Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-3-Cohomology of group number 39 of order 324
General information on the group
- The group order factors as 22 · 34.
- It is non-abelian.
- It has 3-Rank 3.
- The centre of a Sylow 3-subgroup has rank 1.
- Its Sylow 3-subgroup has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 2 and 3, respectively.
Structure of the cohomology ring
The computation was based on 3 stability conditions for H*(Syl3(A9); GF(3)).
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1)·(1 − 3·t + 6·t2 − 7·t3 + 7·t4 − 6·t5 + 6·t6 − 6·t7 + 6·t8 − 5·t9 + 6·t10 − 6·t11 + 5·t12 − 3·t13 + t14) |
| ( − 1 + t)3 · (1 − t + t2) · (1 + t + t2) · (1 + t2)3 · (1 − t2 + t4) |
- The a-invariants are -∞,-∞,-5,-3. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 12:
- a_3_2, a nilpotent element of degree 3
- a_3_1, a nilpotent element of degree 3
- a_3_0, a nilpotent element of degree 3
- b_4_2, an element of degree 4
- b_4_1, an element of degree 4
- b_4_0, an element of degree 4
- a_6_0, a nilpotent element of degree 6
- a_7_6, a nilpotent element of degree 7
- a_7_1, a nilpotent element of degree 7
- b_8_4, an element of degree 8
- a_10_6, a nilpotent element of degree 10
- a_11_13, a nilpotent element of degree 11
- a_11_9, a nilpotent element of degree 11
- c_12_7, a Duflot element of degree 12
Ring relations
There are 7 "obvious" relations:
a_3_02, a_3_12, a_3_22, a_7_12, a_7_62, a_11_92, a_11_132
Apart from that, there are 56 minimal relations of maximal degree 22:
- a_3_0·a_3_2
- a_3_1·a_3_2
- b_4_0·a_3_2
- b_4_1·a_3_2
- b_4_2·a_3_0
- b_4_2·a_3_1
- b_4_0·b_4_2
- b_4_1·b_4_2
- a_6_0·a_3_1
- a_6_0·a_3_2
- a_3_1·a_7_6
- a_3_2·a_7_1
- a_3_2·a_7_6
- b_4_1·a_6_0 − a_3_1·a_7_1
- b_4_2·a_6_0
- b_4_2·a_7_1
- b_4_2·a_7_6
- b_8_4·a_3_1 − b_4_1·a_7_6
- b_8_4·a_3_2
- a_6_02
- b_4_2·b_8_4
- a_6_0·a_7_1
- a_6_0·a_7_6
- a_10_6·a_3_0
- a_10_6·a_3_1
- a_10_6·a_3_2
- a_3_0·a_11_13
- a_3_1·a_11_13
- a_3_2·a_11_9
- a_7_1·a_7_6 + a_3_1·a_11_9
- b_4_0·a_10_6
- b_4_1·a_10_6
- b_4_2·a_10_6 − a_3_2·a_11_13
- a_6_0·b_8_4 − a_3_1·a_11_9
- b_4_0·a_11_13
- b_4_1·a_11_13
- b_4_2·a_11_9
- b_8_4·a_7_1 − b_4_1·a_11_9
- b_8_4·a_7_6 − c_12_7·a_3_1
- a_6_0·a_10_6
- b_8_42 − b_4_1·c_12_7
- a_6_0·a_11_9
- a_6_0·a_11_13
- a_10_6·a_7_1
- a_10_6·a_7_6
- a_7_1·a_11_9
- a_7_1·a_11_13
- a_7_6·a_11_9 − a_6_0·c_12_7
- a_7_6·a_11_13
- b_8_4·a_10_6
- b_8_4·a_11_9 − c_12_7·a_7_1
- b_8_4·a_11_13
- a_10_62
- a_10_6·a_11_9
- a_10_6·a_11_13
- a_11_9·a_11_13
Data used for the Hilbert-Poincaré test
- We proved completion in degree 22 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_12_7, an element of degree 12
- − b_4_23 + b_4_1·b_8_4 − b_4_13 − b_4_02·b_4_1 + b_4_03, an element of degree 12
- b_4_1, an element of degree 4
- A Duflot regular sequence is given by c_12_7.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 19, 25].
- We found that there exists some filter regular HSOP over a finite extension field, formed by c_12_7, together with 2 elements of degree 4.
- Modifying the above filter regular HSOP, we obtained the following parameters:
- c_12_7, an element of degree 12
- b_4_2 + b_4_0, an element of degree 4
- b_4_1, an element of degree 4
Restriction maps
Expressing the generators as elements of H*(Syl3(A9); GF(3))
- a_3_2 → b_2_0·a_1_0
- a_3_1 → b_2_2·a_1_1
- a_3_0 → a_3_4
- b_4_2 → b_2_02
- b_4_1 → b_2_22
- b_4_0 → b_4_6
- a_6_0 → a_1_1·a_5_8
- a_7_6 → c_6_11·a_1_1
- a_7_1 → b_2_2·a_5_8
- b_8_4 → b_2_2·c_6_11
- a_10_6 → c_6_11·a_1_0·a_3_3
- a_11_13 → b_2_0·c_6_11·a_3_3
- a_11_9 → c_6_11·a_5_8
- c_12_7 → c_6_112
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_3_2 → 0, an element of degree 3
- a_3_1 → 0, an element of degree 3
- a_3_0 → 0, an element of degree 3
- b_4_2 → 0, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_6_0 → 0, an element of degree 6
- a_7_6 → 0, an element of degree 7
- a_7_1 → 0, an element of degree 7
- b_8_4 → 0, an element of degree 8
- a_10_6 → 0, an element of degree 10
- a_11_13 → 0, an element of degree 11
- a_11_9 → 0, an element of degree 11
- c_12_7 → c_2_06, an element of degree 12
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_2 → c_2_2·a_1_1, an element of degree 3
- a_3_1 → 0, an element of degree 3
- a_3_0 → 0, an element of degree 3
- b_4_2 → c_2_22, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_6_0 → 0, an element of degree 6
- a_7_6 → 0, an element of degree 7
- a_7_1 → 0, an element of degree 7
- b_8_4 → 0, an element of degree 8
- a_10_6 → − c_2_1·c_2_23·a_1_0·a_1_1 + c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- a_11_13 → c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_9 → 0, an element of degree 11
- c_12_7 → c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- a_3_2 → 0, an element of degree 3
- a_3_1 → c_2_5·a_1_2, an element of degree 3
- a_3_0 → − c_2_5·a_1_1 + c_2_5·a_1_0 − c_2_4·a_1_2 − c_2_4·a_1_1 + c_2_3·a_1_2, an element of degree 3
- b_4_2 → 0, an element of degree 4
- b_4_1 → c_2_52, an element of degree 4
- b_4_0 → c_2_4·c_2_5 − c_2_42 − c_2_3·c_2_5, an element of degree 4
- a_6_0 → − c_2_4·c_2_5·a_1_0·a_1_2 + c_2_42·a_1_0·a_1_2 − c_2_3·c_2_5·a_1_1·a_1_2
+ c_2_3·c_2_5·a_1_0·a_1_2 − c_2_3·c_2_4·a_1_1·a_1_2, an element of degree 6
- a_7_6 → c_2_3·c_2_4·c_2_5·a_1_2 − c_2_3·c_2_42·a_1_2 + c_2_32·c_2_5·a_1_2 + c_2_33·a_1_2, an element of degree 7
- a_7_1 → c_2_4·c_2_52·a_1_0 − c_2_42·c_2_5·a_1_0 + c_2_3·c_2_52·a_1_1 − c_2_3·c_2_52·a_1_0
+ c_2_3·c_2_4·c_2_5·a_1_2 + c_2_3·c_2_4·c_2_5·a_1_1 + c_2_32·c_2_5·a_1_2, an element of degree 7
- b_8_4 → c_2_3·c_2_4·c_2_52 − c_2_3·c_2_42·c_2_5 + c_2_32·c_2_52 + c_2_33·c_2_5, an element of degree 8
- a_10_6 → 0, an element of degree 10
- a_11_13 → 0, an element of degree 11
- a_11_9 → c_2_3·c_2_42·c_2_52·a_1_0 + c_2_3·c_2_43·c_2_5·a_1_0 + c_2_3·c_2_44·a_1_0
+ c_2_32·c_2_4·c_2_52·a_1_1 + c_2_32·c_2_42·c_2_5·a_1_2 − c_2_32·c_2_43·a_1_2 − c_2_32·c_2_43·a_1_1 + c_2_33·c_2_52·a_1_1 − c_2_33·c_2_52·a_1_0 − c_2_33·c_2_4·c_2_5·a_1_2 + c_2_33·c_2_4·c_2_5·a_1_1 + c_2_33·c_2_4·c_2_5·a_1_0 − c_2_33·c_2_42·a_1_2 − c_2_33·c_2_42·a_1_0 + c_2_34·c_2_5·a_1_2 + c_2_34·c_2_5·a_1_1 − c_2_34·c_2_5·a_1_0 + c_2_34·c_2_4·a_1_2 + c_2_34·c_2_4·a_1_1 + c_2_35·a_1_2, an element of degree 11
- c_12_7 → c_2_32·c_2_42·c_2_52 + c_2_32·c_2_43·c_2_5 + c_2_32·c_2_44
− c_2_33·c_2_4·c_2_52 + c_2_33·c_2_42·c_2_5 + c_2_34·c_2_52 − c_2_34·c_2_4·c_2_5 + c_2_34·c_2_42 − c_2_35·c_2_5 + c_2_36, an element of degree 12
|