Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of group number 5603 of order 384
General information on the group
- The group order factors as 27 · 3.
- It is non-abelian.
- It has 2-Rank 4.
- The centre of a Sylow 2-subgroup has rank 1.
- Its Sylow 2-subgroup has 4 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3, 4 and 4, respectively.
Structure of the cohomology ring
The computation was based on 1 stability condition for H*(Syl2(M22); GF(2)).
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
1 + 2·t2 − t3 + t4 + t5 + 2·t6 + t8 + t12 |
| (1 + t) · ( − 1 + t)4 · (1 + t + t2) · (1 + t2)2 · (1 + t4) |
- The a-invariants are -∞,-∞,-3,-5,-4. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 8:
- b_1_1, an element of degree 1
- b_1_0, an element of degree 1
- b_2_3, an element of degree 2
- b_3_5, an element of degree 3
- b_3_0, an element of degree 3
- b_4_6, an element of degree 4
- b_4_5, an element of degree 4
- b_5_1, an element of degree 5
- b_5_0, an element of degree 5
- b_6_7, an element of degree 6
- b_7_16, an element of degree 7
- b_7_0, an element of degree 7
- b_8_7, an element of degree 8
- c_8_6, a Duflot element of degree 8
Ring relations
There are 59 minimal relations of maximal degree 16:
- b_1_02·b_1_1 + b_2_3·b_1_0
- b_1_0·b_1_12 + b_2_3·b_1_0
- b_2_3·b_1_02
- b_1_0·b_3_5
- b_1_1·b_3_5
- b_1_02·b_3_0 + b_4_6·b_1_0
- b_1_0·b_1_1·b_3_0
- b_1_1·b_5_1 + b_1_1·b_5_0 + b_1_13·b_3_0 + b_1_0·b_5_1 + b_4_6·b_1_02
+ b_4_5·b_1_0·b_1_1
- b_3_0·b_3_5
- b_4_5·b_3_5
- b_4_6·b_3_5
- b_6_7·b_1_0 + b_4_6·b_1_03 + b_4_5·b_1_03 + b_2_3·b_5_1 + b_2_3·b_5_0
+ b_2_3·b_1_12·b_3_0
- b_1_02·b_5_1 + b_4_6·b_1_03 + b_2_3·b_5_1 + b_2_3·b_5_0 + b_2_3·b_1_12·b_3_0
- b_1_0·b_1_1·b_5_0
- b_1_12·b_5_0 + b_1_0·b_3_02 + b_6_7·b_1_1 + b_4_6·b_3_0 + b_4_6·b_1_13 + b_2_3·b_5_1
+ b_2_3·b_1_12·b_3_0 + b_2_3·b_4_6·b_1_1
- b_1_1·b_3_02 + b_1_0·b_3_02 + b_6_7·b_1_1 + b_4_6·b_3_0 + b_4_6·b_1_13 + b_2_3·b_5_1
+ b_2_3·b_4_5·b_1_1
- b_2_3·b_1_0·b_5_1
- b_2_3·b_3_02 + b_2_3·b_1_1·b_5_0 + b_2_32·b_1_1·b_3_0 + b_2_32·b_4_6 + b_2_32·b_4_5
- b_4_6·b_1_14 + b_4_6·b_1_0·b_3_0 + b_4_62 + b_4_5·b_1_14 + b_2_3·b_4_6·b_1_12
+ b_2_32·b_1_1·b_3_0 + b_2_32·b_4_6 + b_2_32·b_4_5
- b_1_0·b_7_16
- b_1_1·b_7_16 + b_2_3·b_4_6·b_1_12
- b_3_0·b_5_1 + b_1_1·b_7_0 + b_6_7·b_1_12 + b_4_6·b_1_1·b_3_0 + b_4_62
+ b_4_5·b_1_1·b_3_0 + b_4_5·b_1_14 + b_4_5·b_1_0·b_3_0 + b_4_5·b_4_6 + b_2_3·b_1_13·b_3_0 + b_2_3·b_4_5·b_1_12
- b_3_5·b_5_0
- b_3_5·b_5_1
- b_6_7·b_3_5 + b_2_3·b_7_16 + b_2_32·b_4_6·b_1_1
- b_8_7·b_1_0 + b_4_6·b_5_1 + b_4_6·b_5_0 + b_4_6·b_1_12·b_3_0 + b_4_6·b_1_05
+ b_4_62·b_1_0 + b_4_5·b_1_05 + b_4_5·b_4_6·b_1_0
- b_8_7·b_1_1 + b_4_6·b_5_1 + b_4_6·b_1_12·b_3_0 + b_4_62·b_1_0 + b_2_3·b_1_14·b_3_0
+ b_2_3·b_6_7·b_1_1 + b_2_3·b_4_6·b_3_0 + b_2_3·b_4_6·b_1_13 + b_2_3·b_4_5·b_3_0 + b_2_32·b_1_12·b_3_0
- b_1_0·b_3_0·b_5_0 + b_1_0·b_1_1·b_7_0 + b_4_6·b_5_1 + b_4_6·b_5_0 + b_4_6·b_1_12·b_3_0
+ b_4_62·b_1_0
- b_1_12·b_7_0 + b_6_7·b_3_0 + b_4_6·b_5_1 + b_4_5·b_1_12·b_3_0 + b_4_5·b_4_6·b_1_1
+ b_4_5·b_4_6·b_1_0 + b_2_3·b_7_16 + b_2_3·b_7_0 + b_2_3·b_6_7·b_1_1 + b_2_3·b_4_6·b_3_0 + b_2_3·b_4_6·b_1_13 + b_2_3·b_4_5·b_3_0 + b_2_3·b_4_5·b_1_13 + b_2_32·b_1_12·b_3_0 + b_2_32·b_4_6·b_1_1 + b_2_32·b_4_5·b_1_1
- b_4_6·b_1_1·b_5_0 + b_4_6·b_1_13·b_3_0 + b_4_6·b_6_7 + b_4_62·b_1_12
+ b_4_62·b_1_02 + b_4_5·b_1_13·b_3_0 + b_4_5·b_4_6·b_1_02 + b_2_3·b_8_7 + b_2_3·b_4_6·b_1_1·b_3_0 + b_2_3·b_4_62 + b_2_32·b_1_1·b_5_0 + b_2_32·b_1_13·b_3_0 + b_2_32·b_6_7 + b_2_32·b_4_6·b_1_12 + b_2_33·b_4_6 + b_2_33·b_4_5
- b_3_0·b_7_16 + b_2_3·b_4_6·b_1_1·b_3_0
- b_3_5·b_7_16 + b_3_5·b_7_0
- b_5_02 + b_4_6·b_3_02 + b_4_62·b_1_02 + b_4_5·b_3_02 + b_4_5·b_4_6·b_1_02
+ b_2_3·b_6_7·b_1_12 + b_2_3·b_4_6·b_1_1·b_3_0 + b_2_3·b_4_5·b_1_1·b_3_0 + b_2_3·b_4_5·b_1_14 + b_2_32·b_1_13·b_3_0 + c_8_6·b_1_12 + c_8_6·b_1_02
- b_5_0·b_5_1 + b_6_7·b_1_1·b_3_0 + b_4_6·b_1_13·b_3_0 + b_4_6·b_1_0·b_5_0
+ b_4_5·b_1_1·b_5_0 + b_4_5·b_1_0·b_5_1 + b_4_5·b_4_6·b_1_02 + b_2_3·b_1_1·b_7_0 + b_2_3·b_6_7·b_1_12 + b_2_3·b_4_5·b_1_1·b_3_0 + b_2_3·b_4_5·b_1_14 + b_2_3·b_4_52 + b_2_32·b_1_1·b_5_0 + b_2_32·b_1_13·b_3_0 + b_2_32·b_4_6·b_1_12 + b_2_33·b_1_1·b_3_0 + b_2_33·b_4_6 + b_2_33·b_4_5 + c_8_6·b_1_12 + c_8_6·b_1_0·b_1_1
- b_5_12 + b_6_7·b_1_14 + b_4_6·b_6_7 + b_4_5·b_1_1·b_5_0 + b_4_5·b_1_13·b_3_0
+ b_4_5·b_1_16 + b_4_5·b_1_0·b_5_1 + b_4_52·b_1_0·b_1_1 + b_2_3·b_1_15·b_3_0 + b_2_3·b_8_7 + b_2_3·b_4_52 + b_2_32·b_1_13·b_3_0 + b_2_32·b_6_7 + b_2_32·b_4_6·b_1_12 + b_2_32·b_4_5·b_1_12 + b_2_33·b_4_6 + b_2_33·b_4_5 + c_8_6·b_1_12
- b_4_5·b_7_16 + b_2_3·b_4_5·b_4_6·b_1_1
- b_4_6·b_7_16 + b_2_3·b_4_62·b_1_1
- b_6_7·b_5_1 + b_6_7·b_5_0 + b_6_7·b_1_12·b_3_0 + b_4_6·b_1_02·b_5_0 + b_4_62·b_1_03
+ b_4_5·b_1_02·b_5_0 + b_4_5·b_4_6·b_1_03 + b_2_3·b_4_5·b_5_1 + b_2_3·b_4_5·b_5_0 + b_2_3·b_4_5·b_1_12·b_3_0 + b_2_3·b_4_52·b_1_0 + b_2_3·c_8_6·b_1_0
- b_8_7·b_3_5 + b_2_32·b_7_16 + b_2_33·b_4_6·b_1_1
- b_1_0·b_3_0·b_7_0 + b_6_7·b_5_0 + b_4_6·b_7_0 + b_4_6·b_1_02·b_5_0
+ b_4_5·b_1_02·b_5_0 + b_4_5·b_6_7·b_1_1 + b_4_52·b_1_13 + b_2_3·b_6_7·b_1_13 + b_2_3·b_4_6·b_5_0 + b_2_3·b_4_5·b_1_15 + b_2_3·b_4_52·b_1_1 + b_2_3·b_4_52·b_1_0 + b_2_32·b_1_14·b_3_0 + b_2_32·b_6_7·b_1_1 + b_2_32·b_4_6·b_3_0 + b_2_32·b_4_5·b_3_0 + b_2_32·b_4_5·b_1_13 + b_2_33·b_1_12·b_3_0 + c_8_6·b_1_13 + b_2_3·c_8_6·b_1_1
- b_1_1·b_3_0·b_7_0 + b_4_6·b_1_0·b_3_02 + b_4_6·b_6_7·b_1_1 + b_4_62·b_3_0
+ b_4_62·b_1_13 + b_4_5·b_1_0·b_3_02 + b_4_5·b_4_6·b_3_0 + b_2_3·b_6_7·b_1_13 + b_2_3·b_4_6·b_1_12·b_3_0 + b_2_3·b_4_5·b_5_1 + b_2_3·b_4_5·b_1_15 + b_2_3·b_4_5·b_4_6·b_1_1 + b_2_3·b_4_52·b_1_0 + b_2_32·b_1_14·b_3_0 + b_2_32·b_6_7·b_1_1 + b_2_32·b_4_6·b_1_13 + b_2_32·b_4_5·b_3_0 + b_2_33·b_5_0 + b_2_33·b_1_12·b_3_0 + b_2_33·b_4_5·b_1_1 + c_8_6·b_1_13 + b_2_3·c_8_6·b_1_0
- b_3_02·b_5_0 + b_8_7·b_3_0 + b_6_7·b_5_0 + b_4_6·b_1_0·b_3_02 + b_4_6·b_1_02·b_5_0
+ b_4_6·b_6_7·b_1_1 + b_4_62·b_3_0 + b_4_62·b_1_13 + b_4_62·b_1_03 + b_4_5·b_1_0·b_3_02 + b_4_5·b_1_02·b_5_0 + b_4_5·b_4_6·b_1_03 + b_2_3·b_6_7·b_1_13 + b_2_3·b_4_6·b_1_12·b_3_0 + b_2_3·b_4_5·b_5_0 + b_2_3·b_4_5·b_1_15 + b_2_32·b_7_16 + b_2_32·b_7_0 + b_2_32·b_1_14·b_3_0 + b_2_32·b_6_7·b_1_1 + b_2_32·b_4_6·b_3_0 + b_2_32·b_4_5·b_1_13 + b_2_33·b_5_0 + b_2_33·b_1_12·b_3_0 + b_2_33·b_4_6·b_1_1 + b_2_3·c_8_6·b_1_1 + b_2_3·c_8_6·b_1_0
- b_2_3·b_3_0·b_7_0 + b_2_3·b_4_6·b_1_13·b_3_0 + b_2_3·b_4_6·b_6_7
+ b_2_3·b_4_62·b_1_12 + b_2_3·b_4_5·b_1_1·b_5_0 + b_2_3·b_4_5·b_1_13·b_3_0 + b_2_3·b_4_5·b_6_7 + b_2_3·b_4_5·b_4_6·b_1_12 + b_2_32·b_6_7·b_1_12 + b_2_32·b_4_5·b_1_1·b_3_0 + b_2_32·b_4_5·b_1_14 + b_2_33·b_1_13·b_3_0 + b_2_3·c_8_6·b_1_12
- b_4_6·b_3_0·b_5_0 + b_4_6·b_1_1·b_7_0 + b_4_6·b_8_7 + b_4_6·b_6_7·b_1_12
+ b_4_62·b_1_1·b_3_0 + b_4_62·b_1_0·b_3_0 + b_4_62·b_1_04 + b_4_63 + b_4_5·b_6_7·b_1_12 + b_4_5·b_4_6·b_1_04 + b_4_5·b_4_62 + b_2_3·b_4_6·b_1_13·b_3_0 + b_2_3·b_4_62·b_1_12 + b_2_3·b_4_5·b_6_7 + b_2_32·b_1_1·b_7_0 + b_2_32·b_4_6·b_1_1·b_3_0 + b_2_32·b_4_62 + b_2_32·b_4_5·b_1_1·b_3_0 + b_2_33·b_1_1·b_5_0 + b_2_33·b_4_6·b_1_12 + b_2_34·b_1_1·b_3_0 + b_2_34·b_4_6 + b_2_34·b_4_5
- b_6_72 + b_4_62·b_1_0·b_3_0 + b_4_62·b_1_04 + b_4_63 + b_4_5·b_4_6·b_1_0·b_3_0
+ b_4_5·b_4_62 + b_4_52·b_1_14 + b_4_52·b_1_04 + b_2_3·b_6_7·b_1_14 + b_2_3·b_4_6·b_6_7 + b_2_3·b_4_5·b_1_16 + b_2_3·b_4_5·b_4_6·b_1_12 + b_2_32·b_1_1·b_7_0 + b_2_32·b_1_15·b_3_0 + b_2_32·b_8_7 + b_2_32·b_4_6·b_1_1·b_3_0 + b_2_32·b_4_52 + b_2_33·b_1_1·b_5_0 + b_2_33·b_1_13·b_3_0 + b_2_33·b_4_5·b_1_12 + b_2_34·b_1_1·b_3_0 + b_2_34·b_4_6 + b_2_34·b_4_5 + c_8_6·b_1_14 + b_2_32·c_8_6
- b_5_0·b_7_16 + b_2_3·b_4_6·b_1_13·b_3_0 + b_2_3·b_4_6·b_6_7 + b_2_3·b_4_62·b_1_12
+ b_2_3·b_4_5·b_1_13·b_3_0 + b_2_32·b_8_7 + b_2_32·b_4_6·b_1_1·b_3_0 + b_2_32·b_4_62 + b_2_33·b_1_1·b_5_0 + b_2_33·b_1_13·b_3_0 + b_2_33·b_6_7 + b_2_33·b_4_6·b_1_12 + b_2_34·b_4_6 + b_2_34·b_4_5
- b_5_1·b_7_0 + b_4_6·b_1_1·b_7_0 + b_4_6·b_1_0·b_7_0 + b_4_6·b_6_7·b_1_12
+ b_4_62·b_1_1·b_3_0 + b_4_62·b_1_0·b_3_0 + b_4_63 + b_4_5·b_3_0·b_5_0 + b_4_5·b_1_1·b_7_0 + b_4_5·b_8_7 + b_4_5·b_4_6·b_1_04 + b_4_52·b_1_1·b_3_0 + b_4_52·b_1_14 + b_4_52·b_1_04 + b_4_52·b_4_6 + b_2_3·b_6_7·b_1_1·b_3_0 + b_2_3·b_6_7·b_1_14 + b_2_3·b_4_6·b_1_13·b_3_0 + b_2_3·b_4_6·b_6_7 + b_2_3·b_4_62·b_1_12 + b_2_3·b_4_5·b_1_13·b_3_0 + b_2_3·b_4_5·b_1_16 + b_2_3·b_4_5·b_4_6·b_1_12 + b_2_32·b_1_1·b_7_0 + b_2_32·b_1_15·b_3_0 + b_2_32·b_6_7·b_1_12 + b_2_32·b_4_6·b_1_1·b_3_0 + b_2_32·b_4_5·b_1_1·b_3_0 + b_2_32·b_4_5·b_1_14 + b_2_32·b_4_52 + b_2_33·b_1_1·b_5_0 + b_2_33·b_1_13·b_3_0 + b_2_33·b_4_6·b_1_12 + b_2_34·b_1_1·b_3_0 + b_2_34·b_4_6 + b_2_34·b_4_5 + c_8_6·b_1_1·b_3_0 + c_8_6·b_1_14 + b_2_3·c_8_6·b_1_12
- b_5_1·b_7_16 + b_2_3·b_4_6·b_6_7 + b_2_3·b_4_62·b_1_12 + b_2_3·b_4_5·b_1_13·b_3_0
+ b_2_32·b_8_7 + b_2_32·b_4_6·b_1_1·b_3_0 + b_2_32·b_4_62 + b_2_33·b_1_1·b_5_0 + b_2_33·b_1_13·b_3_0 + b_2_33·b_6_7 + b_2_33·b_4_6·b_1_12 + b_2_34·b_4_6 + b_2_34·b_4_5
- b_6_7·b_7_0 + b_4_6·b_1_02·b_7_0 + b_4_62·b_5_1 + b_4_62·b_1_12·b_3_0
+ b_4_63·b_1_0 + b_4_5·b_1_0·b_1_1·b_7_0 + b_4_5·b_1_02·b_7_0 + b_4_5·b_4_6·b_5_1 + b_4_5·b_4_6·b_1_12·b_3_0 + b_4_5·b_4_62·b_1_1 + b_4_5·b_4_62·b_1_0 + b_4_52·b_1_12·b_3_0 + b_2_3·b_6_7·b_1_12·b_3_0 + b_2_3·b_4_6·b_6_7·b_1_1 + b_2_3·b_4_5·b_1_14·b_3_0 + b_2_3·b_4_5·b_4_6·b_3_0 + b_2_3·b_4_52·b_3_0 + b_2_32·b_4_6·b_5_0 + b_2_32·b_4_62·b_1_1 + b_2_32·b_4_5·b_5_0 + b_2_32·b_4_5·b_1_12·b_3_0 + b_2_32·b_4_5·b_4_6·b_1_1 + b_2_32·b_4_52·b_1_1 + b_2_33·b_7_0 + b_2_33·b_6_7·b_1_1 + b_2_33·b_4_6·b_3_0 + b_2_33·b_4_5·b_1_13 + b_2_34·b_5_0 + b_2_34·b_1_12·b_3_0 + c_8_6·b_1_12·b_3_0 + b_4_6·c_8_6·b_1_1 + b_2_3·c_8_6·b_3_5 + b_2_3·c_8_6·b_3_0 + b_2_3·c_8_6·b_1_13 + b_2_32·c_8_6·b_1_1
- b_6_7·b_7_16 + b_2_3·b_4_6·b_6_7·b_1_1 + b_2_33·b_7_16 + b_2_34·b_4_6·b_1_1
+ b_2_3·c_8_6·b_3_5
- b_8_7·b_5_0 + b_4_6·b_3_03 + b_4_6·b_1_04·b_5_0 + b_4_6·b_6_7·b_3_0
+ b_4_62·b_1_12·b_3_0 + b_4_5·b_3_03 + b_4_5·b_1_0·b_1_1·b_7_0 + b_4_5·b_1_04·b_5_0 + b_4_5·b_6_7·b_3_0 + b_4_5·b_4_6·b_5_1 + b_4_5·b_4_6·b_5_0 + b_4_52·b_4_6·b_1_0 + b_2_3·b_6_7·b_1_12·b_3_0 + b_2_3·b_4_6·b_7_0 + b_2_3·b_4_62·b_3_0 + b_2_3·b_4_62·b_1_13 + b_2_3·b_4_5·b_1_14·b_3_0 + b_2_3·b_4_5·b_4_6·b_3_0 + b_2_3·b_4_52·b_3_0 + b_2_3·b_4_52·b_1_13 + b_2_32·b_6_7·b_1_13 + b_2_32·b_4_6·b_1_12·b_3_0 + b_2_32·b_4_62·b_1_1 + b_2_32·b_4_5·b_5_0 + b_2_32·b_4_5·b_1_12·b_3_0 + b_2_32·b_4_5·b_1_15 + b_2_33·b_1_14·b_3_0 + b_2_33·b_4_6·b_3_0 + b_2_33·b_4_6·b_1_13 + b_2_33·b_4_5·b_1_13 + b_2_34·b_5_0 + b_2_34·b_4_5·b_1_1 + b_4_6·c_8_6·b_1_1 + b_4_6·c_8_6·b_1_0 + b_2_3·c_8_6·b_1_13 + b_2_32·c_8_6·b_1_1
- b_8_7·b_5_1 + b_4_6·b_6_7·b_3_0 + b_4_62·b_5_1 + b_4_62·b_5_0 + b_4_62·b_1_05
+ b_4_5·b_4_6·b_5_1 + b_4_5·b_4_6·b_1_12·b_3_0 + b_4_5·b_4_6·b_1_05 + b_4_5·b_4_62·b_1_0 + b_2_3·b_6_7·b_1_15 + b_2_3·b_4_6·b_7_0 + b_2_3·b_4_5·b_7_0 + b_2_3·b_4_5·b_1_14·b_3_0 + b_2_3·b_4_5·b_1_17 + b_2_3·b_4_5·b_4_6·b_3_0 + b_2_3·b_4_5·b_4_6·b_1_13 + b_2_3·b_4_52·b_3_0 + b_2_32·b_1_16·b_3_0 + b_2_32·b_6_7·b_1_13 + b_2_32·b_4_6·b_1_12·b_3_0 + b_2_32·b_4_5·b_1_12·b_3_0 + b_2_32·b_4_5·b_1_15 + b_2_33·b_1_14·b_3_0 + b_2_33·b_4_6·b_3_0 + b_2_33·b_4_5·b_1_13 + b_2_34·b_5_0 + b_2_34·b_1_12·b_3_0 + b_2_34·b_4_6·b_1_1 + b_4_6·c_8_6·b_1_1 + b_2_3·c_8_6·b_1_13 + b_2_32·c_8_6·b_1_1
- b_6_7·b_8_7 + b_4_6·b_6_7·b_1_1·b_3_0 + b_4_62·b_1_0·b_5_0 + b_4_62·b_1_06
+ b_4_62·b_6_7 + b_4_63·b_1_12 + b_4_63·b_1_02 + b_4_5·b_6_7·b_1_1·b_3_0 + b_4_5·b_4_6·b_1_0·b_5_0 + b_4_52·b_1_06 + b_4_52·b_4_6·b_1_02 + b_2_3·b_6_7·b_1_13·b_3_0 + b_2_3·b_4_6·b_1_1·b_7_0 + b_2_3·b_4_5·b_4_62 + b_2_32·b_6_7·b_1_1·b_3_0 + b_2_32·b_6_7·b_1_14 + b_2_32·b_4_6·b_1_13·b_3_0 + b_2_32·b_4_6·b_6_7 + b_2_32·b_4_5·b_1_16 + b_2_32·b_4_5·b_6_7 + b_2_33·b_1_15·b_3_0 + b_2_33·b_8_7 + b_2_33·b_6_7·b_1_12 + b_2_33·b_4_5·b_1_14 + b_2_33·b_4_5·b_4_6 + b_2_33·b_4_52 + b_2_34·b_4_6·b_1_12 + b_2_34·b_4_5·b_1_12 + b_4_6·c_8_6·b_1_12 + b_2_3·c_8_6·b_1_14 + b_2_3·b_4_6·c_8_6 + b_2_32·c_8_6·b_1_12 + b_2_33·c_8_6
- b_7_02 + b_1_02·b_5_0·b_7_0 + b_8_7·b_3_02 + b_4_6·b_3_0·b_7_0
+ b_4_6·b_1_05·b_5_0 + b_4_62·b_1_13·b_3_0 + b_4_62·b_1_0·b_5_0 + b_4_62·b_6_7 + b_4_63·b_1_12 + b_4_5·b_1_05·b_5_0 + b_4_5·b_4_6·b_3_02 + b_4_5·b_4_6·b_1_06 + b_4_5·b_4_62·b_1_02 + b_4_52·b_3_02 + b_4_52·b_1_1·b_5_0 + b_4_52·b_1_13·b_3_0 + b_4_52·b_1_0·b_5_1 + b_4_52·b_1_06 + b_4_52·b_4_6·b_1_12 + b_4_53·b_1_12 + b_4_53·b_1_0·b_1_1 + b_4_53·b_1_02 + b_2_3·b_6_7·b_1_13·b_3_0 + b_2_3·b_4_6·b_1_1·b_7_0 + b_2_3·b_4_63 + b_2_3·b_4_5·b_1_15·b_3_0 + b_2_3·b_4_5·b_6_7·b_1_12 + b_2_3·b_4_52·b_1_14 + b_2_3·b_4_53 + b_2_32·b_3_5·b_7_0 + b_2_32·b_6_7·b_1_1·b_3_0 + b_2_32·b_6_7·b_1_14 + b_2_32·b_4_5·b_1_13·b_3_0 + b_2_32·b_4_5·b_1_16 + b_2_32·b_4_5·b_6_7 + b_2_33·b_1_15·b_3_0 + b_2_33·b_8_7 + b_2_33·b_6_7·b_1_12 + b_2_33·b_4_62 + b_2_33·b_4_5·b_1_1·b_3_0 + b_2_33·b_4_5·b_1_14 + b_2_33·b_4_52 + b_2_34·b_1_1·b_5_0 + b_2_34·b_6_7 + b_2_35·b_1_1·b_3_0 + c_8_6·b_3_52 + c_8_6·b_3_02 + c_8_6·b_1_06 + b_4_6·c_8_6·b_1_12 + b_4_5·c_8_6·b_1_12 + b_4_5·c_8_6·b_1_02 + b_2_32·c_8_6·b_1_12
- b_7_0·b_7_16 + b_2_3·b_4_6·b_1_1·b_7_0 + b_2_32·b_3_5·b_7_0 + c_8_6·b_3_52
- b_7_162 + b_2_32·b_3_5·b_7_0 + b_2_32·b_4_62·b_1_12 + c_8_6·b_3_52
- b_8_7·b_7_16 + b_2_3·b_4_62·b_5_0 + b_2_32·b_4_6·b_6_7·b_1_1
+ b_2_32·b_4_62·b_1_13 + b_2_32·b_4_5·b_1_14·b_3_0 + b_2_32·b_4_5·b_4_6·b_3_0 + b_2_34·b_7_16 + b_2_34·b_6_7·b_1_1 + b_2_34·b_4_6·b_1_13 + b_2_34·b_4_5·b_3_0 + b_2_35·b_5_0 + b_2_35·b_1_12·b_3_0 + b_2_35·b_4_6·b_1_1 + b_2_35·b_4_5·b_1_1 + b_2_32·c_8_6·b_3_5
- b_3_0·b_5_0·b_7_0 + b_8_7·b_7_0 + b_4_6·b_1_04·b_7_0 + b_4_6·b_6_7·b_1_12·b_3_0
+ b_4_62·b_1_0·b_3_02 + b_4_63·b_3_0 + b_4_5·b_1_04·b_7_0 + b_4_5·b_6_7·b_1_12·b_3_0 + b_4_5·b_4_6·b_7_0 + b_4_5·b_4_6·b_1_0·b_3_02 + b_4_5·b_4_6·b_6_7·b_1_1 + b_4_5·b_4_62·b_3_0 + b_4_5·b_4_62·b_1_13 + b_4_52·b_6_7·b_1_1 + b_4_53·b_1_13 + b_2_3·b_4_62·b_5_0 + b_2_3·b_4_63·b_1_1 + b_2_3·b_4_5·b_4_6·b_5_0 + b_2_3·b_4_5·b_4_6·b_1_12·b_3_0 + b_2_3·b_4_53·b_1_0 + b_2_32·b_4_6·b_6_7·b_1_1 + b_2_32·b_4_62·b_3_0 + b_2_32·b_4_5·b_7_0 + b_2_32·b_4_5·b_1_14·b_3_0 + b_2_32·b_4_5·b_4_6·b_3_0 + b_2_32·b_4_5·b_4_6·b_1_13 + b_2_33·b_6_7·b_3_0 + b_2_33·b_6_7·b_1_13 + b_2_33·b_4_5·b_5_0 + b_2_33·b_4_5·b_1_12·b_3_0 + b_2_33·b_4_5·b_1_15 + b_2_33·b_4_5·b_4_6·b_1_1 + b_2_34·b_7_16 + b_2_34·b_1_14·b_3_0 + b_2_34·b_4_6·b_1_13 + b_2_34·b_4_5·b_3_0 + b_2_34·b_4_5·b_1_13 + b_2_35·b_5_0 + b_2_35·b_4_6·b_1_1 + b_2_35·b_4_5·b_1_1 + b_6_7·c_8_6·b_1_1 + b_2_3·c_8_6·b_5_1 + b_2_3·b_4_6·c_8_6·b_1_1 + b_2_3·b_4_5·c_8_6·b_1_0 + b_2_32·c_8_6·b_3_5 + b_2_32·c_8_6·b_3_0 + b_2_32·c_8_6·b_1_13 + b_2_33·c_8_6·b_1_1
- b_8_72 + b_4_6·b_3_04 + b_4_62·b_1_08 + b_4_63·b_1_0·b_3_0 + b_4_5·b_3_04
+ b_4_5·b_4_62·b_1_0·b_3_0 + b_4_52·b_1_08 + b_4_52·b_4_6·b_1_0·b_3_0 + b_2_3·b_4_62·b_1_13·b_3_0 + b_2_3·b_4_62·b_6_7 + b_2_3·b_4_63·b_1_12 + b_2_3·b_4_5·b_4_6·b_6_7 + b_2_3·b_4_5·b_4_62·b_1_12 + b_2_3·b_4_52·b_1_13·b_3_0 + b_2_32·b_6_7·b_1_16 + b_2_32·b_4_6·b_1_1·b_7_0 + b_2_32·b_4_6·b_6_7·b_1_12 + b_2_32·b_4_5·b_1_1·b_7_0 + b_2_32·b_4_5·b_1_15·b_3_0 + b_2_32·b_4_5·b_1_18 + b_2_32·b_4_5·b_8_7 + b_2_32·b_4_5·b_4_62 + b_2_32·b_4_52·b_1_1·b_3_0 + b_2_32·b_4_52·b_4_6 + b_2_32·b_4_53 + b_2_33·b_1_17·b_3_0 + b_2_33·b_6_7·b_1_1·b_3_0 + b_2_33·b_4_6·b_6_7 + b_2_33·b_4_62·b_1_12 + b_2_33·b_4_5·b_1_1·b_5_0 + b_2_33·b_4_5·b_1_13·b_3_0 + b_2_33·b_4_5·b_6_7 + b_2_34·b_8_7 + b_2_34·b_4_6·b_1_1·b_3_0 + b_2_34·b_4_62 + b_2_34·b_4_5·b_1_1·b_3_0 + b_2_34·b_4_5·b_1_14 + b_2_34·b_4_5·b_4_6 + b_4_6·c_8_6·b_1_0·b_3_0 + b_2_3·b_4_6·c_8_6·b_1_12 + b_2_32·c_8_6·b_1_1·b_3_0 + b_2_32·c_8_6·b_1_14 + b_2_32·b_4_6·c_8_6 + b_2_32·b_4_5·c_8_6 + b_2_34·c_8_6
Data used for the Hilbert-Poincaré test
- We proved completion in degree 16 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- b_3_0·b_5_0 + b_1_1·b_7_0 + b_1_18 + b_1_08 + b_4_62 + b_4_5·b_1_1·b_3_0 + b_4_5·b_4_6
+ b_4_52 + b_2_3·b_1_1·b_5_0 + b_2_3·b_6_7 + b_2_3·b_4_6·b_1_12 + b_2_3·b_4_5·b_1_12 + b_2_32·b_4_6 + b_2_32·b_4_5 + b_2_34 + c_8_6, an element of degree 8
- b_3_54 + b_3_04 + b_4_6·b_1_03·b_5_0 + b_4_6·b_6_7·b_1_12 + b_4_62·b_1_1·b_3_0
+ b_4_62·b_1_0·b_3_0 + b_4_5·b_3_0·b_5_0 + b_4_5·b_1_1·b_7_0 + b_4_5·b_6_7·b_1_12 + b_4_5·b_4_6·b_1_1·b_3_0 + b_4_5·b_4_6·b_1_0·b_3_0 + b_4_5·b_4_62 + b_4_52·b_1_1·b_3_0 + b_4_52·b_1_04 + b_4_52·b_4_6 + b_2_3·b_4_6·b_1_13·b_3_0 + b_2_3·b_4_62·b_1_12 + b_2_3·b_4_5·b_1_13·b_3_0 + b_2_3·b_4_5·b_6_7 + b_2_32·b_8_7 + b_2_32·b_6_7·b_1_12 + b_2_32·b_4_6·b_1_1·b_3_0 + b_2_32·b_4_5·b_1_1·b_3_0 + b_2_32·b_4_5·b_1_14 + b_2_34·b_1_14 + c_8_6·b_1_0·b_3_0 + b_4_6·c_8_6 + b_4_5·c_8_6 + b_2_32·c_8_6, an element of degree 12
- b_8_7·b_3_02 + b_4_62·b_3_02 + b_4_62·b_1_0·b_5_0 + b_4_62·b_1_06
+ b_4_63·b_1_02 + b_4_5·b_4_6·b_3_02 + b_4_5·b_4_6·b_1_06 + b_4_52·b_4_6·b_1_02 + b_2_3·b_6_7·b_1_13·b_3_0 + b_2_3·b_4_6·b_1_1·b_7_0 + b_2_3·b_4_6·b_6_7·b_1_12 + b_2_3·b_4_62·b_1_1·b_3_0 + b_2_3·b_4_63 + b_2_3·b_4_5·b_1_1·b_7_0 + b_2_3·b_4_5·b_1_15·b_3_0 + b_2_3·b_4_5·b_8_7 + b_2_3·b_4_5·b_6_7·b_1_12 + b_2_3·b_4_52·b_1_1·b_3_0 + b_2_3·b_4_52·b_4_6 + b_2_32·b_3_5·b_7_0 + b_2_32·b_6_7·b_1_1·b_3_0 + b_2_32·b_4_6·b_1_13·b_3_0 + b_2_32·b_4_5·b_4_6·b_1_12 + b_2_32·b_4_52·b_1_12 + b_2_33·b_1_1·b_7_0 + b_2_33·b_8_7 + b_2_33·b_6_7·b_1_12 + b_2_33·b_4_5·b_1_14 + b_2_34·b_1_1·b_5_0 + b_2_34·b_6_7 + b_2_34·b_4_5·b_1_12 + b_2_35·b_1_1·b_3_0 + c_8_6·b_3_52 + c_8_6·b_3_02 + c_8_6·b_1_1·b_5_0 + c_8_6·b_1_0·b_5_0 + c_8_6·b_1_06 + b_4_6·c_8_6·b_1_02 + b_4_5·c_8_6·b_1_12 + b_4_5·c_8_6·b_1_02 + b_2_3·c_8_6·b_1_1·b_3_0 + b_2_3·c_8_6·b_1_14, an element of degree 14
- b_1_1 + b_1_0, an element of degree 1
- A Duflot regular sequence is given by c_8_6.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 17, 29, 31].
- Modifying the above filter regular HSOP, we obtained the following parameters:
- b_3_0·b_5_0 + b_1_1·b_7_0 + b_1_18 + b_1_08 + b_4_62 + b_4_5·b_1_1·b_3_0 + b_4_5·b_4_6
+ b_4_52 + b_2_3·b_1_1·b_5_0 + b_2_3·b_6_7 + b_2_3·b_4_6·b_1_12 + b_2_3·b_4_5·b_1_12 + b_2_32·b_4_6 + b_2_32·b_4_5 + b_2_34 + c_8_6, an element of degree 8
- b_3_54 + b_3_04 + b_4_6·b_1_03·b_5_0 + b_4_6·b_6_7·b_1_12 + b_4_62·b_1_1·b_3_0
+ b_4_62·b_1_0·b_3_0 + b_4_5·b_3_0·b_5_0 + b_4_5·b_1_1·b_7_0 + b_4_5·b_6_7·b_1_12 + b_4_5·b_4_6·b_1_1·b_3_0 + b_4_5·b_4_6·b_1_0·b_3_0 + b_4_5·b_4_62 + b_4_52·b_1_1·b_3_0 + b_4_52·b_1_04 + b_4_52·b_4_6 + b_2_3·b_4_6·b_1_13·b_3_0 + b_2_3·b_4_62·b_1_12 + b_2_3·b_4_5·b_1_13·b_3_0 + b_2_3·b_4_5·b_6_7 + b_2_32·b_8_7 + b_2_32·b_6_7·b_1_12 + b_2_32·b_4_6·b_1_1·b_3_0 + b_2_32·b_4_5·b_1_1·b_3_0 + b_2_32·b_4_5·b_1_14 + b_2_34·b_1_14 + c_8_6·b_1_0·b_3_0 + b_4_6·c_8_6 + b_4_5·c_8_6 + b_2_32·c_8_6, an element of degree 12
- b_3_5 + b_3_0, an element of degree 3
- b_1_1 + b_1_0, an element of degree 1
- We found that there exists some HSOP over a finite extension field, in degrees 8,3,1,4.
Restriction maps
Expressing the generators as elements of H*(Syl2(M22); GF(2))
- b_1_1 → b_1_1
- b_1_0 → b_1_2
- b_2_3 → b_1_02 + b_2_4
- b_3_5 → b_2_4·b_1_0
- b_3_0 → b_3_8 + b_2_5·b_1_2 + b_2_5·b_1_0
- b_4_6 → b_4_9 + b_2_5·b_1_22 + b_2_5·b_1_02
- b_4_5 → b_4_13 + b_2_5·b_1_02 + b_2_52
- b_5_1 → b_5_20 + b_4_10·b_1_2 + b_2_5·b_1_23 + b_2_52·b_1_0 + b_2_4·b_3_8
- b_5_0 → b_5_21 + b_5_17 + b_4_10·b_1_2 + b_2_52·b_1_2 + b_2_52·b_1_0
- b_6_7 → b_6_30 + b_4_10·b_1_22 + b_2_5·b_1_24 + b_2_5·b_4_10 + b_2_52·b_1_22
- b_7_16 → b_2_4·b_5_17
- b_7_0 → b_7_41 + b_4_10·b_3_8 + b_4_10·b_1_23 + b_2_5·b_5_21 + b_2_5·b_1_25
+ b_2_5·b_4_9·b_1_2
- b_8_7 → b_8_52 + b_4_10·b_1_24 + b_4_9·b_4_10 + b_2_5·b_1_26 + b_2_5·b_4_10·b_1_22
+ b_2_52·b_1_24 + b_2_52·b_4_13 + b_2_42·b_4_9
- c_8_6 → b_8_54 + b_2_5·b_6_31 + b_2_5·b_4_9·b_1_22 + b_2_52·b_1_24 + b_2_52·b_4_13
+ b_2_52·b_4_9 + b_2_42·b_4_13 + b_2_42·b_4_9 + c_8_55
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- b_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_6 → 0, an element of degree 4
- b_4_5 → 0, an element of degree 4
- b_5_1 → 0, an element of degree 5
- b_5_0 → 0, an element of degree 5
- b_6_7 → 0, an element of degree 6
- b_7_16 → 0, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_7 → 0, an element of degree 8
- c_8_6 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_2_3 → c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_5 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_6 → 0, an element of degree 4
- b_4_5 → 0, an element of degree 4
- b_5_1 → 0, an element of degree 5
- b_5_0 → 0, an element of degree 5
- b_6_7 → c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_24
+ c_1_02·c_1_12·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
- b_7_16 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_7_0 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_8_7 → c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_24
+ c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_13·c_1_23 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14, an element of degree 8
- c_8_6 → c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_24
+ c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_13·c_1_23 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_2_3 → c_1_12, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_0 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_6 → c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
- b_4_5 → c_1_24 + c_1_13·c_1_2, an element of degree 4
- b_5_1 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_0 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_6_7 → c_1_0·c_1_13·c_1_22 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_12·c_1_22
+ c_1_02·c_1_13·c_1_2 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- b_7_16 → 0, an element of degree 7
- b_7_0 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_8_7 → c_1_0·c_1_13·c_1_24 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_02·c_1_16 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14, an element of degree 8
- c_8_6 → c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_1 → c_1_1, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_2_3 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_0 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
- b_4_6 → c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_13·c_1_3 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2, an element of degree 4
- b_4_5 → c_1_34 + c_1_23·c_1_3 + c_1_12·c_1_2·c_1_3 + c_1_13·c_1_3 + c_1_0·c_1_1·c_1_22
+ c_1_0·c_1_12·c_1_2, an element of degree 4
- b_5_1 → c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3
+ c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_0·c_1_14 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_1, an element of degree 5
- b_5_0 → c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3
+ c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_6_7 → c_1_1·c_1_22·c_1_33 + c_1_1·c_1_23·c_1_32 + c_1_12·c_1_2·c_1_33
+ c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_15·c_1_3 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_32 + c_1_0·c_1_12·c_1_22·c_1_3 + c_1_0·c_1_13·c_1_32 + c_1_0·c_1_14·c_1_3 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_23·c_1_3 + c_1_02·c_1_24 + c_1_02·c_1_1·c_1_2·c_1_32 + c_1_02·c_1_1·c_1_22·c_1_3 + c_1_02·c_1_12·c_1_32 + c_1_02·c_1_13·c_1_3 + c_1_02·c_1_13·c_1_2 + c_1_02·c_1_14 + c_1_03·c_1_1·c_1_22 + c_1_03·c_1_12·c_1_2 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
- b_7_16 → c_1_1·c_1_24·c_1_32 + c_1_1·c_1_25·c_1_3 + c_1_13·c_1_23·c_1_3
+ c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22, an element of degree 7
- b_7_0 → c_1_1·c_1_36 + c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_1·c_1_25·c_1_3
+ c_1_12·c_1_35 + c_1_12·c_1_22·c_1_33 + c_1_13·c_1_2·c_1_33 + c_1_13·c_1_23·c_1_3 + c_1_14·c_1_33 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3 + c_1_0·c_1_22·c_1_34 + c_1_0·c_1_24·c_1_32 + c_1_0·c_1_1·c_1_23·c_1_32 + c_1_0·c_1_1·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_34 + c_1_0·c_1_12·c_1_22·c_1_32 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_2·c_1_3 + c_1_0·c_1_14·c_1_22 + c_1_0·c_1_15·c_1_3 + c_1_02·c_1_2·c_1_34 + c_1_02·c_1_24·c_1_3 + c_1_02·c_1_1·c_1_34 + c_1_02·c_1_1·c_1_23·c_1_3 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_13·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_3 + c_1_02·c_1_14·c_1_2 + c_1_03·c_1_12·c_1_22 + c_1_03·c_1_13·c_1_2 + c_1_03·c_1_14 + c_1_04·c_1_2·c_1_32 + c_1_04·c_1_22·c_1_3 + c_1_04·c_1_13 + c_1_05·c_1_12 + c_1_06·c_1_1, an element of degree 7
- b_8_7 → c_1_1·c_1_2·c_1_36 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_24·c_1_33
+ c_1_1·c_1_26·c_1_3 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_2·c_1_33 + c_1_15·c_1_22·c_1_3 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_26·c_1_3 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_1·c_1_25·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_23·c_1_32 + c_1_0·c_1_13·c_1_22·c_1_32 + c_1_0·c_1_13·c_1_23·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_13·c_1_23 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_3 + c_1_03·c_1_13·c_1_22 + c_1_03·c_1_14·c_1_2 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_13·c_1_3 + c_1_04·c_1_13·c_1_2 + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_2, an element of degree 8
- c_8_6 → c_1_1·c_1_24·c_1_33 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_22·c_1_34
+ c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_22·c_1_33 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_2·c_1_32 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_26·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_25·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_23·c_1_32 + c_1_0·c_1_13·c_1_23·c_1_3 + c_1_0·c_1_15·c_1_2·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_13·c_1_2·c_1_32 + c_1_02·c_1_13·c_1_22·c_1_3 + c_1_02·c_1_13·c_1_23 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_15·c_1_2 + c_1_03·c_1_1·c_1_24 + c_1_03·c_1_13·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_1 → 0, an element of degree 1
- b_1_0 → c_1_1, an element of degree 1
- b_2_3 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_0 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3
+ c_1_12·c_1_2 + c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
- b_4_6 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_22
+ c_1_13·c_1_3 + c_1_13·c_1_2 + c_1_0·c_1_13 + c_1_02·c_1_12, an element of degree 4
- b_4_5 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- b_5_1 → c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_13·c_1_32 + c_1_13·c_1_22
+ c_1_14·c_1_3 + c_1_14·c_1_2 + c_1_0·c_1_14 + c_1_02·c_1_13, an element of degree 5
- b_5_0 → c_1_2·c_1_34 + c_1_24·c_1_3 + c_1_1·c_1_34 + c_1_1·c_1_24
+ c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_13·c_1_32 + c_1_13·c_1_22 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_6_7 → c_1_12·c_1_34 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_24 + c_1_14·c_1_2·c_1_3
+ c_1_15·c_1_3 + c_1_15·c_1_2 + c_1_0·c_1_15 + c_1_02·c_1_14, an element of degree 6
- b_7_16 → 0, an element of degree 7
- b_7_0 → c_1_2·c_1_36 + c_1_22·c_1_35 + c_1_23·c_1_34 + c_1_24·c_1_33
+ c_1_25·c_1_32 + c_1_26·c_1_3 + c_1_1·c_1_24·c_1_32 + c_1_12·c_1_2·c_1_34 + c_1_14·c_1_22·c_1_3 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3 + c_1_15·c_1_22 + c_1_16·c_1_3 + c_1_16·c_1_2 + c_1_0·c_1_22·c_1_34 + c_1_0·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_34 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_32 + c_1_0·c_1_14·c_1_22 + c_1_0·c_1_16 + c_1_02·c_1_2·c_1_34 + c_1_02·c_1_24·c_1_3 + c_1_02·c_1_1·c_1_34 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_3 + c_1_02·c_1_14·c_1_2 + c_1_03·c_1_14 + c_1_04·c_1_2·c_1_32 + c_1_04·c_1_22·c_1_3 + c_1_04·c_1_1·c_1_32 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_3 + c_1_04·c_1_12·c_1_2 + c_1_05·c_1_12 + c_1_06·c_1_1, an element of degree 7
- b_8_7 → c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_25·c_1_33 + c_1_26·c_1_32
+ c_1_1·c_1_2·c_1_36 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_25·c_1_3 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_2·c_1_3 + c_1_17·c_1_3 + c_1_17·c_1_2 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_13·c_1_22·c_1_32 + c_1_0·c_1_15·c_1_2·c_1_3 + c_1_0·c_1_17 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_13·c_1_2·c_1_32 + c_1_02·c_1_13·c_1_22·c_1_3 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_3 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_03·c_1_15 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_3 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_05·c_1_13 + c_1_06·c_1_12, an element of degree 8
- c_8_6 → c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_25·c_1_33 + c_1_26·c_1_32
+ c_1_1·c_1_2·c_1_36 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_22 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_13·c_1_22·c_1_32 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_15·c_1_2·c_1_3 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_13·c_1_2·c_1_32 + c_1_02·c_1_13·c_1_22·c_1_3 + c_1_02·c_1_15·c_1_3 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_03·c_1_15 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_13·c_1_3 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_05·c_1_13 + c_1_06·c_1_12 + c_1_08, an element of degree 8
|