Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Cohomology of group number 6671 of order 256
General information on the group
- The group is the Sylow 2-subgroup of SL(4,3).
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its centre has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
− 1 − 2·t2 + t3 − 2·t4 + 2·t5 − 2·t6 + t7 |
| ( − 1 + t)3 · (1 + t2)2 · (1 + t4) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Symonds test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- a_2_5, a nilpotent element of degree 2
- b_3_8, an element of degree 3
- b_4_11, an element of degree 4
- a_5_12, a nilpotent element of degree 5
- b_6_17, an element of degree 6
- b_7_21, an element of degree 7
- c_8_25, a Duflot element of degree 8
Ring relations
There are 35 minimal relations of maximal degree 14:
- a_1_0·b_1_1
- a_1_0·b_1_2
- a_2_4·b_1_2
- a_2_5·a_1_0 + a_1_03
- a_2_5·b_1_1 + a_2_4·b_1_1
- a_1_04
- a_2_4·a_2_5 + a_2_42
- a_1_0·b_3_8
- b_1_2·b_3_8 + b_1_1·b_3_8
- a_2_5·b_3_8 + a_2_4·a_1_03
- a_2_4·b_3_8 + a_2_4·a_1_03
- b_4_11·b_1_2 + b_4_11·b_1_1
- a_2_43
- a_2_53
- b_3_82 + b_4_11·b_1_12
- b_1_2·a_5_12 + a_2_5·b_1_24 + a_2_52·b_1_22
- b_1_1·a_5_12 + a_2_4·b_1_14
- a_2_5·a_5_12 + a_2_52·b_1_23 + a_2_42·b_1_13 + a_1_02·a_5_12 + b_4_11·a_1_03
- b_6_17·a_1_0 + a_2_5·a_5_12 + a_2_52·b_1_23 + a_2_4·b_4_11·a_1_0 + a_2_42·b_1_13
- a_2_52·b_4_11 + a_1_03·a_5_12
- b_3_8·a_5_12 + a_2_42·b_4_11 + a_2_4·b_4_11·a_1_02
- a_2_5·b_6_17 + a_2_52·b_1_24 + a_2_52·b_4_11 + a_2_42·b_1_14 + a_2_42·b_4_11
- a_2_4·b_6_17 + a_2_42·b_1_14 + a_2_42·b_4_11 + a_2_4·a_1_0·a_5_12
+ a_2_4·b_4_11·a_1_02
- a_1_0·b_7_21 + a_2_42·b_4_11 + a_2_4·a_1_0·a_5_12
- b_1_2·b_7_21 + b_1_1·b_7_21 + b_6_17·b_1_22 + b_6_17·b_1_1·b_1_2 + a_2_5·b_1_26
+ a_2_4·b_1_16 + a_2_42·b_1_14
- a_2_5·b_7_21 + a_2_42·b_1_15
- a_2_4·b_7_21 + a_2_42·b_1_15 + a_2_4·b_4_11·a_1_03
- b_1_12·b_7_21 + b_1_16·b_3_8 + b_6_17·b_3_8 + b_6_17·b_1_12·b_1_2 + b_4_11·b_1_15
+ a_2_4·b_1_17 + a_2_42·b_1_15 + a_2_4·b_4_11·a_1_03
- b_3_8·b_7_21 + b_6_17·b_1_1·b_3_8 + b_4_11·b_1_13·b_3_8 + b_4_11·b_1_16
+ b_4_11·b_6_17 + a_2_4·b_4_112 + b_4_11·a_1_0·a_5_12 + b_4_112·a_1_02
- a_2_5·b_4_112 + a_5_122 + b_4_11·a_1_0·a_5_12 + b_4_112·a_1_02 + a_2_52·b_1_26
+ a_2_42·b_1_16 + c_8_25·a_1_02
- b_6_17·a_5_12 + a_2_52·b_1_27 + a_2_4·b_4_11·a_5_12 + a_2_42·b_1_17
+ c_8_25·a_1_03
- b_6_17·b_1_12·b_1_24 + b_6_172 + b_4_112·b_1_14 + a_5_12·b_7_21
+ a_2_52·b_1_28 + a_2_4·a_5_122 + a_2_4·b_4_11·a_1_0·a_5_12 + c_8_25·b_1_12·b_1_22
- a_5_12·b_7_21 + a_2_42·b_1_18 + a_2_4·b_4_112·a_1_02 + b_4_11·a_1_03·a_5_12
+ a_2_4·c_8_25·a_1_02
- b_6_17·b_7_21 + b_6_172·b_1_2 + b_4_11·b_6_17·b_1_13 + b_4_112·b_1_12·b_3_8
+ a_2_52·b_1_29 + a_2_42·b_1_19 + a_2_4·b_4_11·a_1_02·a_5_12 + a_2_4·b_4_112·a_1_03 + c_8_25·b_1_12·b_3_8 + a_2_4·c_8_25·a_1_03
- b_7_212 + b_6_172·b_1_22 + b_4_11·b_1_110 + b_4_11·b_6_17·b_1_14
+ b_4_112·b_1_16 + b_4_113·b_1_12 + a_2_52·b_1_210 + a_2_42·b_1_110 + b_4_11·c_8_25·b_1_12
Data used for the Symonds test
- We proved completion in degree 14 using the Symonds criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_25, an element of degree 8
- b_1_24 + b_1_12·b_1_22 + b_1_14 + b_4_11, an element of degree 4
- b_1_1, an element of degree 1
- A Duflot regular sequence is given by c_8_25.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 9, 10].
- As a module over these parameters, the cohomology is generated in degree at most 10.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_4_11 → 0, an element of degree 4
- a_5_12 → 0, an element of degree 5
- b_6_17 → 0, an element of degree 6
- b_7_21 → 0, an element of degree 7
- c_8_25 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_3_8 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_11 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- a_5_12 → 0, an element of degree 5
- b_6_17 → c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_23 + c_1_02·c_1_24
+ c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_22 + c_1_04·c_1_22, an element of degree 6
- b_7_21 → c_1_1·c_1_26 + c_1_14·c_1_23 + c_1_0·c_1_1·c_1_25 + c_1_0·c_1_14·c_1_22
+ c_1_02·c_1_25 + c_1_02·c_1_12·c_1_23 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_23 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- c_8_25 → c_1_14·c_1_24 + c_1_18 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_25
+ c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_2_5 → 0, an element of degree 2
- b_3_8 → 0, an element of degree 3
- b_4_11 → 0, an element of degree 4
- a_5_12 → 0, an element of degree 5
- b_6_17 → c_1_0·c_1_12·c_1_23 + c_1_0·c_1_13·c_1_22 + c_1_02·c_1_1·c_1_23
+ c_1_02·c_1_12·c_1_22 + c_1_02·c_1_13·c_1_2 + c_1_04·c_1_1·c_1_2, an element of degree 6
- b_7_21 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_13·c_1_23 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_12·c_1_23 + c_1_02·c_1_13·c_1_22 + c_1_04·c_1_1·c_1_22, an element of degree 7
- c_8_25 → c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_24 + c_1_02·c_1_1·c_1_25
+ c_1_02·c_1_13·c_1_23 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|