6_93·a_1_0·a_5_6
       + c_6_86·c_6_9·a_1_0·a_5_6 − c_6_87·a_1_0·a_5_6 + a_2_2·a_4_3·c_6_8·c_6_96
       − a_2_2·a_4_3·c_6_82·c_6_95 − a_2_2·a_4_3·c_6_85·c_6_92
       + a_2_2·a_4_3·c_6_86·c_6_9 + a_2_2·a_4_3·c_6_87 − a_2_2·a_4_2·c_6_8·c_6_96
       + a_2_2·a_4_2·c_6_84·c_6_93 + a_2_2·a_4_2·c_6_85·c_6_92
       − a_2_2·a_4_2·c_6_86·c_6_9 − a_2_2·a_4_2·c_6_87 − c_6_82·c_6_96
       − c_6_84·c_6_94 − c_6_86·c_6_92
  68. c_48_13b_4_59·c_6_8·c_6_9 + b_4_56·b_6_7·c_6_93 + b_4_56·b_6_7·c_6_8·c_6_92
       − b_4_56·b_6_7·c_6_82·c_6_9 + b_4_56·b_6_7·c_6_83 − b_4_55·c_6_93·a_3_3·a_7_11
       − b_4_55·c_6_93·a_3_3·a_7_10 − b_4_55·c_6_8·c_6_92·a_3_3·a_7_11
       − b_4_55·c_6_8·c_6_92·a_3_3·a_7_10 − b_4_55·c_6_82·c_6_9·a_3_3·a_7_10
       + b_4_55·c_6_83·a_3_3·a_7_11 − b_4_55·c_6_83·a_3_3·a_7_10
       + b_4_56·c_6_8·c_6_93 + b_4_56·c_6_83·c_6_9
       − b_4_54·c_6_82·c_6_92·a_3_3·a_5_6 − b_4_54·c_6_83·c_6_9·a_3_3·a_5_5
       − b_4_54·c_6_84·a_3_3·a_5_5 − b_4_53·b_6_7·c_6_82·c_6_93
       − b_4_53·b_6_7·c_6_83·c_6_92 + b_4_53·b_6_7·c_6_84·c_6_9
       − b_4_53·b_6_7·c_6_85 + b_4_52·c_6_82·c_6_93·a_3_3·a_7_11
       + b_4_52·c_6_82·c_6_93·a_3_3·a_7_10 + b_4_52·c_6_85·a_3_3·a_7_11
       + b_4_52·c_6_85·a_3_3·a_7_10 − b_4_53·c_6_96 + b_4_53·c_6_8·c_6_95
       − b_4_53·c_6_82·c_6_94 + b_4_53·c_6_83·c_6_93 − b_4_53·c_6_84·c_6_92
       − b_4_53·c_6_85·c_6_9 − b_4_5·c_6_82·c_6_94·a_3_3·a_5_6
       + b_4_5·c_6_83·c_6_93·a_3_3·a_5_6 − b_4_5·c_6_85·c_6_9·a_3_3·a_5_6
       − b_4_5·c_6_85·c_6_9·a_3_3·a_5_5 − b_4_5·c_6_86·a_3_3·a_5_5 − b_6_7·c_6_8·c_6_96
       − b_6_7·c_6_83·c_6_94 + b_6_7·c_6_84·c_6_93 − b_6_7·c_6_86·c_6_9
       + b_6_7·c_6_87 + a_6_6·c_6_8·c_6_96 + a_6_6·c_6_82·c_6_95
       − a_6_6·c_6_83·c_6_94 + a_6_6·c_6_85·c_6_92 + a_6_6·c_6_86·c_6_9
       + a_6_5·c_6_84·c_6_93 − a_6_5·c_6_85·c_6_92 + a_6_5·c_6_86·c_6_9
       + a_6_4·c_6_8·c_6_96 − a_6_4·c_6_82·c_6_95 + a_6_4·c_6_85·c_6_92
       − a_6_4·c_6_86·c_6_9 − a_6_4·c_6_87 + a_6_3·c_6_8·c_6_96 − a_6_3·c_6_83·c_6_94
       − a_6_3·c_6_84·c_6_93 + a_6_3·c_6_87 + c_6_8·c_6_96·a_1_0·a_5_6
       + c_6_82·c_6_95·a_1_0·a_5_6 + c_6_83·c_6_94·a_1_0·a_5_6
       + c_6_84·c_6_93·a_1_0·a_5_6 − c_6_85·c_6_92·a_1_0·a_5_6
       + c_6_86·c_6_9·a_1_0·a_5_6 + a_2_2·a_4_3·c_6_8·c_6_96
       + a_2_2·a_4_3·c_6_82·c_6_95 + a_2_2·a_4_3·c_6_83·c_6_94
       + a_2_2·a_4_3·c_6_84·c_6_93 + a_2_2·a_4_3·c_6_85·c_6_92
       − a_2_2·a_4_3·c_6_86·c_6_9 − a_2_2·a_4_3·c_6_87 + a_2_2·a_4_2·c_6_82·c_6_95
       + a_2_2·a_4_2·c_6_83·c_6_94 + a_2_2·a_4_2·c_6_86·c_6_9 − a_2_2·a_4_2·c_6_87
       + c_6_8·c_6_97 − c_6_82·c_6_96 − c_6_83·c_6_95 − c_6_84·c_6_94
       + c_6_85·c_6_93 − c_6_86·c_6_92 − c_6_87·c_6_9

Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 2

  1. a_2_00, an element of degree 2
  2. a_3_10, an element of degree 3
  3. a_3_00, an element of degree 3
  4. b_4_00, an element of degree 4
  5. a_7_40, an element of degree 7
  6. a_7_30, an element of degree 7
  7. a_7_10, an element of degree 7
  8. a_7_00, an element of degree 7
  9. a_8_30, an element of degree 8
  10. a_8_20, an element of degree 8
  11. a_8_10, an element of degree 8
  12. a_11_30, an element of degree 11
  13. a_11_20, an element of degree 11
  14. a_12_50, an element of degree 12
  15. a_12_40, an element of degree 12
  16. a_12_30, an element of degree 12
  17. a_12_20, an element of degree 12
  18. a_13_10, an element of degree 13
  19. a_13_00, an element of degree 13
  20. a_15_50, an element of degree 15
  21. a_15_40, an element of degree 15
  22. a_16_60, an element of degree 16
  23. a_16_50, an element of degree 16
  24. a_16_40, an element of degree 16
  25. a_17_20, an element of degree 17
  26. b_18_0 − c_2_16·c_2_23, an element of degree 18
  27. a_19_60, an element of degree 19
  28. a_19_50, an element of degree 19
  29. a_20_60, an element of degree 20
  30. a_20_50, an element of degree 20
  31. a_22_10, an element of degree 22
  32. a_23_50, an element of degree 23
  33. a_23_40, an element of degree 23
  34. a_23_10, an element of degree 23
  35. a_23_00, an element of degree 23
  36. a_24_80, an element of degree 24
  37. a_24_70, an element of degree 24
  38. a_24_60, an element of degree 24
  39. a_24_50, an element of degree 24
  40. c_24_4c_2_112, an element of degree 24
  41. a_25_50, an element of degree 25
  42. a_25_40, an element of degree 25
  43. a_27_90, an element of degree 27
  44. a_27_80, an element of degree 27
  45. a_28_100, an element of degree 28
  46. a_28_90, an element of degree 28
  47. a_28_80, an element of degree 28
  48. a_28_70, an element of degree 28
  49. a_29_70, an element of degree 29
  50. a_29_60, an element of degree 29
  51. b_30_50, an element of degree 30
  52. b_30_4c_2_112·c_2_23, an element of degree 30
  53. a_34_70, an element of degree 34
  54. a_34_60, an element of degree 34
  55. a_35_80, an element of degree 35
  56. a_35_70, an element of degree 35
  57. a_35_50, an element of degree 35
  58. a_35_40, an element of degree 35
  59. c_36_11c_2_118, an element of degree 36
  60. c_36_5c_2_115·c_2_23, an element of degree 36
  61. a_39_190, an element of degree 39
  62. a_39_180, an element of degree 39
  63. a_40_160, an element of degree 40
  64. a_40_150, an element of degree 40
  65. a_47_150, an element of degree 47
  66. a_47_140, an element of degree 47
  67. c_48_180, an element of degree 48
  68. c_48_13 − c_2_121·c_2_23, an element of degree 48

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. a_2_00, an element of degree 2
  2. a_3_1 − c_2_5·a_1_2, an element of degree 3
  3. a_3_00, an element of degree 3
  4. b_4_00, an element of degree 4
  5. a_7_40, an element of degree 7
  6. a_7_30, an element of degree 7
  7. a_7_1c_2_52·a_1_0·a_1_1·a_1_2 − c_2_53·a_1_2, an element of degree 7
  8. a_7_0c_2_52·a_1_0·a_1_1·a_1_2 − c_2_53·a_1_1 + c_2_4·c_2_52·a_1_2, an element of degree 7
  9. a_8_30, an element of degree 8
  10. a_8_20, an element of degree 8
  11. a_8_1 − c_2_54, an element of degree 8
  12. a_11_3 − c_2_54·a_1_0·a_1_1·a_1_2 + c_2_55·a_1_1 − c_2_4·c_2_54·a_1_2 + c_2_3·c_2_54·a_1_1
       − c_2_3·c_2_4·c_2_53·a_1_2 − c_2_33·c_2_52·a_1_1 + c_2_33·c_2_4·c_2_5·a_1_2, an element of degree 11
  13. a_11_2c_2_55·a_1_2 + c_2_3·c_2_54·a_1_2 − c_2_33·c_2_52·a_1_2, an element of degree 11
  14. a_12_5c_2_55·a_1_1·a_1_2 − c_2_55·a_1_0·a_1_2 + c_2_3·c_2_54·a_1_1·a_1_2
       − c_2_3·c_2_54·a_1_0·a_1_2 − c_2_33·c_2_52·a_1_1·a_1_2
       + c_2_33·c_2_52·a_1_0·a_1_2, an element of degree 12
  15. a_12_4 − c_2_55·a_1_1·a_1_2 − c_2_3·c_2_54·a_1_1·a_1_2 + c_2_33·c_2_52·a_1_1·a_1_2, an element of degree 12
  16. a_12_3 − c_2_3·c_2_54·a_1_0·a_1_2 + c_2_33·c_2_52·a_1_0·a_1_2 + c_2_56 + c_2_3·c_2_55
       − c_2_33·c_2_53, an element of degree 12
  17. a_12_2 − c_2_3·c_2_54·a_1_0·a_1_2 + c_2_33·c_2_52·a_1_0·a_1_2 + c_2_56 + c_2_3·c_2_55
       − c_2_33·c_2_53, an element of degree 12
  18. a_13_1 − c_2_55·a_1_0·a_1_1·a_1_2 + c_2_3·c_2_54·a_1_0·a_1_1·a_1_2
       − c_2_33·c_2_52·a_1_0·a_1_1·a_1_2 + c_2_56·a_1_2 − c_2_56·a_1_1 + c_2_56·a_1_0
       + c_2_4·c_2_55·a_1_2 − c_2_3·c_2_55·a_1_1 + c_2_3·c_2_55·a_1_0
       + c_2_3·c_2_4·c_2_54·a_1_2 − c_2_32·c_2_54·a_1_2 − c_2_33·c_2_53·a_1_2
       + c_2_33·c_2_53·a_1_1 − c_2_33·c_2_53·a_1_0 − c_2_33·c_2_4·c_2_52·a_1_2
       + c_2_34·c_2_52·a_1_2, an element of degree 13
  19. a_13_0c_2_55·a_1_0·a_1_1·a_1_2 + c_2_3·c_2_54·a_1_0·a_1_1·a_1_2
       − c_2_33·c_2_52·a_1_0·a_1_1·a_1_2 − c_2_56·a_1_2 − c_2_3·c_2_55·a_1_2
       + c_2_33·c_2_53·a_1_2, an element of degree 13
  20. a_15_5 − c_2_57·a_1_2 + c_2_3·c_2_56·a_1_2 − c_2_32·c_2_55·a_1_2 − c_2_33·c_2_54·a_1_2
       − c_2_34·c_2_53·a_1_2 − c_2_36·c_2_5·a_1_2, an element of degree 15
  21. a_15_4 − c_2_57·a_1_2 + c_2_3·c_2_56·a_1_2 − c_2_32·c_2_55·a_1_2 − c_2_33·c_2_54·a_1_2
       − c_2_34·c_2_53·a_1_2 − c_2_36·c_2_5·a_1_2, an element of degree 15
  22. a_16_6c_2_57·a_1_0·a_1_2 + c_2_3·c_2_56·a_1_0·a_1_2 − c_2_33·c_2_54·a_1_0·a_1_2
       − c_2_58 + c_2_3·c_2_57 − c_2_32·c_2_56 − c_2_33·c_2_55 − c_2_34·c_2_54
       − c_2_36·c_2_52, an element of degree 16
  23. a_16_50, an element of degree 16
  24. a_16_40, an element of degree 16
  25. a_17_2 − c_2_58·a_1_2 + c_2_3·c_2_57·a_1_2 − c_2_32·c_2_56·a_1_2 − c_2_33·c_2_55·a_1_2
       − c_2_34·c_2_54·a_1_2 − c_2_36·c_2_52·a_1_2, an element of degree 17
  26. b_18_0 − c_2_58·a_1_0·a_1_2 + c_2_4·c_2_57·a_1_0·a_1_2 − c_2_43·c_2_55·a_1_0·a_1_2
       − c_2_3·c_2_57·a_1_0·a_1_2 + c_2_3·c_2_4·c_2_56·a_1_0·a_1_2
       − c_2_3·c_2_43·c_2_54·a_1_0·a_1_2 + c_2_33·c_2_55·a_1_0·a_1_2
       − c_2_33·c_2_4·c_2_54·a_1_0·a_1_2 + c_2_33·c_2_43·c_2_52·a_1_0·a_1_2 + c_2_59
       − c_2_4·c_2_58 + c_2_43·c_2_56 − c_2_3·c_2_58 + c_2_3·c_2_4·c_2_57
       − c_2_3·c_2_43·c_2_55 + c_2_32·c_2_57 − c_2_32·c_2_4·c_2_56
       + c_2_32·c_2_43·c_2_54 + c_2_33·c_2_56 − c_2_33·c_2_4·c_2_55
       + c_2_33·c_2_43·c_2_53 + c_2_34·c_2_55 − c_2_34·c_2_4·c_2_54
       + c_2_34·c_2_43·c_2_52 + c_2_36·c_2_53 − c_2_36·c_2_4·c_2_52
       + c_2_36·c_2_43, an element of degree 18
  27. a_19_60, an element of degree 19
  28. a_19_50, an element of degree 19
  29. a_20_60, an element of degree 20
  30. a_20_50, an element of degree 20
  31. a_22_1c_2_510·a_1_1·a_1_2 + c_2_510·a_1_0·a_1_2 − c_2_3·c_2_59·a_1_1·a_1_2
       − c_2_3·c_2_59·a_1_0·a_1_2 + c_2_32·c_2_58·a_1_1·a_1_2
       + c_2_32·c_2_58·a_1_0·a_1_2 + c_2_33·c_2_57·a_1_1·a_1_2
       + c_2_33·c_2_57·a_1_0·a_1_2 + c_2_34·c_2_56·a_1_1·a_1_2
       + c_2_34·c_2_56·a_1_0·a_1_2 + c_2_36·c_2_54·a_1_1·a_1_2
       + c_2_36·c_2_54·a_1_0·a_1_2, an element of degree 22
  32. a_23_5c_2_511·a_1_1 − c_2_4·c_2_510·a_1_2 + c_2_33·c_2_58·a_1_1
       − c_2_33·c_2_4·c_2_57·a_1_2 − c_2_39·c_2_52·a_1_1 + c_2_39·c_2_4·c_2_5·a_1_2, an element of degree 23
  33. a_23_4c_2_511·a_1_2 + c_2_33·c_2_58·a_1_2 − c_2_39·c_2_52·a_1_2, an element of degree 23
  34. a_23_1 − c_2_511·a_1_2 + c_2_511·a_1_0 − c_2_3·c_2_510·a_1_2 − c_2_33·c_2_58·a_1_2
       + c_2_33·c_2_58·a_1_0 − c_2_34·c_2_57·a_1_2 + c_2_39·c_2_52·a_1_2
       − c_2_39·c_2_52·a_1_0 + c_2_310·c_2_5·a_1_2, an element of degree 23
  35. a_23_0c_2_511·a_1_2 − c_2_511·a_1_1 + c_2_4·c_2_510·a_1_2 + c_2_33·c_2_58·a_1_2
       − c_2_33·c_2_58·a_1_1 + c_2_33·c_2_4·c_2_57·a_1_2 − c_2_39·c_2_52·a_1_2
       + c_2_39·c_2_52·a_1_1 − c_2_39·c_2_4·c_2_5·a_1_2, an element of degree 23
  36. a_24_8c_2_511·a_1_1·a_1_2 − c_2_511·a_1_0·a_1_2 + c_2_33·c_2_58·a_1_1·a_1_2
       − c_2_33·c_2_58·a_1_0·a_1_2 − c_2_39·c_2_52·a_1_1·a_1_2
       + c_2_39·c_2_52·a_1_0·a_1_2, an element of degree 24
  37. a_24_7 − c_2_511·a_1_1·a_1_2 − c_2_33·c_2_58·a_1_1·a_1_2 + c_2_39·c_2_52·a_1_1·a_1_2, an element of degree 24
  38. a_24_6 − c_2_511·a_1_0·a_1_2 − c_2_33·c_2_58·a_1_0·a_1_2 + c_2_39·c_2_52·a_1_0·a_1_2
       + c_2_512 + c_2_33·c_2_59 − c_2_39·c_2_53, an element of degree 24
  39. a_24_5c_2_511·a_1_0·a_1_2 + c_2_33·c_2_58·a_1_0·a_1_2 − c_2_39·c_2_52·a_1_0·a_1_2
       − c_2_512 − c_2_33·c_2_59 + c_2_39·c_2_53, an element of degree 24
  40. c_24_4 − c_2_511·a_1_0·a_1_2 − c_2_33·c_2_58·a_1_0·a_1_2 + c_2_39·c_2_52·a_1_0·a_1_2
       + c_2_3·c_2_511 − c_2_33·c_2_59 + c_2_34·c_2_58 − c_2_36·c_2_56
       − c_2_310·c_2_52 + c_2_312, an element of degree 24
  41. a_25_5c_2_511·a_1_0·a_1_1·a_1_2 + c_2_33·c_2_58·a_1_0·a_1_1·a_1_2
       − c_2_39·c_2_52·a_1_0·a_1_1·a_1_2 + c_2_512·a_1_2 − c_2_512·a_1_1 + c_2_512·a_1_0
       + c_2_4·c_2_511·a_1_2 − c_2_3·c_2_511·a_1_2 + c_2_33·c_2_59·a_1_2
       − c_2_33·c_2_59·a_1_1 + c_2_33·c_2_59·a_1_0 + c_2_33·c_2_4·c_2_58·a_1_2
       − c_2_34·c_2_58·a_1_2 − c_2_39·c_2_53·a_1_2 + c_2_39·c_2_53·a_1_1
       − c_2_39·c_2_53·a_1_0 − c_2_39·c_2_4·c_2_52·a_1_2 + c_2_310·c_2_52·a_1_2, an element of degree 25
  42. a_25_4 − c_2_511·a_1_0·a_1_1·a_1_2 − c_2_33·c_2_58·a_1_0·a_1_1·a_1_2
       + c_2_39·c_2_52·a_1_0·a_1_1·a_1_2 − c_2_512·a_1_1 + c_2_512·a_1_0
       + c_2_4·c_2_511·a_1_2 − c_2_3·c_2_511·a_1_2 − c_2_33·c_2_59·a_1_1
       + c_2_33·c_2_59·a_1_0 + c_2_33·c_2_4·c_2_58·a_1_2 − c_2_34·c_2_58·a_1_2
       + c_2_39·c_2_53·a_1_1 − c_2_39·c_2_53·a_1_0 − c_2_39·c_2_4·c_2_52·a_1_2
       + c_2_310·c_2_52·a_1_2, an element of degree 25
  43. a_27_9c_2_513·a_1_2 + c_2_3·c_2_512·a_1_2 + c_2_34·c_2_59·a_1_2 − c_2_36·c_2_57·a_1_2
       − c_2_39·c_2_54·a_1_2 − c_2_310·c_2_53·a_1_2 + c_2_312·c_2_5·a_1_2, an element of degree 27
  44. a_27_8c_2_513·a_1_2 + c_2_3·c_2_512·a_1_2 + c_2_34·c_2_59·a_1_2 − c_2_36·c_2_57·a_1_2
       − c_2_39·c_2_54·a_1_2 − c_2_310·c_2_53·a_1_2 + c_2_312·c_2_5·a_1_2, an element of degree 27
  45. a_28_10 − c_2_513·a_1_0·a_1_2 − c_2_33·c_2_510·a_1_0·a_1_2 + c_2_39·c_2_54·a_1_0·a_1_2
       − c_2_514 − c_2_3·c_2_513 − c_2_34·c_2_510 + c_2_36·c_2_58 + c_2_39·c_2_55
       + c_2_310·c_2_54 − c_2_312·c_2_52, an element of degree 28
  46. a_28_90, an element of degree 28
  47. a_28_80, an element of degree 28
  48. a_28_70, an element of degree 28
  49. a_29_70, an element of degree 29
  50. a_29_6c_2_514·a_1_2 + c_2_3·c_2_513·a_1_2 + c_2_34·c_2_510·a_1_2 − c_2_36·c_2_58·a_1_2
       − c_2_39·c_2_55·a_1_2 − c_2_310·c_2_54·a_1_2 + c_2_312·c_2_52·a_1_2, an element of degree 29
  51. b_30_50, an element of degree 30
  52. b_30_4 − c_2_514·a_1_0·a_1_2 + c_2_4·c_2_513·a_1_0·a_1_2 − c_2_43·c_2_511·a_1_0·a_1_2
       − c_2_33·c_2_511·a_1_0·a_1_2 + c_2_33·c_2_4·c_2_510·a_1_0·a_1_2
       − c_2_33·c_2_43·c_2_58·a_1_0·a_1_2 + c_2_39·c_2_55·a_1_0·a_1_2
       − c_2_39·c_2_4·c_2_54·a_1_0·a_1_2 + c_2_39·c_2_43·c_2_52·a_1_0·a_1_2 − c_2_515
       + c_2_4·c_2_514 − c_2_43·c_2_512 − c_2_3·c_2_514 + c_2_3·c_2_4·c_2_513
       − c_2_3·c_2_43·c_2_511 − c_2_34·c_2_511 + c_2_34·c_2_4·c_2_510
       − c_2_34·c_2_43·c_2_58 + c_2_36·c_2_59 − c_2_36·c_2_4·c_2_58
       + c_2_36·c_2_43·c_2_56 + c_2_39·c_2_56 − c_2_39·c_2_4·c_2_55
       + c_2_39·c_2_43·c_2_53 + c_2_310·c_2_55 − c_2_310·c_2_4·c_2_54
       + c_2_310·c_2_43·c_2_52 − c_2_312·c_2_53 + c_2_312·c_2_4·c_2_52
       − c_2_312·c_2_43, an element of degree 30
  53. a_34_70, an element of degree 34
  54. a_34_6c_2_516·a_1_1·a_1_2 + c_2_516·a_1_0·a_1_2 + c_2_3·c_2_515·a_1_1·a_1_2
       + c_2_3·c_2_515·a_1_0·a_1_2 + c_2_34·c_2_512·a_1_1·a_1_2
       + c_2_34·c_2_512·a_1_0·a_1_2 − c_2_36·c_2_510·a_1_1·a_1_2
       − c_2_36·c_2_510·a_1_0·a_1_2 − c_2_39·c_2_57·a_1_1·a_1_2
       − c_2_39·c_2_57·a_1_0·a_1_2 − c_2_310·c_2_56·a_1_1·a_1_2
       − c_2_310·c_2_56·a_1_0·a_1_2 + c_2_312·c_2_54·a_1_1·a_1_2
       + c_2_312·c_2_54·a_1_0·a_1_2, an element of degree 34
  55. a_35_80, an element of degree 35
  56. a_35_70, an element of degree 35
  57. a_35_5c_2_517·a_1_2 − c_2_517·a_1_0 + c_2_3·c_2_516·a_1_0 − c_2_32·c_2_515·a_1_0
       + c_2_33·c_2_514·a_1_0 − c_2_34·c_2_513·a_1_2 + c_2_35·c_2_512·a_1_2
       − c_2_35·c_2_512·a_1_0 + c_2_36·c_2_511·a_1_0 − c_2_37·c_2_510·a_1_0
       + c_2_38·c_2_59·a_1_2 + c_2_310·c_2_57·a_1_2 − c_2_310·c_2_57·a_1_0
       + c_2_311·c_2_56·a_1_0 + c_2_312·c_2_55·a_1_2 + c_2_312·c_2_55·a_1_0
       + c_2_313·c_2_54·a_1_2 + c_2_313·c_2_54·a_1_0 − c_2_314·c_2_53·a_1_2
       − c_2_315·c_2_52·a_1_2 + c_2_315·c_2_52·a_1_0 − c_2_316·c_2_5·a_1_2, an element of degree 35
  58. a_35_4c_2_516·a_1_0·a_1_1·a_1_2 + c_2_3·c_2_515·a_1_0·a_1_1·a_1_2
       + c_2_34·c_2_512·a_1_0·a_1_1·a_1_2 − c_2_36·c_2_510·a_1_0·a_1_1·a_1_2
       − c_2_39·c_2_57·a_1_0·a_1_1·a_1_2 − c_2_310·c_2_56·a_1_0·a_1_1·a_1_2
       + c_2_312·c_2_54·a_1_0·a_1_1·a_1_2 + c_2_517·a_1_2 + c_2_517·a_1_1 + c_2_517·a_1_0
       − c_2_4·c_2_516·a_1_2 + c_2_3·c_2_516·a_1_2 − c_2_3·c_2_516·a_1_1
       − c_2_3·c_2_516·a_1_0 + c_2_3·c_2_4·c_2_515·a_1_2 − c_2_32·c_2_515·a_1_2
       + c_2_32·c_2_515·a_1_1 + c_2_32·c_2_515·a_1_0 − c_2_32·c_2_4·c_2_514·a_1_2
       + c_2_33·c_2_514·a_1_2 − c_2_33·c_2_514·a_1_1 − c_2_33·c_2_514·a_1_0
       + c_2_33·c_2_4·c_2_513·a_1_2 + c_2_34·c_2_513·a_1_2 + c_2_35·c_2_512·a_1_2
       + c_2_35·c_2_512·a_1_1 + c_2_35·c_2_512·a_1_0 − c_2_35·c_2_4·c_2_511·a_1_2
       + c_2_36·c_2_511·a_1_2 − c_2_36·c_2_511·a_1_1 − c_2_36·c_2_511·a_1_0
       + c_2_36·c_2_4·c_2_510·a_1_2 − c_2_37·c_2_510·a_1_2 + c_2_37·c_2_510·a_1_1
       + c_2_37·c_2_510·a_1_0 − c_2_37·c_2_4·c_2_59·a_1_2 − c_2_38·c_2_59·a_1_2
       + c_2_310·c_2_57·a_1_2 + c_2_310·c_2_57·a_1_1 + c_2_310·c_2_57·a_1_0
       − c_2_310·c_2_4·c_2_56·a_1_2 + c_2_311·c_2_56·a_1_2 − c_2_311·c_2_56·a_1_1
       − c_2_311·c_2_56·a_1_0 + c_2_311·c_2_4·c_2_55·a_1_2 − c_2_312·c_2_55·a_1_1
       − c_2_312·c_2_55·a_1_0 + c_2_312·c_2_4·c_2_54·a_1_2 − c_2_313·c_2_54·a_1_1
       − c_2_313·c_2_54·a_1_0 + c_2_313·c_2_4·c_2_53·a_1_2 + c_2_314·c_2_53·a_1_2
       − c_2_315·c_2_52·a_1_2 − c_2_315·c_2_52·a_1_1 − c_2_315·c_2_52·a_1_0
       + c_2_315·c_2_4·c_2_5·a_1_2 + c_2_316·c_2_5·a_1_2, an element of degree 35
  59. c_36_11 − c_2_517·a_1_1·a_1_2 − c_2_517·a_1_0·a_1_2 + c_2_3·c_2_516·a_1_1·a_1_2
       − c_2_3·c_2_516·a_1_0·a_1_2 − c_2_32·c_2_515·a_1_1·a_1_2
       + c_2_33·c_2_514·a_1_1·a_1_2 − c_2_34·c_2_513·a_1_0·a_1_2
       − c_2_35·c_2_512·a_1_1·a_1_2 + c_2_36·c_2_511·a_1_1·a_1_2
       + c_2_36·c_2_511·a_1_0·a_1_2 − c_2_37·c_2_510·a_1_1·a_1_2
       + c_2_39·c_2_58·a_1_0·a_1_2 − c_2_310·c_2_57·a_1_1·a_1_2
       + c_2_310·c_2_57·a_1_0·a_1_2 + c_2_311·c_2_56·a_1_1·a_1_2
       + c_2_312·c_2_55·a_1_1·a_1_2 − c_2_312·c_2_55·a_1_0·a_1_2
       + c_2_313·c_2_54·a_1_1·a_1_2 + c_2_315·c_2_52·a_1_1·a_1_2 − c_2_518
       − c_2_3·c_2_517 + c_2_32·c_2_516 + c_2_33·c_2_515 + c_2_35·c_2_513
       + c_2_37·c_2_511 + c_2_39·c_2_59 + c_2_310·c_2_58 − c_2_311·c_2_57
       − c_2_313·c_2_55 − c_2_315·c_2_53 + c_2_318, an element of degree 36
  60. c_36_5c_2_517·a_1_1·a_1_2 − c_2_517·a_1_0·a_1_2 + c_2_4·c_2_516·a_1_0·a_1_2
       − c_2_43·c_2_514·a_1_0·a_1_2 − c_2_3·c_2_516·a_1_1·a_1_2
       − c_2_3·c_2_516·a_1_0·a_1_2 + c_2_3·c_2_4·c_2_515·a_1_0·a_1_2
       − c_2_3·c_2_43·c_2_513·a_1_0·a_1_2 + c_2_32·c_2_515·a_1_1·a_1_2
       − c_2_33·c_2_514·a_1_1·a_1_2 − c_2_34·c_2_513·a_1_0·a_1_2
       + c_2_34·c_2_4·c_2_512·a_1_0·a_1_2 − c_2_34·c_2_43·c_2_510·a_1_0·a_1_2
       + c_2_35·c_2_512·a_1_1·a_1_2 − c_2_36·c_2_511·a_1_1·a_1_2
       + c_2_36·c_2_511·a_1_0·a_1_2 − c_2_36·c_2_4·c_2_510·a_1_0·a_1_2
       + c_2_36·c_2_43·c_2_58·a_1_0·a_1_2 + c_2_37·c_2_510·a_1_1·a_1_2
       + c_2_39·c_2_58·a_1_0·a_1_2 − c_2_39·c_2_4·c_2_57·a_1_0·a_1_2
       + c_2_39·c_2_43·c_2_55·a_1_0·a_1_2 + c_2_310·c_2_57·a_1_1·a_1_2
       + c_2_310·c_2_57·a_1_0·a_1_2 − c_2_310·c_2_4·c_2_56·a_1_0·a_1_2
       + c_2_310·c_2_43·c_2_54·a_1_0·a_1_2 − c_2_311·c_2_56·a_1_1·a_1_2
       − c_2_312·c_2_55·a_1_1·a_1_2 − c_2_312·c_2_55·a_1_0·a_1_2
       + c_2_312·c_2_4·c_2_54·a_1_0·a_1_2 − c_2_312·c_2_43·c_2_52·a_1_0·a_1_2
       − c_2_313·c_2_54·a_1_1·a_1_2 − c_2_315·c_2_52·a_1_1·a_1_2 + c_2_518
       − c_2_4·c_2_517 + c_2_43·c_2_515 − c_2_3·c_2_517 + c_2_3·c_2_4·c_2_516
       − c_2_3·c_2_43·c_2_514 + c_2_32·c_2_516 − c_2_32·c_2_4·c_2_515
       + c_2_32·c_2_43·c_2_513 − c_2_33·c_2_515 + c_2_33·c_2_4·c_2_514
       − c_2_33·c_2_43·c_2_512 + c_2_35·c_2_513 − c_2_35·c_2_4·c_2_512
       + c_2_35·c_2_43·c_2_510 − c_2_36·c_2_512 + c_2_36·c_2_4·c_2_511
       − c_2_36·c_2_43·c_2_59 + c_2_37·c_2_511 − c_2_37·c_2_4·c_2_510
       + c_2_37·c_2_43·c_2_58 + c_2_310·c_2_58 − c_2_310·c_2_4·c_2_57
       + c_2_310·c_2_43·c_2_55 − c_2_311·c_2_57 + c_2_311·c_2_4·c_2_56
       − c_2_311·c_2_43·c_2_54 − c_2_312·c_2_56 + c_2_312·c_2_4·c_2_55
       − c_2_312·c_2_43·c_2_53 − c_2_313·c_2_55 + c_2_313·c_2_4·c_2_54
       − c_2_313·c_2_43·c_2_52 − c_2_315·c_2_53 + c_2_315·c_2_4·c_2_52
       − c_2_315·c_2_43, an element of degree 36
  61. a_39_190, an element of degree 39
  62. a_39_18c_2_519·a_1_2 − c_2_33·c_2_516·a_1_2 + c_2_36·c_2_513·a_1_2
       + c_2_39·c_2_510·a_1_2 + c_2_312·c_2_57·a_1_2 + c_2_318·c_2_5·a_1_2, an element of degree 39
  63. a_40_16 − c_2_520 + c_2_33·c_2_517 − c_2_36·c_2_514 − c_2_39·c_2_511
       − c_2_312·c_2_58 − c_2_318·c_2_52, an element of degree 40
  64. a_40_150, an element of degree 40
  65. a_47_150, an element of degree 47
  66. a_47_140, an element of degree 47
  67. c_48_18 − c_2_523·a_1_1·a_1_2 + c_2_523·a_1_0·a_1_2 − c_2_3·c_2_522·a_1_1·a_1_2
       + c_2_3·c_2_522·a_1_0·a_1_2 − c_2_33·c_2_520·a_1_1·a_1_2
       + c_2_33·c_2_520·a_1_0·a_1_2 + c_2_34·c_2_519·a_1_1·a_1_2
       − c_2_34·c_2_519·a_1_0·a_1_2 + c_2_36·c_2_517·a_1_1·a_1_2
       − c_2_36·c_2_517·a_1_0·a_1_2 − c_2_37·c_2_516·a_1_1·a_1_2
       + c_2_37·c_2_516·a_1_0·a_1_2 − c_2_310·c_2_513·a_1_1·a_1_2
       + c_2_310·c_2_513·a_1_0·a_1_2 − c_2_313·c_2_510·a_1_1·a_1_2
       + c_2_313·c_2_510·a_1_0·a_1_2 + c_2_315·c_2_58·a_1_1·a_1_2
       − c_2_315·c_2_58·a_1_0·a_1_2 − c_2_318·c_2_55·a_1_1·a_1_2
       + c_2_318·c_2_55·a_1_0·a_1_2 − c_2_319·c_2_54·a_1_1·a_1_2
       + c_2_319·c_2_54·a_1_0·a_1_2 + c_2_321·c_2_52·a_1_1·a_1_2
       − c_2_321·c_2_52·a_1_0·a_1_2, an element of degree 48
  68. c_48_13 − c_2_523·a_1_1·a_1_2 − c_2_523·a_1_0·a_1_2 + c_2_4·c_2_522·a_1_0·a_1_2
       − c_2_43·c_2_520·a_1_0·a_1_2 − c_2_3·c_2_522·a_1_1·a_1_2
       − c_2_3·c_2_522·a_1_0·a_1_2 − c_2_33·c_2_520·a_1_1·a_1_2
       − c_2_33·c_2_520·a_1_0·a_1_2 − c_2_33·c_2_4·c_2_519·a_1_0·a_1_2
       + c_2_33·c_2_43·c_2_517·a_1_0·a_1_2 + c_2_34·c_2_519·a_1_1·a_1_2
       + c_2_34·c_2_519·a_1_0·a_1_2 + c_2_36·c_2_517·a_1_1·a_1_2
       + c_2_36·c_2_517·a_1_0·a_1_2 + c_2_36·c_2_4·c_2_516·a_1_0·a_1_2
       − c_2_36·c_2_43·c_2_514·a_1_0·a_1_2 − c_2_37·c_2_516·a_1_1·a_1_2
       − c_2_37·c_2_516·a_1_0·a_1_2 + c_2_39·c_2_4·c_2_513·a_1_0·a_1_2
       − c_2_39·c_2_43·c_2_511·a_1_0·a_1_2 − c_2_310·c_2_513·a_1_1·a_1_2
       − c_2_310·c_2_513·a_1_0·a_1_2 + c_2_312·c_2_4·c_2_510·a_1_0·a_1_2
       − c_2_312·c_2_43·c_2_58·a_1_0·a_1_2 − c_2_313·c_2_510·a_1_1·a_1_2
       − c_2_313·c_2_510·a_1_0·a_1_2 + c_2_315·c_2_58·a_1_1·a_1_2
       + c_2_315·c_2_58·a_1_0·a_1_2 − c_2_318·c_2_55·a_1_1·a_1_2
       − c_2_318·c_2_55·a_1_0·a_1_2 + c_2_318·c_2_4·c_2_54·a_1_0·a_1_2
       − c_2_318·c_2_43·c_2_52·a_1_0·a_1_2 − c_2_319·c_2_54·a_1_1·a_1_2
       − c_2_319·c_2_54·a_1_0·a_1_2 + c_2_321·c_2_52·a_1_1·a_1_2
       + c_2_321·c_2_52·a_1_0·a_1_2 + c_2_4·c_2_523 − c_2_43·c_2_521
       + c_2_3·c_2_4·c_2_522 − c_2_3·c_2_43·c_2_520 + c_2_33·c_2_4·c_2_520
       − c_2_33·c_2_43·c_2_518 − c_2_34·c_2_4·c_2_519 + c_2_34·c_2_43·c_2_517
       − c_2_36·c_2_4·c_2_517 + c_2_36·c_2_43·c_2_515 + c_2_37·c_2_4·c_2_516
       − c_2_37·c_2_43·c_2_514 + c_2_310·c_2_4·c_2_513 − c_2_310·c_2_43·c_2_511
       + c_2_313·c_2_4·c_2_510 − c_2_313·c_2_43·c_2_58 − c_2_315·c_2_4·c_2_58
       + c_2_315·c_2_43·c_2_56 + c_2_318·c_2_4·c_2_55 − c_2_318·c_2_43·c_2_53
       + c_2_319·c_2_4·c_2_54 − c_2_319·c_2_43·c_2_52 − c_2_321·c_2_4·c_2_52
       + c_2_321·c_2_43, an element of degree 48


About the group Ring generators Ring relations Completion information Restriction maps




Simon King
Department of Mathematics and Computer Science
Friedrich-Schiller-Universität Jena
07737 Jena
GERMANY
E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46161
Fax: +49 (0)3641 9-46162
Office: Zi. 3529, Ernst-Abbe-Platz 2



Last change: 11.05.2013