| Simon King′s home page: 
      
          
      
     
      
     
     
 
      
      Mathematics:
     
      Cohomology
      
      →Theory
 →Implementation
 
     
 
      Jena:
     
           
      
      Faculty
      
     
      
      David Green
      
     
     
 
      
      External links:
      
     
        
    Singular
     
    Gap
     
 | 
         
 
 
  Mod-5-Cohomology of group number 206 of order 400
 
 
  General information on the group
  The group order factors as 24 · 52.
   It is non-abelian.
   It has 5-Rank 2.
   The centre of a Sylow 5-subgroup has rank 2.
   Its Sylow 5-subgroup has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 2.
   
 
  Structure of the cohomology ring
The computation was based on 15 stability conditions for H*(SmallGroup(25,2); GF(5)).
  General information
   The cohomology ring is of dimension 2 and depth 2.
   The depth coincides with the Duflot bound.
   The Poincaré series is    | (1  −  t  +  t2) · (1  −  t  +  t2  −  2·t3  +  2·t4  −  2·t5  +  4·t6  −  2·t7  +  2·t8  −  4·t9  +  2·t10  −  2·t11  +  4·t12  −  2·t13  +  2·t14  −  2·t15  +  t16  −  t17  +  t18) |  | 
 |  | ( − 1  +  t)2 · (1  +  t2)2 · (1  +  t4)2 · (1  +  t8) | 
 The a-invariants are -∞,-∞,-2.  They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
   The filter degree type of any filter regular HSOP is [-1, -2, -2].
   
 
  Ring generators
The cohomology ring has 8 minimal generators of maximal degree 16:
 
   a_6_0, a nilpotent element of degree 6
   a_7_1, a nilpotent element of degree 7
   a_7_0, a nilpotent element of degree 7
   c_8_0, a Duflot element of degree 8
   a_15_3, a nilpotent element of degree 15
   a_15_2, a nilpotent element of degree 15
   c_16_2, a Duflot element of degree 16
   c_16_1, a Duflot element of degree 16
   
 
  Ring relations
 There are 4 "obvious" relations:a_7_02, a_7_12, a_15_22, a_15_32
 Apart from that, there are 16 minimal relations of maximal degree 32:
 
   a_6_02
   a_6_0·a_7_0
   a_6_0·a_7_1
   a_7_0·a_7_1 + a_6_0·c_8_0
   a_6_0·a_15_2
   a_6_0·a_15_3
   a_7_0·a_15_2 − 2·a_6_0·c_16_2
   a_7_0·a_15_3 + a_6_0·c_16_1
   a_7_1·a_15_2 − a_6_0·c_16_1
   a_7_1·a_15_3 − 2·a_6_0·c_16_2
   c_16_2·a_7_0 − 2·c_16_1·a_7_1 + 2·c_8_0·a_15_3
   c_16_2·a_7_1 + 2·c_16_1·a_7_0 − 2·c_8_0·a_15_2
   a_15_2·a_15_3 + a_6_0·c_8_0·c_16_2
   c_16_2·a_15_2 + 2·c_16_1·a_15_3 − c_8_0·c_16_1·a_7_0 + c_8_02·a_15_2
   c_16_2·a_15_3 − 2·c_16_1·a_15_2 − c_8_0·c_16_1·a_7_1 + c_8_02·a_15_3
   c_16_22 − c_16_12 + c_8_02·c_16_2
   
 
 
  Data used for the Hilbert-Poincaré test
   
     We proved completion in degree 32 using the Hilbert-Poincaré criterion.
     The completion test was perfect: It applied in the last degree in which a generator or relation was found.
     The following is a filter regular homogeneous system of parameters:
    
      c_8_0, an element of degree 8
      c_16_2, an element of degree 16
       The above filter regular HSOP forms a Duflot regular sequence.
     The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 22].
     
 
 
  Restriction maps
       a_6_0 → c_2_1·c_2_2·a_1_0·a_1_1
       a_7_1 → c_2_1·c_2_22·a_1_0 − c_2_12·c_2_2·a_1_1
       a_7_0 → c_2_23·a_1_1 + c_2_13·a_1_0
       c_8_0 → c_2_24 + c_2_14
       a_15_3 → c_2_13·c_2_24·a_1_0 + c_2_14·c_2_23·a_1_1
       a_15_2 → c_2_12·c_2_25·a_1_1 − c_2_15·c_2_22·a_1_0
       c_16_2 → c_2_14·c_2_24
       c_16_1 → c_2_12·c_2_26 − c_2_16·c_2_22
       
    Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 2
  
       a_6_0 → c_2_1·c_2_2·a_1_0·a_1_1, an element of degree 6
       a_7_1 → c_2_1·c_2_22·a_1_0 − c_2_12·c_2_2·a_1_1, an element of degree 7
       a_7_0 → c_2_23·a_1_1 + c_2_13·a_1_0, an element of degree 7
       c_8_0 → c_2_24 + c_2_14, an element of degree 8
       a_15_3 → c_2_13·c_2_24·a_1_0 + c_2_14·c_2_23·a_1_1, an element of degree 15
       a_15_2 → c_2_12·c_2_25·a_1_1 − c_2_15·c_2_22·a_1_0, an element of degree 15
       c_16_2 → c_2_14·c_2_24, an element of degree 16
       c_16_1 → c_2_12·c_2_26 − c_2_16·c_2_22, an element of degree 16
       
 
 
 
               
 
 |