Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-5-Cohomology of group number 474 of order 2000
General information on the group
- The group order factors as 24 · 53.
- It is non-abelian.
- It has 5-Rank 2.
- The centre of a Sylow 5-subgroup has rank 1.
- Its Sylow 5-subgroup has 6 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
The computation was based on 15 stability conditions for H*(E125; GF(5)).
General information
- The cohomology ring is of dimension 2 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
1 − 2·t + 3·t2 − 4·t3 + 5·t4 − 5·t5 + 5·t6 − 3·t7 + 2·t8 − 2·t9 + 2·t10 − 4·t11 + 5·t12 − 4·t13 + 4·t14 − t15 − t17 + 3·t18 − 6·t19 + 7·t20 − 6·t21 + 4·t22 − t23 − t25 + 3·t26 − 4·t27 + 5·t28 − 4·t29 + 2·t30 − 2·t31 + 2·t32 − 3·t33 + 5·t34 − 5·t35 + 5·t36 − 4·t37 + 3·t38 − 2·t39 + t40 |
| ( − 1 + t)2 · (1 + t2)2 · (1 − t + t2 − t3 + t4) · (1 + t4) · (1 + t + t2 + t3 + t4) · (1 − t2 + t4 − t6 + t8) · (1 − t4 + t8 − t12 + t16) |
- The a-invariants are -∞,-16,-2. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Ring generators
The cohomology ring has 20 minimal generators of maximal degree 40:
- a_4_0, a nilpotent element of degree 4
- a_5_0, a nilpotent element of degree 5
- a_7_1, a nilpotent element of degree 7
- a_7_0, a nilpotent element of degree 7
- b_8_1, an element of degree 8
- b_8_0, an element of degree 8
- a_13_1, a nilpotent element of degree 13
- b_14_0, an element of degree 14
- a_15_2, a nilpotent element of degree 15
- a_16_2, a nilpotent element of degree 16
- a_18_1, a nilpotent element of degree 18
- a_19_1, a nilpotent element of degree 19
- a_23_2, a nilpotent element of degree 23
- a_24_2, a nilpotent element of degree 24
- a_27_3, a nilpotent element of degree 27
- b_28_2, an element of degree 28
- a_38_1, a nilpotent element of degree 38
- a_39_3, a nilpotent element of degree 39
- a_39_1, a nilpotent element of degree 39
- c_40_2, a Duflot element of degree 40
Ring relations
There are 10 "obvious" relations:
a_5_02, a_7_02, a_7_12, a_13_12, a_15_22, a_19_12, a_23_22, a_27_32, a_39_12, a_39_32
Apart from that, there are 164 minimal relations of maximal degree 78:
- a_4_02
- a_4_0·a_5_0
- a_4_0·a_7_0
- a_4_0·a_7_1
- a_5_0·a_7_0
- a_4_0·b_8_0
- a_4_0·b_8_1 + a_5_0·a_7_1
- b_8_0·a_5_0
- a_7_0·a_7_1
- b_8_0·a_7_1 + 2·b_8_0·a_7_0
- b_8_1·a_7_0 + b_8_0·a_7_0
- b_8_0·b_8_1 + b_8_02
- a_4_0·a_13_1
- a_4_0·b_14_0 + a_5_0·a_13_1
- a_4_0·a_15_2
- a_4_0·a_16_2
- a_5_0·a_15_2
- a_7_0·a_13_1
- a_7_1·a_13_1
- a_16_2·a_5_0
- b_8_0·a_13_1
- b_14_0·a_7_0
- b_14_0·a_7_1 − b_8_1·a_13_1
- a_4_0·a_18_1
- a_7_0·a_15_2
- a_7_1·a_15_2
- b_8_0·b_14_0
- a_4_0·a_19_1
- a_16_2·a_7_0
- a_16_2·a_7_1
- a_18_1·a_5_0
- b_8_0·a_15_2
- b_8_1·a_15_2
- a_5_0·a_19_1
- b_8_0·a_16_2
- b_8_1·a_16_2
- a_18_1·a_7_0
- a_18_1·a_7_1
- a_7_1·a_19_1 + 2·a_7_0·a_19_1
- b_8_0·a_18_1 − 2·a_7_0·a_19_1
- b_8_1·a_18_1 + 2·a_7_0·a_19_1
- a_4_0·a_23_2
- b_8_1·a_19_1 + b_8_0·a_19_1
- a_4_0·a_24_2
- a_5_0·a_23_2
- a_13_1·a_15_2
- a_16_2·a_13_1
- a_24_2·a_5_0
- b_14_0·a_15_2
- a_7_0·a_23_2
- a_7_1·a_23_2
- b_14_0·a_16_2
- a_4_0·a_27_3
- a_16_2·a_15_2
- a_18_1·a_13_1
- a_24_2·a_7_0
- a_24_2·a_7_1
- b_8_0·a_23_2
- b_8_1·a_23_2
- a_16_22
- a_5_0·a_27_3
- a_13_1·a_19_1
- a_4_0·b_28_2
- b_8_0·a_24_2
- b_8_1·a_24_2
- b_14_0·a_18_1
- a_18_1·a_15_2
- b_14_0·a_19_1
- b_28_2·a_5_0
- a_16_2·a_18_1
- a_7_0·a_27_3
- a_7_1·a_27_3
- a_15_2·a_19_1
- a_16_2·a_19_1
- b_8_1·a_27_3 + b_8_0·a_27_3
- b_28_2·a_7_0 + b_8_0·a_27_3
- b_28_2·a_7_1 − 2·b_8_0·a_27_3
- a_18_12
- a_13_1·a_23_2
- b_8_1·b_28_2 + b_8_0·b_28_2
- a_18_1·a_19_1
- a_24_2·a_13_1
- b_14_0·a_23_2
- a_15_2·a_23_2
- b_14_0·a_24_2
- a_16_2·a_23_2
- a_24_2·a_15_2
- a_16_2·a_24_2
- a_13_1·a_27_3
- a_18_1·a_23_2
- b_14_0·a_27_3
- b_28_2·a_13_1
- a_4_0·a_38_1
- a_18_1·a_24_2
- a_15_2·a_27_3
- a_19_1·a_23_2
- b_14_0·b_28_2
- a_4_0·a_39_1
- a_4_0·a_39_3
- a_16_2·a_27_3
- a_24_2·a_19_1
- a_38_1·a_5_0
- b_28_2·a_15_2
- a_5_0·a_39_1
- a_5_0·a_39_3
- a_16_2·b_28_2
- a_18_1·a_27_3
- a_38_1·a_7_0
- a_38_1·a_7_1
- a_7_0·a_39_3 − a_7_0·a_39_1
- a_7_1·a_39_1 + 2·a_7_0·a_39_1 + 2·b_14_02·a_5_0·a_13_1
- a_7_1·a_39_3 + 2·a_7_0·a_39_1
- a_19_1·a_27_3 + 2·a_7_0·a_39_1
- b_8_0·a_38_1 − 2·a_7_0·a_39_1
- b_8_1·a_38_1 + 2·a_7_0·a_39_1 + 2·b_14_02·a_5_0·a_13_1
- a_18_1·b_28_2 − a_7_0·a_39_1
- a_24_2·a_23_2
- b_8_0·a_39_3 − b_8_0·a_39_1 + b_8_05·a_7_0
- b_8_1·a_39_3 + b_8_0·a_39_1 − b_8_05·a_7_0
- b_14_03·a_5_0 + 2·b_8_1·a_39_1 + 2·b_8_0·a_39_1
- b_28_2·a_19_1 + 2·b_8_0·a_39_1 − 2·b_8_05·a_7_0
- a_24_22
- a_23_2·a_27_3
- a_24_2·a_27_3
- a_38_1·a_13_1
- b_28_2·a_23_2
- a_13_1·a_39_1 + 2·c_40_2·a_5_0·a_7_1
- a_13_1·a_39_3
- b_14_0·a_38_1 + 2·c_40_2·a_5_0·a_7_1
- a_24_2·b_28_2
- a_38_1·a_15_2
- b_14_0·a_39_1 − 2·b_8_1·c_40_2·a_5_0
- b_14_0·a_39_3
- a_16_2·a_38_1
- a_15_2·a_39_1
- a_15_2·a_39_3
- a_16_2·a_39_1
- a_16_2·a_39_3
- b_14_03·a_13_1 − b_8_1·c_40_2·a_7_1 + 2·b_8_0·c_40_2·a_7_0
- b_28_2·a_27_3 + 2·b_8_06·a_7_0 + b_8_0·c_40_2·a_7_0
- a_18_1·a_38_1
- b_14_04 − 2·b_8_13·b_14_0·a_5_0·a_13_1 − b_8_12·c_40_2 + b_8_02·c_40_2
- b_28_22 − 2·b_8_07 − b_8_02·c_40_2
- a_18_1·a_39_1
- a_18_1·a_39_3
- a_38_1·a_19_1
- a_19_1·a_39_1 + b_8_04·a_7_0·a_19_1
- a_19_1·a_39_3
- a_38_1·a_23_2
- a_24_2·a_38_1
- a_23_2·a_39_1
- a_23_2·a_39_3
- a_24_2·a_39_1
- a_24_2·a_39_3
- a_38_1·a_27_3
- a_27_3·a_39_1 − b_8_05·a_7_0·a_19_1 + 2·c_40_2·a_7_0·a_19_1
- a_27_3·a_39_3 − b_8_05·a_7_0·a_19_1 + 2·c_40_2·a_7_0·a_19_1
- b_28_2·a_38_1 + 2·b_8_05·a_7_0·a_19_1 + c_40_2·a_7_0·a_19_1
- b_28_2·a_39_1 + b_8_05·a_27_3 + b_8_06·a_19_1 − 2·b_8_0·c_40_2·a_19_1
- b_28_2·a_39_3 + b_8_06·a_19_1 − 2·b_8_0·c_40_2·a_19_1
- a_38_12
- a_38_1·a_39_1
- a_38_1·a_39_3
- a_39_1·a_39_3 − b_8_04·a_7_0·a_39_1
Data used for the Hilbert-Poincaré test
- We proved completion in degree 78 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_40_2, an element of degree 40
- b_8_1, an element of degree 8
- A Duflot regular sequence is given by c_40_2.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, 24, 46].
Restriction maps
Expressing the generators as elements of H*(E125; GF(5))
- a_4_0 → a_1_1·a_3_5 + 2·a_1_1·a_3_4 + 2·a_1_0·a_3_5
- a_5_0 → b_2_3·a_3_5 − b_2_2·a_3_5 + 2·b_2_2·b_2_3·a_1_1 − 2·b_2_22·a_1_1
- a_7_1 → b_2_33·a_1_1 − 2·b_2_2·b_2_32·a_1_1 − 2·b_2_22·b_2_3·a_1_1 − 2·b_2_23·a_1_1
− 2·b_2_23·a_1_0
- a_7_0 → a_7_8 + 2·b_2_2·b_2_3·a_3_5 − 2·b_2_22·a_3_5 + 2·b_2_22·a_3_4 + b_2_22·b_2_3·a_1_1
− 2·b_2_23·a_1_1 + b_2_23·a_1_0
- b_8_1 → b_2_34 − 2·b_2_2·b_2_33 − 2·b_2_22·b_2_32 − 2·b_2_23·b_2_3 − 2·b_2_24
- b_8_0 → b_8_9 − b_2_2·b_2_33 + b_2_22·b_2_32 − 2·b_2_23·b_2_3 + 2·b_2_24
+ b_2_2·b_2_3·a_1_1·a_3_5 + b_2_22·a_1_1·a_3_5 + 2·b_2_22·a_1_0·a_3_4
- a_13_1 → b_2_23·b_2_33·a_1_1 − 2·b_2_24·b_2_32·a_1_1 + 2·b_2_25·b_2_3·a_1_1
− b_2_26·a_1_1 + 2·b_2_3·c_10_12·a_1_1 − 2·b_2_2·c_10_12·a_1_1
- b_14_0 → b_2_23·b_2_34 − 2·b_2_24·b_2_33 + 2·b_2_25·b_2_32 − b_2_26·b_2_3
− b_2_35·a_1_1·a_3_5 − b_2_24·b_2_3·a_1_1·a_3_5 + b_2_25·a_1_1·a_3_5 + b_2_25·a_1_0·a_3_5 + 2·b_2_32·c_10_12 − 2·b_2_2·b_2_3·c_10_12
- a_15_2 → a_2_0·c_10_12·a_3_5
- a_16_2 → c_10_12·a_3_4·a_3_5 − 2·b_2_2·c_10_12·a_1_1·a_3_5 − 2·b_2_2·c_10_12·a_1_0·a_3_5
- a_18_1 → b_2_2·b_2_3·c_10_12·a_1_1·a_3_5 + b_2_22·c_10_12·a_1_1·a_3_5
+ b_2_22·c_10_12·a_1_0·a_3_5 + b_2_22·c_10_12·a_1_0·a_3_4
- a_19_1 → b_2_2·b_2_32·c_10_12·a_3_5 + b_2_22·b_2_3·c_10_12·a_3_5
+ 2·b_2_22·b_2_32·c_10_12·a_1_1 + b_2_23·c_10_12·a_3_5 + b_2_23·c_10_12·a_3_4 + 2·b_2_23·b_2_3·c_10_12·a_1_1
- a_23_2 → a_2_0·c_10_122·a_1_1
- a_24_2 → c_10_122·a_1_1·a_3_4 − c_10_122·a_1_0·a_3_5
- a_27_3 → b_2_2·b_2_32·c_10_122·a_1_1 + b_2_22·b_2_3·c_10_122·a_1_1
+ b_2_23·c_10_122·a_1_1 + b_2_23·c_10_122·a_1_0
- b_28_2 → b_2_25·b_2_32·c_10_12·a_1_1·a_3_5 − 2·b_2_26·b_2_3·c_10_12·a_1_1·a_3_5
− 2·b_2_27·c_10_12·a_1_1·a_3_5 − 2·b_2_27·c_10_12·a_1_0·a_3_5 + 2·b_2_27·c_10_12·a_1_0·a_3_4 − 2·b_2_2·b_2_33·c_10_122 − 2·b_2_22·b_2_32·c_10_122 − 2·b_2_23·b_2_3·c_10_122 − 2·b_2_24·c_10_122
- a_38_1 → b_2_215·b_2_32·a_1_1·a_3_5 − 2·b_2_216·b_2_3·a_1_1·a_3_5 + b_2_217·a_1_1·a_3_5
+ b_2_210·b_2_32·c_10_12·a_1_1·a_3_5 − 2·b_2_211·b_2_3·c_10_12·a_1_1·a_3_5 − 2·b_2_212·c_10_12·a_1_1·a_3_5 − 2·b_2_212·c_10_12·a_1_0·a_3_5 − 2·b_2_25·b_2_32·c_10_122·a_1_1·a_3_5 − b_2_26·b_2_3·c_10_122·a_1_1·a_3_5 − 2·b_2_27·c_10_122·a_1_1·a_3_5 + b_2_32·c_10_123·a_1_1·a_3_5 − 2·b_2_2·b_2_3·c_10_123·a_1_1·a_3_5 − 2·b_2_22·c_10_123·a_1_1·a_3_5 − 2·b_2_22·c_10_123·a_1_0·a_3_5 − 2·b_2_22·c_10_123·a_1_0·a_3_4
- a_39_3 → c_10_123·a_9_11 − b_2_33·c_10_123·a_3_5 − b_2_2·b_2_33·c_10_123·a_1_1
+ 2·b_2_22·b_2_3·c_10_123·a_3_5 + 2·b_2_22·b_2_32·c_10_123·a_1_1 + 2·b_2_23·c_10_123·a_3_5 − 2·b_2_23·b_2_3·c_10_123·a_1_1 + 2·b_2_24·c_10_123·a_1_1
- a_39_1 → b_2_215·b_2_33·a_3_5 − 2·b_2_216·b_2_32·a_3_5 + b_2_217·b_2_3·a_3_5
+ b_2_218·b_2_3·a_1_1 − b_2_219·a_1_1 + b_2_219·a_1_0 + b_2_210·b_2_33·c_10_12·a_3_5 − 2·b_2_211·b_2_32·c_10_12·a_3_5 + 2·b_2_211·b_2_33·c_10_12·a_1_1 − 2·b_2_212·b_2_3·c_10_12·a_3_5 + b_2_212·b_2_32·c_10_12·a_1_1 − 2·b_2_213·c_10_12·a_3_5 + b_2_213·b_2_3·c_10_12·a_1_1 + b_2_214·c_10_12·a_1_1 − 2·b_2_25·b_2_33·c_10_122·a_3_5 − b_2_26·b_2_32·c_10_122·a_3_5 + b_2_26·b_2_33·c_10_122·a_1_1 − 2·b_2_27·b_2_3·c_10_122·a_3_5 − 2·b_2_27·b_2_32·c_10_122·a_1_1 + b_2_28·b_2_3·c_10_122·a_1_1 + b_2_33·c_10_123·a_3_5 − 2·b_2_2·b_2_32·c_10_123·a_3_5 + 2·b_2_2·b_2_33·c_10_123·a_1_1 − 2·b_2_22·b_2_3·c_10_123·a_3_5 + b_2_22·b_2_32·c_10_123·a_1_1 − 2·b_2_23·c_10_123·a_3_5 − 2·b_2_23·c_10_123·a_3_4 + b_2_23·b_2_3·c_10_123·a_1_1
- c_40_2 → b_2_220 + 2·b_2_217·b_2_3·a_1_1·a_3_5 + b_2_218·a_1_1·a_3_5
+ 2·b_2_218·a_1_0·a_3_5 − b_2_211·b_2_34·c_10_12 + 2·b_2_212·b_2_33·c_10_12 − b_2_213·b_2_32·c_10_12 + b_2_211·b_2_32·c_10_12·a_1_1·a_3_5 + 2·b_2_212·b_2_3·c_10_12·a_1_1·a_3_5 − 2·b_2_213·c_10_12·a_1_1·a_3_5 − b_2_213·c_10_12·a_1_0·a_3_5 + 2·b_2_26·b_2_34·c_10_122 + b_2_27·b_2_33·c_10_122 + b_2_28·b_2_32·c_10_122 + b_2_29·b_2_3·c_10_122 − 2·b_2_38·c_10_122·a_1_1·a_3_5 + 2·b_2_26·b_2_32·c_10_122·a_1_1·a_3_5 + 2·b_2_27·b_2_3·c_10_122·a_1_1·a_3_5 − b_2_28·c_10_122·a_1_1·a_3_5 − b_2_28·c_10_122·a_1_0·a_3_5 − b_2_2·b_2_34·c_10_123 + 2·b_2_22·b_2_33·c_10_123 − b_2_23·b_2_32·c_10_123 − 2·b_2_33·c_10_123·a_1_1·a_3_5 + 2·b_2_2·b_2_32·c_10_123·a_1_1·a_3_5 + 2·b_2_22·b_2_3·c_10_123·a_1_1·a_3_5 + 2·b_2_23·c_10_123·a_1_1·a_3_5 − 2·b_2_23·c_10_123·a_1_0·a_3_4 + c_10_124
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_4_0 → 0, an element of degree 4
- a_5_0 → 0, an element of degree 5
- a_7_1 → 0, an element of degree 7
- a_7_0 → 0, an element of degree 7
- b_8_1 → 0, an element of degree 8
- b_8_0 → 0, an element of degree 8
- a_13_1 → 0, an element of degree 13
- b_14_0 → 0, an element of degree 14
- a_15_2 → 0, an element of degree 15
- a_16_2 → 0, an element of degree 16
- a_18_1 → 0, an element of degree 18
- a_19_1 → 0, an element of degree 19
- a_23_2 → 0, an element of degree 23
- a_24_2 → 0, an element of degree 24
- a_27_3 → 0, an element of degree 27
- b_28_2 → 0, an element of degree 28
- a_38_1 → 0, an element of degree 38
- a_39_3 → 0, an element of degree 39
- a_39_1 → 0, an element of degree 39
- c_40_2 → c_2_020, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → 0, an element of degree 4
- a_5_0 → 0, an element of degree 5
- a_7_1 → − 2·c_2_23·a_1_1, an element of degree 7
- a_7_0 → c_2_23·a_1_1, an element of degree 7
- b_8_1 → − 2·c_2_24, an element of degree 8
- b_8_0 → 2·c_2_24, an element of degree 8
- a_13_1 → 0, an element of degree 13
- b_14_0 → 0, an element of degree 14
- a_15_2 → 0, an element of degree 15
- a_16_2 → 0, an element of degree 16
- a_18_1 → c_2_1·c_2_27·a_1_0·a_1_1 − c_2_15·c_2_23·a_1_0·a_1_1, an element of degree 18
- a_19_1 → − c_2_1·c_2_28·a_1_0 + c_2_12·c_2_27·a_1_1 + c_2_15·c_2_24·a_1_0
− c_2_16·c_2_23·a_1_1, an element of degree 19
- a_23_2 → 0, an element of degree 23
- a_24_2 → 0, an element of degree 24
- a_27_3 → c_2_12·c_2_211·a_1_1 − 2·c_2_16·c_2_27·a_1_1 + c_2_110·c_2_23·a_1_1, an element of degree 27
- b_28_2 → − 2·c_2_12·c_2_212 − c_2_16·c_2_28 − 2·c_2_110·c_2_24, an element of degree 28
- a_38_1 → − 2·c_2_13·c_2_215·a_1_0·a_1_1 + c_2_17·c_2_211·a_1_0·a_1_1
− c_2_111·c_2_27·a_1_0·a_1_1 + 2·c_2_115·c_2_23·a_1_0·a_1_1, an element of degree 38
- a_39_3 → 2·c_2_13·c_2_216·a_1_0 − 2·c_2_14·c_2_215·a_1_1 − c_2_17·c_2_212·a_1_0
+ c_2_18·c_2_211·a_1_1 + c_2_111·c_2_28·a_1_0 − c_2_112·c_2_27·a_1_1 − 2·c_2_115·c_2_24·a_1_0 + 2·c_2_116·c_2_23·a_1_1, an element of degree 39
- a_39_1 → c_2_219·a_1_1 + 2·c_2_13·c_2_216·a_1_0 − 2·c_2_14·c_2_215·a_1_1
− c_2_17·c_2_212·a_1_0 + c_2_18·c_2_211·a_1_1 + c_2_111·c_2_28·a_1_0 − c_2_112·c_2_27·a_1_1 − 2·c_2_115·c_2_24·a_1_0 + 2·c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_2 → c_2_220 + c_2_14·c_2_216 + c_2_18·c_2_212 + c_2_112·c_2_28
+ c_2_116·c_2_24 + c_2_120, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → − c_2_2·a_1_0·a_1_1, an element of degree 4
- a_5_0 → c_2_22·a_1_0 − c_2_1·c_2_2·a_1_1, an element of degree 5
- a_7_1 → c_2_23·a_1_1, an element of degree 7
- a_7_0 → 0, an element of degree 7
- b_8_1 → c_2_24, an element of degree 8
- b_8_0 → 0, an element of degree 8
- a_13_1 → − 2·c_2_1·c_2_25·a_1_1 + 2·c_2_15·c_2_2·a_1_1, an element of degree 13
- b_14_0 → − 2·c_2_1·c_2_26 + 2·c_2_15·c_2_22, an element of degree 14
- a_15_2 → 0, an element of degree 15
- a_16_2 → 0, an element of degree 16
- a_18_1 → 0, an element of degree 18
- a_19_1 → 0, an element of degree 19
- a_23_2 → 0, an element of degree 23
- a_24_2 → 0, an element of degree 24
- a_27_3 → 0, an element of degree 27
- b_28_2 → 0, an element of degree 28
- a_38_1 → c_2_13·c_2_215·a_1_0·a_1_1 + 2·c_2_17·c_2_211·a_1_0·a_1_1
− 2·c_2_111·c_2_27·a_1_0·a_1_1 − c_2_115·c_2_23·a_1_0·a_1_1, an element of degree 38
- a_39_3 → 0, an element of degree 39
- a_39_1 → − c_2_13·c_2_216·a_1_0 + c_2_14·c_2_215·a_1_1 − 2·c_2_17·c_2_212·a_1_0
+ 2·c_2_18·c_2_211·a_1_1 + 2·c_2_111·c_2_28·a_1_0 − 2·c_2_112·c_2_27·a_1_1 + c_2_115·c_2_24·a_1_0 − c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_2 → 2·c_2_12·c_2_217·a_1_0·a_1_1 + c_2_16·c_2_213·a_1_0·a_1_1
+ 2·c_2_110·c_2_29·a_1_0·a_1_1 + c_2_14·c_2_216 + c_2_18·c_2_212 + c_2_112·c_2_28 + c_2_116·c_2_24 + c_2_120, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → 0, an element of degree 4
- a_5_0 → 0, an element of degree 5
- a_7_1 → − 2·c_2_23·a_1_1, an element of degree 7
- a_7_0 → c_2_23·a_1_1, an element of degree 7
- b_8_1 → − 2·c_2_24, an element of degree 8
- b_8_0 → 2·c_2_24, an element of degree 8
- a_13_1 → 0, an element of degree 13
- b_14_0 → 0, an element of degree 14
- a_15_2 → 0, an element of degree 15
- a_16_2 → 0, an element of degree 16
- a_18_1 → − c_2_1·c_2_27·a_1_0·a_1_1 + c_2_15·c_2_23·a_1_0·a_1_1, an element of degree 18
- a_19_1 → c_2_1·c_2_28·a_1_0 − c_2_12·c_2_27·a_1_1 − c_2_15·c_2_24·a_1_0
+ c_2_16·c_2_23·a_1_1, an element of degree 19
- a_23_2 → 0, an element of degree 23
- a_24_2 → 0, an element of degree 24
- a_27_3 → − c_2_12·c_2_211·a_1_1 + 2·c_2_16·c_2_27·a_1_1 − c_2_110·c_2_23·a_1_1, an element of degree 27
- b_28_2 → 2·c_2_12·c_2_212 + c_2_16·c_2_28 + 2·c_2_110·c_2_24, an element of degree 28
- a_38_1 → − 2·c_2_13·c_2_215·a_1_0·a_1_1 + c_2_17·c_2_211·a_1_0·a_1_1
− c_2_111·c_2_27·a_1_0·a_1_1 + 2·c_2_115·c_2_23·a_1_0·a_1_1, an element of degree 38
- a_39_3 → 2·c_2_13·c_2_216·a_1_0 − 2·c_2_14·c_2_215·a_1_1 − c_2_17·c_2_212·a_1_0
+ c_2_18·c_2_211·a_1_1 + c_2_111·c_2_28·a_1_0 − c_2_112·c_2_27·a_1_1 − 2·c_2_115·c_2_24·a_1_0 + 2·c_2_116·c_2_23·a_1_1, an element of degree 39
- a_39_1 → c_2_219·a_1_1 + 2·c_2_13·c_2_216·a_1_0 − 2·c_2_14·c_2_215·a_1_1
− c_2_17·c_2_212·a_1_0 + c_2_18·c_2_211·a_1_1 + c_2_111·c_2_28·a_1_0 − c_2_112·c_2_27·a_1_1 − 2·c_2_115·c_2_24·a_1_0 + 2·c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_2 → c_2_220 + c_2_14·c_2_216 + c_2_18·c_2_212 + c_2_112·c_2_28
+ c_2_116·c_2_24 + c_2_120, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → c_2_2·a_1_0·a_1_1, an element of degree 4
- a_5_0 → − c_2_22·a_1_0 + c_2_1·c_2_2·a_1_1, an element of degree 5
- a_7_1 → c_2_23·a_1_1, an element of degree 7
- a_7_0 → 0, an element of degree 7
- b_8_1 → c_2_24, an element of degree 8
- b_8_0 → 0, an element of degree 8
- a_13_1 → 2·c_2_1·c_2_25·a_1_1 − 2·c_2_15·c_2_2·a_1_1, an element of degree 13
- b_14_0 → 2·c_2_1·c_2_26 − 2·c_2_15·c_2_22, an element of degree 14
- a_15_2 → 0, an element of degree 15
- a_16_2 → 0, an element of degree 16
- a_18_1 → 0, an element of degree 18
- a_19_1 → 0, an element of degree 19
- a_23_2 → 0, an element of degree 23
- a_24_2 → 0, an element of degree 24
- a_27_3 → 0, an element of degree 27
- b_28_2 → 0, an element of degree 28
- a_38_1 → c_2_13·c_2_215·a_1_0·a_1_1 + 2·c_2_17·c_2_211·a_1_0·a_1_1
− 2·c_2_111·c_2_27·a_1_0·a_1_1 − c_2_115·c_2_23·a_1_0·a_1_1, an element of degree 38
- a_39_3 → 0, an element of degree 39
- a_39_1 → − c_2_13·c_2_216·a_1_0 + c_2_14·c_2_215·a_1_1 − 2·c_2_17·c_2_212·a_1_0
+ 2·c_2_18·c_2_211·a_1_1 + 2·c_2_111·c_2_28·a_1_0 − 2·c_2_112·c_2_27·a_1_1 + c_2_115·c_2_24·a_1_0 − c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_2 → − 2·c_2_12·c_2_217·a_1_0·a_1_1 − c_2_16·c_2_213·a_1_0·a_1_1
− 2·c_2_110·c_2_29·a_1_0·a_1_1 + c_2_14·c_2_216 + c_2_18·c_2_212 + c_2_112·c_2_28 + c_2_116·c_2_24 + c_2_120, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → − 2·c_2_2·a_1_0·a_1_1, an element of degree 4
- a_5_0 → 2·c_2_22·a_1_0 − 2·c_2_1·c_2_2·a_1_1, an element of degree 5
- a_7_1 → c_2_23·a_1_1, an element of degree 7
- a_7_0 → 0, an element of degree 7
- b_8_1 → c_2_24, an element of degree 8
- b_8_0 → 0, an element of degree 8
- a_13_1 → c_2_1·c_2_25·a_1_1 − c_2_15·c_2_2·a_1_1, an element of degree 13
- b_14_0 → c_2_1·c_2_26 − c_2_15·c_2_22, an element of degree 14
- a_15_2 → 0, an element of degree 15
- a_16_2 → 0, an element of degree 16
- a_18_1 → 0, an element of degree 18
- a_19_1 → 0, an element of degree 19
- a_23_2 → 0, an element of degree 23
- a_24_2 → 0, an element of degree 24
- a_27_3 → 0, an element of degree 27
- b_28_2 → 0, an element of degree 28
- a_38_1 → c_2_13·c_2_215·a_1_0·a_1_1 + 2·c_2_17·c_2_211·a_1_0·a_1_1
− 2·c_2_111·c_2_27·a_1_0·a_1_1 − c_2_115·c_2_23·a_1_0·a_1_1, an element of degree 38
- a_39_3 → 0, an element of degree 39
- a_39_1 → − c_2_13·c_2_216·a_1_0 + c_2_14·c_2_215·a_1_1 − 2·c_2_17·c_2_212·a_1_0
+ 2·c_2_18·c_2_211·a_1_1 + 2·c_2_111·c_2_28·a_1_0 − 2·c_2_112·c_2_27·a_1_1 + c_2_115·c_2_24·a_1_0 − c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_2 → c_2_12·c_2_217·a_1_0·a_1_1 − 2·c_2_16·c_2_213·a_1_0·a_1_1
+ c_2_110·c_2_29·a_1_0·a_1_1 + c_2_14·c_2_216 + c_2_18·c_2_212 + c_2_112·c_2_28 + c_2_116·c_2_24 + c_2_120, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → 2·c_2_2·a_1_0·a_1_1, an element of degree 4
- a_5_0 → − 2·c_2_22·a_1_0 + 2·c_2_1·c_2_2·a_1_1, an element of degree 5
- a_7_1 → c_2_23·a_1_1, an element of degree 7
- a_7_0 → 0, an element of degree 7
- b_8_1 → c_2_24, an element of degree 8
- b_8_0 → 0, an element of degree 8
- a_13_1 → − c_2_1·c_2_25·a_1_1 + c_2_15·c_2_2·a_1_1, an element of degree 13
- b_14_0 → − c_2_1·c_2_26 + c_2_15·c_2_22, an element of degree 14
- a_15_2 → 0, an element of degree 15
- a_16_2 → 0, an element of degree 16
- a_18_1 → 0, an element of degree 18
- a_19_1 → 0, an element of degree 19
- a_23_2 → 0, an element of degree 23
- a_24_2 → 0, an element of degree 24
- a_27_3 → 0, an element of degree 27
- b_28_2 → 0, an element of degree 28
- a_38_1 → c_2_13·c_2_215·a_1_0·a_1_1 + 2·c_2_17·c_2_211·a_1_0·a_1_1
− 2·c_2_111·c_2_27·a_1_0·a_1_1 − c_2_115·c_2_23·a_1_0·a_1_1, an element of degree 38
- a_39_3 → 0, an element of degree 39
- a_39_1 → − c_2_13·c_2_216·a_1_0 + c_2_14·c_2_215·a_1_1 − 2·c_2_17·c_2_212·a_1_0
+ 2·c_2_18·c_2_211·a_1_1 + 2·c_2_111·c_2_28·a_1_0 − 2·c_2_112·c_2_27·a_1_1 + c_2_115·c_2_24·a_1_0 − c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_2 → − c_2_12·c_2_217·a_1_0·a_1_1 + 2·c_2_16·c_2_213·a_1_0·a_1_1
− c_2_110·c_2_29·a_1_0·a_1_1 + c_2_14·c_2_216 + c_2_18·c_2_212 + c_2_112·c_2_28 + c_2_116·c_2_24 + c_2_120, an element of degree 40
|