Mod-2-Cohomology of group number 7443 of order 576

About the group Ring generators Ring relations Completion information Restriction maps


General information on the group

  • The group order factors as 26 · 32.
  • It is non-abelian.
  • It has 2-Rank 4.
  • The centre of a Sylow 2-subgroup has rank 2.
  • Its Sylow 2-subgroup has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.


Structure of the cohomology ring

The computation was based on 2 stability conditions for H*(Syl2(L3(4)); GF(2)).

General information

  • The cohomology ring is of dimension 4 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    1  −  2·t  +  6·t2  −  5·t3  +  t4  +  7·t5  −  6·t6  +  3·t7  +  8·t8  −  11·t9  +  8·t10  +  3·t11  −  7·t12  +  9·t13  −  4·t14  +  t16

    (1  +  t) · ( − 1  +  t)4 · (1  −  t  +  t2) · (1  +  t2)2 · (1  +  t  +  t2)2 · (1  −  t2  +  t4)
  • The a-invariants are -∞,-∞,-3,-5,-4. They were obtained using the 1st, the 2nd, the second power of the 3rd, and the 4th filter regular parameter of the Hilbert-Poincaré test.
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].

About the group Ring generators Ring relations Completion information Restriction maps

Ring generators

The cohomology ring has 24 minimal generators of maximal degree 12:

  1. a_2_3, a nilpotent element of degree 2
  2. a_2_2, a nilpotent element of degree 2
  3. b_2_1, an element of degree 2
  4. b_2_0, an element of degree 2
  5. b_3_5, an element of degree 3
  6. b_3_4, an element of degree 3
  7. b_3_3, an element of degree 3
  8. b_3_2, an element of degree 3
  9. b_3_1, an element of degree 3
  10. b_3_0, an element of degree 3
  11. b_5_12, an element of degree 5
  12. b_5_11, an element of degree 5
  13. b_5_9, an element of degree 5
  14. b_5_8, an element of degree 5
  15. b_6_19, an element of degree 6
  16. b_6_18, an element of degree 6
  17. b_6_7, an element of degree 6
  18. c_8_32, a Duflot element of degree 8
  19. b_9_43, an element of degree 9
  20. b_9_42, an element of degree 9
  21. b_9_33, an element of degree 9
  22. b_9_26, an element of degree 9
  23. c_12_74, a Duflot element of degree 12
  24. c_12_73, a Duflot element of degree 12

About the group Ring generators Ring relations Completion information Restriction maps

Ring relations

There are 204 minimal relations of maximal degree 24:

  1. a_2_22
  2. a_2_2·a_2_3
  3. a_2_32
  4. a_2_2·b_2_0
  5. a_2_2·b_2_1
  6. a_2_3·b_2_0
  7. a_2_3·b_2_1
  8. b_2_12 + b_2_0·b_2_1
  9. a_2_2·b_3_0
  10. a_2_2·b_3_2
  11. a_2_2·b_3_3
  12. a_2_2·b_3_4
  13. a_2_2·b_3_5
  14. a_2_3·b_3_0 + a_2_2·b_3_1
  15. a_2_3·b_3_1
  16. a_2_3·b_3_2
  17. a_2_3·b_3_3
  18. a_2_3·b_3_4
  19. a_2_3·b_3_5
  20. b_2_1·b_3_2 + b_2_0·b_3_5 + b_2_0·b_3_4
  21. b_2_1·b_3_3 + b_2_0·b_3_5
  22. b_2_1·b_3_4 + b_2_0·b_3_4
  23. b_2_1·b_3_5 + b_2_0·b_3_5
  24. b_3_32 + b_3_2·b_3_3 + b_3_22 + b_2_03
  25. b_3_3·b_3_4 + b_3_2·b_3_5 + b_3_2·b_3_4 + b_2_02·b_2_1
  26. b_3_3·b_3_5 + b_3_2·b_3_4 + b_2_02·b_2_1
  27. b_3_42 + b_3_2·b_3_5 + b_2_02·b_2_1
  28. b_3_4·b_3_5 + b_3_2·b_3_5 + b_3_2·b_3_4 + b_2_02·b_2_1
  29. b_3_52 + b_3_2·b_3_4 + b_2_02·b_2_1
  30. a_2_2·b_5_11 + a_2_2·b_5_9
  31. a_2_2·b_5_12 + a_2_2·b_5_9 + a_2_2·b_5_8
  32. a_2_3·b_5_8 + a_2_2·b_5_9 + a_2_2·b_5_8
  33. a_2_3·b_5_9 + a_2_2·b_5_8
  34. a_2_3·b_5_11 + a_2_2·b_5_9 + a_2_2·b_5_8
  35. a_2_3·b_5_12 + a_2_2·b_5_8
  36. b_2_1·b_5_8 + b_2_0·b_5_8
  37. b_2_1·b_5_9 + b_2_0·b_5_9
  38. b_2_1·b_5_11
  39. b_2_1·b_5_12
  40. a_2_2·b_6_7
  41. a_2_2·b_6_18
  42. a_2_2·b_6_19
  43. a_2_3·b_6_7
  44. a_2_3·b_6_18
  45. a_2_3·b_6_19
  46. b_2_1·b_6_7 + b_2_0·b_3_2·b_3_5 + b_2_0·b_3_12 + b_2_0·b_3_0·b_3_4 + b_2_0·b_3_0·b_3_2
       + b_2_0·b_3_02 + b_2_0·b_6_18
  47. b_2_1·b_6_18
  48. b_2_1·b_6_19
  49. b_2_1·b_3_02 + b_2_0·b_3_1·b_3_4 + b_2_0·b_3_1·b_3_3 + b_2_0·b_3_1·b_3_2
       + b_2_0·b_3_0·b_3_4 + b_2_0·b_3_0·b_3_3 + b_2_0·b_3_0·b_3_2 + b_2_0·b_3_02
       + b_2_0·b_6_19 + b_2_0·b_6_18
  50. b_2_1·b_3_0·b_3_1 + b_2_0·b_3_2·b_3_5 + b_2_0·b_3_1·b_3_5 + b_2_0·b_3_1·b_3_4
       + b_2_0·b_3_1·b_3_2 + b_2_0·b_3_12 + b_2_0·b_3_0·b_3_4 + b_2_0·b_3_0·b_3_2
       + b_2_0·b_3_0·b_3_1 + b_2_0·b_3_02 + b_2_0·b_6_7
  51. b_2_1·b_3_12 + b_2_0·b_3_1·b_3_4 + b_2_0·b_3_1·b_3_3 + b_2_0·b_3_1·b_3_2
       + b_2_0·b_3_12 + b_2_0·b_3_0·b_3_5 + b_2_0·b_3_0·b_3_3 + b_2_0·b_6_19
  52. b_3_3·b_5_8 + b_3_2·b_5_9 + b_3_2·b_5_8 + b_2_0·b_3_2·b_3_5 + b_2_0·b_3_2·b_3_4
       + b_2_0·b_3_1·b_3_4 + b_2_0·b_3_12 + b_2_0·b_3_0·b_3_4 + b_2_0·b_3_0·b_3_2
       + b_2_0·b_3_02 + b_2_0·b_6_18 + b_2_03·b_2_1
  53. b_3_3·b_5_9 + b_3_2·b_5_8 + b_2_0·b_3_2·b_3_5 + b_2_0·b_3_1·b_3_5 + b_2_0·b_3_1·b_3_4
       + b_2_0·b_3_1·b_3_3 + b_2_0·b_3_1·b_3_2 + b_2_0·b_3_0·b_3_5 + b_2_0·b_3_0·b_3_4
       + b_2_0·b_3_0·b_3_3 + b_2_0·b_3_0·b_3_2 + b_2_0·b_3_02 + b_2_0·b_6_19 + b_2_0·b_6_18
  54. b_3_3·b_5_11 + b_3_2·b_5_12 + b_2_0·b_6_19
  55. b_3_3·b_5_12 + b_3_2·b_5_12 + b_3_2·b_5_11 + b_2_0·b_6_19 + b_2_0·b_6_18
  56. b_3_4·b_5_8 + b_3_2·b_5_9 + b_2_0·b_3_2·b_3_5 + b_2_0·b_3_2·b_3_4 + b_2_0·b_3_1·b_3_4
       + b_2_0·b_3_12 + b_2_0·b_3_0·b_3_4 + b_2_0·b_3_0·b_3_2 + b_2_0·b_3_02 + b_2_0·b_6_18
       + b_2_03·b_2_1
  57. b_3_4·b_5_9 + b_3_2·b_5_9 + b_3_2·b_5_8 + b_2_0·b_3_2·b_3_5 + b_2_0·b_3_1·b_3_5
       + b_2_0·b_3_1·b_3_4 + b_2_0·b_3_1·b_3_3 + b_2_0·b_3_1·b_3_2 + b_2_0·b_3_0·b_3_5
       + b_2_0·b_3_0·b_3_4 + b_2_0·b_3_0·b_3_3 + b_2_0·b_3_0·b_3_2 + b_2_0·b_3_02
       + b_2_0·b_6_19 + b_2_0·b_6_18
  58. b_3_4·b_5_11
  59. b_3_4·b_5_12
  60. b_3_5·b_5_8 + b_3_2·b_5_9 + b_3_2·b_5_8 + b_2_0·b_3_2·b_3_5 + b_2_0·b_3_2·b_3_4
       + b_2_0·b_3_1·b_3_4 + b_2_0·b_3_12 + b_2_0·b_3_0·b_3_4 + b_2_0·b_3_0·b_3_2
       + b_2_0·b_3_02 + b_2_0·b_6_18 + b_2_03·b_2_1
  61. b_3_5·b_5_9 + b_3_2·b_5_8 + b_2_0·b_3_2·b_3_5 + b_2_0·b_3_1·b_3_5 + b_2_0·b_3_1·b_3_4
       + b_2_0·b_3_1·b_3_3 + b_2_0·b_3_1·b_3_2 + b_2_0·b_3_0·b_3_5 + b_2_0·b_3_0·b_3_4
       + b_2_0·b_3_0·b_3_3 + b_2_0·b_3_0·b_3_2 + b_2_0·b_3_02 + b_2_0·b_6_19 + b_2_0·b_6_18
  62. b_3_5·b_5_11
  63. b_3_5·b_5_12
  64. b_6_18·b_3_4
  65. b_6_18·b_3_5
  66. b_6_19·b_3_2 + b_6_18·b_3_3 + b_6_18·b_3_2 + b_2_02·b_5_12 + b_2_02·b_5_11
  67. b_6_19·b_3_3 + b_6_18·b_3_2 + b_2_02·b_5_11
  68. b_6_19·b_3_4
  69. b_6_19·b_3_5
  70. b_3_0·b_3_2·b_3_3 + b_3_0·b_3_1·b_3_4 + b_3_0·b_3_1·b_3_3 + b_3_0·b_3_1·b_3_2
       + b_3_0·b_3_12 + b_3_02·b_3_5 + b_3_03 + b_6_19·b_3_1 + b_6_18·b_3_2 + b_6_18·b_3_1
       + b_6_7·b_3_5 + b_6_7·b_3_4 + b_6_7·b_3_2 + b_6_7·b_3_0 + b_2_02·b_5_11
       + b_2_02·b_2_1·b_3_1 + b_2_02·b_2_1·b_3_0 + b_2_03·b_3_1 + b_2_03·b_3_0
  71. b_3_0·b_3_2·b_3_4 + b_3_0·b_3_22 + b_3_0·b_3_12 + b_3_02·b_3_4 + b_3_02·b_3_2
       + b_3_03 + b_6_19·b_3_1 + b_6_18·b_3_1 + b_6_7·b_3_5 + b_6_7·b_3_3 + b_6_7·b_3_0
       + b_2_02·b_5_12 + b_2_02·b_2_1·b_3_1 + b_2_02·b_2_1·b_3_0 + b_2_03·b_3_1
       + b_2_03·b_3_0
  72. b_3_0·b_3_2·b_3_5 + b_3_0·b_3_1·b_3_5 + b_3_0·b_3_1·b_3_4 + b_3_0·b_3_1·b_3_2
       + b_3_0·b_3_12 + b_3_02·b_3_5 + b_3_02·b_3_4 + b_3_02·b_3_3 + b_3_02·b_3_2 + b_3_03
       + b_6_19·b_3_1 + b_6_18·b_3_3 + b_6_18·b_3_1 + b_6_7·b_3_4 + b_6_7·b_3_3 + b_6_7·b_3_2
       + b_6_7·b_3_0 + b_2_02·b_5_12 + b_2_02·b_5_11
  73. b_3_12·b_3_2 + b_3_13 + b_3_0·b_3_22 + b_3_0·b_3_1·b_3_3 + b_3_0·b_3_12
       + b_3_02·b_3_4 + b_3_02·b_3_3 + b_3_02·b_3_2 + b_3_02·b_3_1 + b_3_03 + b_6_19·b_3_1
       + b_6_19·b_3_0 + b_6_18·b_3_1 + b_6_7·b_3_5 + b_6_7·b_3_3 + b_6_7·b_3_1 + b_6_7·b_3_0
       + b_2_02·b_5_12 + b_2_02·b_5_9 + b_2_03·b_3_1 + b_2_03·b_3_0
  74. b_3_12·b_3_4 + b_3_12·b_3_3 + b_3_13 + b_3_0·b_3_22 + b_3_0·b_3_1·b_3_4
       + b_3_0·b_3_1·b_3_2 + b_3_0·b_3_12 + b_3_02·b_3_5 + b_3_02·b_3_4 + b_3_02·b_3_2
       + b_3_02·b_3_1 + b_3_03 + b_6_19·b_3_1 + b_6_19·b_3_0 + b_6_18·b_3_3 + b_6_18·b_3_1
       + b_6_7·b_3_5 + b_6_7·b_3_4 + b_6_7·b_3_2 + b_6_7·b_3_1 + b_6_7·b_3_0 + b_2_02·b_5_11
       + b_2_02·b_5_9 + b_2_03·b_3_1 + b_2_03·b_3_0
  75. b_3_12·b_3_5 + b_3_12·b_3_3 + b_3_0·b_3_1·b_3_5 + b_3_0·b_3_1·b_3_3 + b_3_02·b_3_5
       + b_3_02·b_3_4 + b_3_02·b_3_2 + b_6_18·b_3_2 + b_6_7·b_3_5 + b_6_7·b_3_3 + b_2_02·b_5_12
       + b_2_02·b_2_1·b_3_1 + b_2_02·b_2_1·b_3_0 + b_2_03·b_3_1 + b_2_03·b_3_0
  76. b_3_1·b_3_22 + b_3_12·b_3_3 + b_3_13 + b_3_0·b_3_22 + b_3_0·b_3_1·b_3_4
       + b_3_0·b_3_1·b_3_2 + b_3_02·b_3_5 + b_3_02·b_3_4 + b_3_02·b_3_3 + b_3_02·b_3_1
       + b_6_19·b_3_0 + b_6_18·b_3_2 + b_6_7·b_3_4 + b_6_7·b_3_3 + b_6_7·b_3_2 + b_6_7·b_3_1
       + b_2_02·b_5_12 + b_2_02·b_5_8 + b_2_03·b_3_5 + b_2_03·b_3_1 + b_2_03·b_3_0
  77. b_3_1·b_3_2·b_3_3 + b_3_13 + b_3_0·b_3_1·b_3_4 + b_3_0·b_3_1·b_3_2 + b_3_02·b_3_5
       + b_3_02·b_3_4 + b_3_02·b_3_2 + b_3_02·b_3_1 + b_6_19·b_3_0 + b_6_18·b_3_2 + b_6_7·b_3_4
       + b_6_7·b_3_3 + b_6_7·b_3_2 + b_6_7·b_3_1 + b_2_02·b_5_11 + b_2_02·b_2_1·b_3_1
       + b_2_02·b_2_1·b_3_0 + b_2_03·b_3_1 + b_2_03·b_3_0
  78. b_3_1·b_3_2·b_3_4 + b_3_12·b_3_3 + b_3_0·b_3_22 + b_3_0·b_3_1·b_3_4
       + b_3_0·b_3_1·b_3_3 + b_3_0·b_3_1·b_3_2 + b_3_02·b_3_3 + b_3_02·b_3_2 + b_6_18·b_3_3
       + b_6_18·b_3_2 + b_6_7·b_3_4 + b_6_7·b_3_3 + b_6_7·b_3_2 + b_2_02·b_5_12 + b_2_02·b_5_11
       + b_2_02·b_5_8 + b_2_02·b_2_1·b_3_1 + b_2_02·b_2_1·b_3_0 + b_2_03·b_3_5
  79. b_3_1·b_3_2·b_3_5 + b_3_13 + b_3_0·b_3_1·b_3_5 + b_3_0·b_3_1·b_3_4 + b_3_0·b_3_1·b_3_3
       + b_3_0·b_3_1·b_3_2 + b_3_02·b_3_5 + b_3_02·b_3_4 + b_3_02·b_3_2 + b_3_02·b_3_1
       + b_6_19·b_3_0 + b_6_18·b_3_3 + b_6_18·b_3_2 + b_6_7·b_3_5 + b_6_7·b_3_4 + b_6_7·b_3_2
       + b_6_7·b_3_1 + b_2_02·b_5_11 + b_2_02·b_2_1·b_3_1 + b_2_02·b_2_1·b_3_0
       + b_2_03·b_3_1 + b_2_03·b_3_0
  80. b_3_22·b_3_4 + b_3_12·b_3_3 + b_3_0·b_3_22 + b_3_0·b_3_1·b_3_5 + b_3_0·b_3_1·b_3_3
       + b_3_0·b_3_12 + b_3_03 + b_6_19·b_3_1 + b_6_18·b_3_2 + b_6_18·b_3_1 + b_6_7·b_3_5
       + b_6_7·b_3_0 + b_2_02·b_2_1·b_3_0 + b_2_03·b_3_5 + b_2_03·b_3_4
  81. b_3_22·b_3_5 + b_3_13 + b_3_0·b_3_22 + b_3_0·b_3_1·b_3_3 + b_3_02·b_3_3
       + b_3_02·b_3_2 + b_3_02·b_3_1 + b_6_19·b_3_0 + b_6_18·b_3_2 + b_6_7·b_3_5 + b_6_7·b_3_4
       + b_6_7·b_3_1 + b_2_02·b_5_9 + b_2_02·b_2_1·b_3_1 + b_2_02·b_2_1·b_3_0
  82. b_5_8·b_5_11 + a_2_3·c_8_32
  83. b_5_8·b_5_12 + a_2_3·c_8_32 + a_2_2·c_8_32
  84. b_5_92 + b_5_8·b_5_9 + b_5_82 + b_2_0·b_3_1·b_5_8 + b_2_0·b_3_0·b_5_9
       + b_2_02·b_3_2·b_3_4 + b_2_02·b_3_1·b_3_3 + b_2_02·b_3_1·b_3_2 + b_2_02·b_3_12
       + b_2_02·b_3_0·b_3_5 + b_2_02·b_3_0·b_3_3 + b_2_02·b_6_19 + b_2_04·b_2_1
       + b_2_1·c_8_32
  85. b_5_9·b_5_11 + a_2_2·c_8_32
  86. b_5_9·b_5_12 + a_2_3·c_8_32
  87. b_5_122 + b_5_11·b_5_12 + b_5_112 + b_2_1·c_8_32 + b_2_0·c_8_32
  88. a_2_2·b_9_42 + a_2_2·b_9_33 + a_2_2·b_9_26
  89. a_2_2·b_9_43 + a_2_2·b_9_26
  90. a_2_3·b_9_26 + a_2_2·b_9_33 + a_2_2·b_9_26
  91. a_2_3·b_9_33 + a_2_2·b_9_26
  92. a_2_3·b_9_42 + a_2_2·b_9_26
  93. a_2_3·b_9_43 + a_2_2·b_9_33
  94. b_2_1·b_9_26 + b_2_0·b_9_26
  95. b_2_1·b_9_33 + b_2_0·b_9_33
  96. b_2_1·b_9_42
  97. b_2_1·b_9_43
  98. b_6_18·b_5_8 + a_2_2·b_9_26
  99. b_6_18·b_5_9 + a_2_2·b_9_33 + a_2_2·b_9_26
  100. b_6_18·b_5_11 + b_2_0·b_9_42 + c_8_32·b_3_5 + c_8_32·b_3_3
  101. b_6_18·b_5_12 + b_2_0·b_9_43 + b_2_0·b_9_42 + c_8_32·b_3_4 + c_8_32·b_3_3 + c_8_32·b_3_2
  102. b_6_19·b_5_8 + a_2_2·b_9_33 + a_2_2·b_9_26
  103. b_6_19·b_5_9 + a_2_2·b_9_33
  104. b_6_19·b_5_11 + b_2_0·b_9_43 + b_2_0·b_9_42 + c_8_32·b_3_5 + c_8_32·b_3_4 + c_8_32·b_3_2
  105. b_6_19·b_5_12 + b_2_0·b_9_43 + c_8_32·b_3_5 + c_8_32·b_3_3
  106. b_3_0·b_3_2·b_5_11 + b_3_0·b_3_1·b_5_11 + b_3_02·b_5_12 + b_6_7·b_5_11
       + b_2_0·b_6_19·b_3_1 + b_2_0·b_6_19·b_3_0 + b_2_0·b_6_18·b_3_1 + b_2_0·b_6_18·b_3_0
       + a_2_2·b_9_33 + a_2_2·b_9_26 + c_8_32·b_3_4 + c_8_32·b_3_3 + c_8_32·b_3_2
  107. b_3_0·b_3_2·b_5_12 + b_3_0·b_3_1·b_5_12 + b_3_02·b_5_12 + b_3_02·b_5_11 + b_6_7·b_5_12
       + b_2_0·b_6_18·b_3_1 + b_2_0·b_6_18·b_3_0 + a_2_2·b_9_33 + c_8_32·b_3_5 + c_8_32·b_3_4
       + c_8_32·b_3_2
  108. b_3_12·b_5_8 + b_3_0·b_3_2·b_5_8 + b_6_7·b_5_8 + b_2_0·b_9_33 + b_2_0·b_3_0·b_3_1·b_3_5
       + b_2_0·b_3_0·b_3_1·b_3_4 + b_2_0·b_3_0·b_3_1·b_3_3 + b_2_0·b_3_0·b_3_12
       + b_2_0·b_3_02·b_3_4 + b_2_0·b_3_03 + b_2_0·b_6_19·b_3_0 + b_2_0·b_6_18·b_3_3
       + b_2_0·b_6_18·b_3_2 + b_2_0·b_6_18·b_3_1 + b_2_0·b_6_18·b_3_0 + b_2_0·b_6_7·b_3_5
       + b_2_0·b_6_7·b_3_2 + b_2_0·b_6_7·b_3_1 + b_2_03·b_5_11 + b_2_03·b_5_8
       + b_2_03·b_2_1·b_3_0 + b_2_04·b_3_5 + b_2_04·b_3_1 + b_2_04·b_3_0 + a_2_2·b_9_33
       + a_2_2·b_9_26 + c_8_32·b_3_5
  109. b_3_12·b_5_9 + b_3_0·b_3_2·b_5_9 + b_6_7·b_5_9 + b_2_0·b_9_26 + b_2_0·b_3_12·b_3_3
       + b_2_0·b_3_0·b_3_1·b_3_3 + b_2_0·b_3_0·b_3_12 + b_2_0·b_6_19·b_3_1
       + b_2_0·b_6_18·b_3_0 + b_2_0·b_6_7·b_3_1 + b_2_0·b_6_7·b_3_0 + b_2_03·b_2_1·b_3_1
       + a_2_2·b_9_33 + c_8_32·b_3_5 + c_8_32·b_3_4
  110. b_3_12·b_5_11 + b_3_0·b_3_1·b_5_11 + b_3_02·b_5_12 + b_3_02·b_5_11 + b_6_7·b_5_11
       + b_2_0·b_9_42 + b_2_0·b_6_19·b_3_1 + b_2_0·b_6_19·b_3_0 + b_2_0·b_6_18·b_3_1
       + b_2_0·b_6_18·b_3_0 + a_2_2·b_9_26 + c_8_32·b_3_5 + c_8_32·b_3_4 + c_8_32·b_3_2
  111. b_3_12·b_5_12 + b_3_0·b_3_1·b_5_12 + b_3_02·b_5_11 + b_6_7·b_5_12 + b_2_0·b_9_43
       + b_2_0·b_9_42 + b_2_0·b_6_18·b_3_1 + b_2_0·b_6_18·b_3_0 + a_2_2·b_9_33 + a_2_2·b_9_26
       + c_8_32·b_3_5 + c_8_32·b_3_3
  112. b_3_1·b_3_2·b_5_8 + b_3_0·b_3_2·b_5_8 + b_3_02·b_5_8 + b_6_7·b_5_9
       + b_2_0·b_3_12·b_3_3 + b_2_0·b_3_13 + b_2_0·b_3_0·b_3_22 + b_2_0·b_3_0·b_3_1·b_3_3
       + b_2_0·b_3_0·b_3_1·b_3_2 + b_2_0·b_3_02·b_3_5 + b_2_0·b_3_02·b_3_3
       + b_2_0·b_3_02·b_3_2 + b_2_0·b_6_18·b_3_3 + b_2_0·b_6_18·b_3_2 + b_2_0·b_6_18·b_3_1
       + b_2_0·b_6_18·b_3_0 + b_2_0·b_6_7·b_3_4 + b_2_0·b_6_7·b_3_3 + b_2_0·b_6_7·b_3_2
       + b_2_0·b_6_7·b_3_0 + b_2_03·b_5_12 + b_2_03·b_5_11 + b_2_03·b_5_8
       + b_2_03·b_2_1·b_3_1 + b_2_03·b_2_1·b_3_0 + b_2_04·b_3_5 + a_2_2·b_9_33 + c_8_32·b_3_5
       + c_8_32·b_3_4
  113. b_3_1·b_3_2·b_5_9 + b_3_0·b_3_2·b_5_9 + b_3_02·b_5_9 + b_6_7·b_5_9 + b_6_7·b_5_8
       + b_2_0·b_3_12·b_3_3 + b_2_0·b_3_13 + b_2_0·b_3_0·b_3_1·b_3_4
       + b_2_0·b_3_0·b_3_1·b_3_2 + b_2_0·b_3_02·b_3_1 + b_2_0·b_6_19·b_3_0
       + b_2_0·b_6_18·b_3_3 + b_2_0·b_6_7·b_3_5 + b_2_0·b_6_7·b_3_4 + b_2_0·b_6_7·b_3_3
       + b_2_0·b_6_7·b_3_2 + b_2_0·b_6_7·b_3_1 + b_2_03·b_5_12 + b_2_03·b_5_11 + b_2_03·b_5_9
       + a_2_2·b_9_26 + c_8_32·b_3_4
  114. b_3_1·b_3_2·b_5_11 + b_3_0·b_3_1·b_5_11 + b_6_7·b_5_11 + b_2_0·b_9_42 + c_8_32·b_3_5
       + c_8_32·b_3_3
  115. b_3_1·b_3_2·b_5_12 + b_3_0·b_3_1·b_5_12 + b_6_7·b_5_12 + b_2_0·b_9_43 + b_2_0·b_9_42
       + c_8_32·b_3_4 + c_8_32·b_3_3 + c_8_32·b_3_2
  116. b_3_22·b_5_8 + b_3_0·b_3_2·b_5_9 + b_3_0·b_3_2·b_5_8 + b_3_02·b_5_9 + b_2_0·b_9_26
       + b_2_0·b_3_12·b_3_3 + b_2_0·b_3_0·b_3_22 + b_2_0·b_3_0·b_3_12
       + b_2_0·b_3_02·b_3_5 + b_2_0·b_3_02·b_3_4 + b_2_0·b_3_02·b_3_2 + b_2_0·b_3_03
       + b_2_0·b_6_19·b_3_1 + b_2_0·b_6_19·b_3_0 + b_2_0·b_6_18·b_3_3 + b_2_0·b_6_7·b_3_2
       + b_2_0·b_6_7·b_3_1 + b_2_0·b_6_7·b_3_0 + b_2_03·b_5_11 + b_2_03·b_5_9
       + b_2_03·b_2_1·b_3_1 + b_2_04·b_3_1 + b_2_04·b_3_0 + a_2_2·b_9_26 + c_8_32·b_3_5
       + c_8_32·b_3_4
  117. b_3_22·b_5_9 + b_3_0·b_3_2·b_5_8 + b_3_02·b_5_9 + b_3_02·b_5_8 + b_2_0·b_9_33
       + b_2_0·b_9_26 + b_2_0·b_3_12·b_3_3 + b_2_0·b_3_0·b_3_1·b_3_5
       + b_2_0·b_3_0·b_3_1·b_3_3 + b_2_0·b_3_02·b_3_4 + b_2_0·b_3_02·b_3_2
       + b_2_0·b_6_18·b_3_2 + b_2_0·b_6_7·b_3_4 + b_2_0·b_6_7·b_3_3 + b_2_03·b_5_12
       + b_2_03·b_5_9 + b_2_03·b_2_1·b_3_1 + b_2_03·b_2_1·b_3_0 + b_2_04·b_3_1
       + b_2_04·b_3_0 + a_2_2·b_9_33 + a_2_2·b_9_26 + c_8_32·b_3_4
  118. b_6_18·b_3_12 + b_6_18·b_3_0·b_3_2 + b_6_18·b_3_02 + b_6_182
  119. b_6_18·b_3_1·b_3_2 + b_6_18·b_3_0·b_3_1 + b_6_182 + b_6_7·b_6_18
  120. b_6_18·b_3_1·b_3_3 + b_6_18·b_3_0·b_3_3 + b_6_18·b_3_0·b_3_2 + b_6_18·b_3_0·b_3_1
       + b_6_18·b_3_02 + b_6_18·b_6_19 + b_6_7·b_6_18
  121. b_6_18·b_3_2·b_3_3 + b_6_18·b_3_0·b_3_3 + b_6_18·b_3_0·b_3_2 + b_6_7·b_3_2·b_3_5
       + b_6_7·b_3_2·b_3_4 + b_6_7·b_3_2·b_3_3 + b_6_7·b_3_22 + b_6_7·b_3_1·b_3_5
       + b_6_7·b_3_1·b_3_3 + b_6_7·b_3_12 + b_6_7·b_3_0·b_3_3 + b_6_7·b_3_02 + b_6_7·b_6_18
       + b_6_72 + b_2_02·b_3_2·b_5_12 + b_2_02·b_3_2·b_5_11 + b_2_02·b_3_1·b_5_12
       + b_2_02·b_3_0·b_5_12 + b_2_0·b_2_1·c_8_32 + b_2_02·c_8_32
  122. b_6_192 + b_6_18·b_6_19 + b_6_182 + b_2_0·b_2_1·c_8_32 + b_2_02·c_8_32
  123. b_6_19·b_3_02 + b_6_18·b_3_0·b_3_2 + b_6_18·b_3_0·b_3_1 + b_6_18·b_3_02
       + b_6_18·b_6_19 + b_6_182 + b_6_7·b_6_18 + b_2_02·b_3_1·b_5_12 + b_2_02·b_3_0·b_5_12
       + b_2_0·b_2_1·c_8_32 + b_2_02·c_8_32
  124. b_6_19·b_3_0·b_3_1 + b_6_18·b_3_0·b_3_3 + b_6_18·b_3_0·b_3_2 + b_6_18·b_3_02
       + b_6_182 + b_6_7·b_6_19 + b_2_02·b_3_1·b_5_12 + b_2_02·b_3_1·b_5_11
  125. b_3_02·b_3_22 + b_3_02·b_3_1·b_3_3 + b_3_02·b_3_1·b_3_2 + b_3_02·b_3_12
       + b_6_18·b_3_0·b_3_2 + b_6_18·b_3_0·b_3_1 + b_6_18·b_3_02 + b_6_18·b_6_19 + b_6_182
       + b_6_7·b_3_2·b_3_5 + b_6_7·b_3_1·b_3_5 + b_6_7·b_3_1·b_3_4 + b_6_7·b_3_1·b_3_3
       + b_6_7·b_3_1·b_3_2 + b_6_7·b_3_0·b_3_5 + b_6_7·b_3_0·b_3_4 + b_6_7·b_6_18 + b_6_72
       + b_2_02·b_3_1·b_5_12 + b_2_02·b_3_1·b_5_8 + b_2_02·b_3_0·b_5_12
       + b_2_02·b_3_0·b_5_8 + b_2_03·b_3_2·b_3_5 + b_2_03·b_3_1·b_3_4 + b_2_03·b_3_1·b_3_3
       + b_2_03·b_3_12 + b_2_03·b_3_0·b_3_5 + b_2_03·b_3_0·b_3_4 + b_2_03·b_3_0·b_3_3
       + b_2_03·b_3_0·b_3_2 + b_2_03·b_3_0·b_3_1 + b_2_03·b_6_19 + b_2_03·b_6_7
       + b_2_0·b_2_1·c_8_32
  126. b_3_2·b_9_26 + b_3_0·b_3_12·b_3_3 + b_3_02·b_3_1·b_3_3 + b_3_02·b_3_1·b_3_2
       + b_3_02·b_3_12 + b_3_04 + b_6_18·b_3_0·b_3_3 + b_6_18·b_3_0·b_3_2 + b_6_18·b_3_02
       + b_6_7·b_3_2·b_3_5 + b_6_7·b_3_1·b_3_5 + b_6_7·b_3_1·b_3_3 + b_6_7·b_3_1·b_3_2
       + b_6_7·b_3_0·b_3_5 + b_6_7·b_3_0·b_3_4 + b_6_7·b_3_0·b_3_3 + b_6_7·b_3_0·b_3_2
       + b_6_72 + b_2_0·b_5_8·b_5_9 + b_2_0·b_5_82 + b_2_02·b_3_2·b_5_9
       + b_2_02·b_3_1·b_5_8 + b_2_02·b_3_0·b_5_12 + b_2_02·b_3_0·b_5_11
       + b_2_02·b_3_0·b_5_8 + b_2_03·b_3_2·b_3_4 + b_2_03·b_3_1·b_3_5 + b_2_03·b_3_1·b_3_3
       + b_2_03·b_3_1·b_3_2 + b_2_03·b_3_12 + b_2_03·b_3_0·b_3_4 + b_2_03·b_3_0·b_3_3
       + b_2_03·b_3_0·b_3_2 + b_2_03·b_6_19 + b_2_03·b_6_18 + b_2_05·b_2_1
       + b_2_0·b_2_1·c_8_32 + b_2_02·c_8_32
  127. b_3_2·b_9_33 + b_3_0·b_3_12·b_3_3 + b_3_02·b_3_1·b_3_3 + b_3_02·b_3_1·b_3_2
       + b_3_02·b_3_12 + b_3_03·b_3_2 + b_3_04 + b_6_18·b_3_22 + b_6_18·b_6_19 + b_6_182
       + b_6_7·b_3_2·b_3_5 + b_6_7·b_3_2·b_3_4 + b_6_7·b_3_2·b_3_3 + b_6_7·b_3_1·b_3_5
       + b_6_7·b_3_1·b_3_4 + b_6_7·b_3_1·b_3_3 + b_6_7·b_3_12 + b_6_7·b_3_0·b_3_3
       + b_6_7·b_3_0·b_3_2 + b_6_7·b_3_02 + b_6_7·b_6_18 + b_6_72 + b_2_0·b_5_8·b_5_9
       + b_2_02·b_3_2·b_5_12 + b_2_02·b_3_2·b_5_9 + b_2_02·b_3_1·b_5_12
       + b_2_02·b_3_1·b_5_11 + b_2_02·b_3_0·b_5_12 + b_2_02·b_3_0·b_5_11
       + b_2_03·b_3_2·b_3_5 + b_2_03·b_3_1·b_3_5 + b_2_03·b_3_1·b_3_4 + b_2_03·b_3_1·b_3_3
       + b_2_03·b_3_1·b_3_2 + b_2_03·b_3_0·b_3_4 + b_2_03·b_3_0·b_3_3 + b_2_03·b_3_0·b_3_2
       + b_2_03·b_3_0·b_3_1 + b_2_03·b_3_02 + b_2_03·b_6_19 + b_2_03·b_6_18
       + b_2_03·b_6_7 + b_2_0·b_2_1·c_8_32 + b_2_02·c_8_32
  128. b_3_2·b_9_42 + b_6_18·b_6_19 + b_2_0·b_5_11·b_5_12 + b_2_0·b_5_112
  129. b_3_2·b_9_43 + b_6_182 + b_2_0·b_5_11·b_5_12 + b_2_0·b_2_1·c_8_32 + b_2_02·c_8_32
  130. b_3_3·b_9_26 + b_3_0·b_3_12·b_3_3 + b_3_0·b_3_13 + b_3_02·b_3_1·b_3_3
       + b_3_02·b_3_1·b_3_2 + b_3_03·b_3_2 + b_3_03·b_3_1 + b_6_18·b_3_0·b_3_2
       + b_6_18·b_3_0·b_3_1 + b_6_7·b_3_2·b_3_5 + b_6_7·b_3_1·b_3_5 + b_6_7·b_3_1·b_3_2
       + b_6_7·b_3_0·b_3_5 + b_6_7·b_3_0·b_3_3 + b_6_7·b_3_0·b_3_1 + b_6_7·b_6_18 + b_6_72
       + b_2_0·b_5_8·b_5_9 + b_2_02·b_3_1·b_5_9 + b_2_02·b_3_1·b_5_8 + b_2_02·b_3_0·b_5_12
       + b_2_02·b_3_0·b_5_9 + b_2_02·b_3_0·b_5_8 + b_2_03·b_3_2·b_3_5 + b_2_03·b_3_1·b_3_2
       + b_2_03·b_3_02 + b_2_03·b_6_18 + b_2_03·b_6_7 + b_2_0·b_2_1·c_8_32
  131. b_3_3·b_9_33 + b_3_0·b_3_12·b_3_3 + b_3_0·b_3_13 + b_3_02·b_3_1·b_3_3
       + b_3_02·b_3_1·b_3_2 + b_3_03·b_3_3 + b_3_03·b_3_2 + b_3_03·b_3_1
       + b_6_18·b_3_0·b_3_3 + b_6_182 + b_6_7·b_3_2·b_3_5 + b_6_7·b_3_1·b_3_5
       + b_6_7·b_3_1·b_3_4 + b_6_7·b_3_1·b_3_3 + b_6_7·b_3_12 + b_6_7·b_3_0·b_3_2
       + b_6_7·b_3_0·b_3_1 + b_6_7·b_6_19 + b_2_0·b_5_82 + b_2_02·b_3_2·b_5_9
       + b_2_02·b_3_1·b_5_12 + b_2_02·b_3_1·b_5_11 + b_2_02·b_3_1·b_5_9
       + b_2_03·b_3_2·b_3_5 + b_2_03·b_3_2·b_3_4 + b_2_03·b_3_1·b_3_5 + b_2_03·b_3_1·b_3_4
       + b_2_03·b_3_1·b_3_2 + b_2_03·b_3_12 + b_2_03·b_3_0·b_3_1 + b_2_03·b_3_02
       + b_2_03·b_6_18 + b_2_03·b_6_7 + b_2_05·b_2_1 + b_2_02·c_8_32
  132. b_3_3·b_9_42 + b_6_182 + b_2_0·b_5_112
  133. b_3_3·b_9_43 + b_6_18·b_6_19 + b_6_182 + b_2_0·b_5_11·b_5_12 + b_2_0·b_5_112
  134. b_3_4·b_9_26 + b_3_0·b_3_13 + b_3_02·b_3_12 + b_3_03·b_3_2 + b_3_03·b_3_1
       + b_3_04 + b_6_18·b_3_0·b_3_3 + b_6_18·b_3_0·b_3_1 + b_6_18·b_3_02
       + b_6_7·b_3_1·b_3_3 + b_6_7·b_3_0·b_3_4 + b_6_7·b_3_0·b_3_2 + b_6_7·b_3_0·b_3_1
       + b_6_7·b_6_18 + b_2_0·b_5_82 + b_2_02·b_3_2·b_5_9 + b_2_02·b_3_1·b_5_9
       + b_2_02·b_3_0·b_5_11 + b_2_02·b_3_0·b_5_9 + b_2_03·b_3_2·b_3_5
       + b_2_03·b_3_2·b_3_4 + b_2_03·b_3_1·b_3_5 + b_2_03·b_3_1·b_3_3 + b_2_03·b_3_12
       + b_2_03·b_3_0·b_3_4 + b_2_03·b_3_0·b_3_3 + b_2_03·b_3_0·b_3_2 + b_2_03·b_3_02
       + b_2_03·b_6_19 + b_2_03·b_6_7 + b_2_05·b_2_1 + b_2_02·c_8_32
  135. b_3_4·b_9_33 + b_3_0·b_3_13 + b_3_02·b_3_12 + b_3_03·b_3_3 + b_3_03·b_3_1
       + b_3_04 + b_6_18·b_3_22 + b_6_18·b_3_0·b_3_3 + b_6_18·b_6_19 + b_6_7·b_3_2·b_3_4
       + b_6_7·b_3_2·b_3_3 + b_6_7·b_3_0·b_3_3 + b_6_7·b_3_0·b_3_1 + b_6_7·b_3_02
       + b_6_7·b_6_19 + b_6_7·b_6_18 + b_6_72 + b_2_0·b_5_8·b_5_9 + b_2_0·b_5_82
       + b_2_02·b_3_2·b_5_12 + b_2_02·b_3_1·b_5_9 + b_2_02·b_3_0·b_5_12
       + b_2_02·b_3_0·b_5_11 + b_2_03·b_3_2·b_3_4 + b_2_03·b_3_1·b_3_3 + b_2_03·b_3_12
       + b_2_03·b_3_0·b_3_4 + b_2_03·b_3_0·b_3_3 + b_2_03·b_3_0·b_3_2 + b_2_03·b_6_19
       + b_2_05·b_2_1 + b_2_0·b_2_1·c_8_32
  136. b_3_4·b_9_42
  137. b_3_4·b_9_43
  138. b_3_5·b_9_26 + b_3_0·b_3_12·b_3_3 + b_3_0·b_3_13 + b_3_02·b_3_1·b_3_3
       + b_3_02·b_3_1·b_3_2 + b_3_03·b_3_2 + b_3_03·b_3_1 + b_6_18·b_3_0·b_3_2
       + b_6_18·b_3_0·b_3_1 + b_6_7·b_3_2·b_3_5 + b_6_7·b_3_1·b_3_5 + b_6_7·b_3_1·b_3_2
       + b_6_7·b_3_0·b_3_5 + b_6_7·b_3_0·b_3_3 + b_6_7·b_3_0·b_3_1 + b_6_7·b_6_18 + b_6_72
       + b_2_0·b_5_8·b_5_9 + b_2_02·b_3_1·b_5_9 + b_2_02·b_3_1·b_5_8 + b_2_02·b_3_0·b_5_12
       + b_2_02·b_3_0·b_5_9 + b_2_02·b_3_0·b_5_8 + b_2_03·b_3_2·b_3_5 + b_2_03·b_3_1·b_3_2
       + b_2_03·b_3_02 + b_2_03·b_6_18 + b_2_03·b_6_7 + b_2_0·b_2_1·c_8_32
  139. b_3_5·b_9_33 + b_3_0·b_3_12·b_3_3 + b_3_0·b_3_13 + b_3_02·b_3_1·b_3_3
       + b_3_02·b_3_1·b_3_2 + b_3_03·b_3_3 + b_3_03·b_3_2 + b_3_03·b_3_1
       + b_6_18·b_3_0·b_3_3 + b_6_182 + b_6_7·b_3_2·b_3_5 + b_6_7·b_3_1·b_3_5
       + b_6_7·b_3_1·b_3_4 + b_6_7·b_3_1·b_3_3 + b_6_7·b_3_12 + b_6_7·b_3_0·b_3_2
       + b_6_7·b_3_0·b_3_1 + b_6_7·b_6_19 + b_2_0·b_5_82 + b_2_02·b_3_2·b_5_9
       + b_2_02·b_3_1·b_5_12 + b_2_02·b_3_1·b_5_11 + b_2_02·b_3_1·b_5_9
       + b_2_03·b_3_2·b_3_5 + b_2_03·b_3_2·b_3_4 + b_2_03·b_3_1·b_3_5 + b_2_03·b_3_1·b_3_4
       + b_2_03·b_3_1·b_3_2 + b_2_03·b_3_12 + b_2_03·b_3_0·b_3_1 + b_2_03·b_3_02
       + b_2_03·b_6_18 + b_2_03·b_6_7 + b_2_05·b_2_1 + b_2_02·c_8_32
  140. b_3_5·b_9_42
  141. b_3_5·b_9_43
  142. b_5_8·b_9_26 + b_3_03·b_5_9 + b_2_0·b_3_1·b_9_33 + b_2_0·b_3_02·b_3_1·b_3_3
       + b_2_0·b_3_02·b_3_1·b_3_2 + b_2_0·b_3_02·b_3_12 + b_2_0·b_3_03·b_3_3
       + b_2_0·b_3_03·b_3_2 + b_2_0·b_6_18·b_3_22 + b_2_0·b_6_18·b_3_0·b_3_3
       + b_2_0·b_6_18·b_3_0·b_3_1 + b_2_0·b_6_7·b_3_2·b_3_5 + b_2_0·b_6_7·b_3_2·b_3_3
       + b_2_0·b_6_7·b_3_1·b_3_4 + b_2_0·b_6_7·b_3_1·b_3_3 + b_2_0·b_6_7·b_3_1·b_3_2
       + b_2_0·b_6_7·b_3_0·b_3_3 + b_2_0·b_6_7·b_3_0·b_3_1 + b_2_0·b_6_7·b_3_02
       + b_2_0·b_6_7·b_6_19 + b_2_0·b_6_7·b_6_18 + b_2_0·b_6_72 + b_2_02·b_5_82
       + b_2_03·b_3_2·b_5_12 + b_2_03·b_3_2·b_5_8 + b_2_03·b_3_1·b_5_11
       + b_2_03·b_3_1·b_5_9 + b_2_03·b_3_0·b_5_12 + b_2_03·b_3_0·b_5_9
       + b_2_03·b_3_0·b_5_8 + b_2_04·b_3_2·b_3_4 + b_2_04·b_3_1·b_3_4 + b_2_04·b_3_1·b_3_3
       + b_2_04·b_3_1·b_3_2 + b_2_04·b_3_12 + b_2_04·b_3_0·b_3_5 + b_2_04·b_3_0·b_3_4
       + b_2_04·b_3_0·b_3_3 + b_2_04·b_3_0·b_3_2 + b_2_04·b_3_0·b_3_1 + b_2_04·b_6_19
       + b_2_04·b_6_18 + b_2_04·b_6_7 + b_2_06·b_2_1 + c_8_32·b_3_1·b_3_5
       + c_8_32·b_3_1·b_3_3 + c_8_32·b_3_1·b_3_2 + c_8_32·b_3_12 + c_8_32·b_3_0·b_3_4
       + c_8_32·b_3_0·b_3_3 + b_6_19·c_8_32 + b_2_1·c_12_73 + b_2_03·c_8_32
  143. b_5_8·b_9_33 + b_3_03·b_5_9 + b_3_03·b_5_8 + b_2_0·b_3_1·b_9_33 + b_2_0·b_3_0·b_9_33
       + b_2_0·b_3_0·b_9_26 + b_2_0·b_3_0·b_3_12·b_3_3 + b_2_0·b_3_0·b_3_13
       + b_2_0·b_3_02·b_3_1·b_3_3 + b_2_0·b_3_02·b_3_12 + b_2_0·b_3_03·b_3_1
       + b_2_0·b_6_18·b_3_0·b_3_2 + b_2_0·b_6_18·b_3_0·b_3_1 + b_2_0·b_6_182
       + b_2_0·b_6_7·b_3_2·b_3_5 + b_2_0·b_6_7·b_3_2·b_3_4 + b_2_0·b_6_7·b_3_1·b_3_3
       + b_2_0·b_6_7·b_3_1·b_3_2 + b_2_0·b_6_7·b_3_12 + b_2_0·b_6_7·b_3_0·b_3_1
       + b_2_0·b_6_7·b_6_19 + b_2_0·b_6_7·b_6_18 + b_2_0·b_6_72 + b_2_02·b_5_8·b_5_9
       + b_2_02·b_5_82 + b_2_03·b_3_2·b_5_8 + b_2_03·b_3_1·b_5_12 + b_2_03·b_3_1·b_5_11
       + b_2_03·b_3_1·b_5_8 + b_2_03·b_3_0·b_5_11 + b_2_03·b_3_0·b_5_9
       + b_2_03·b_3_0·b_5_8 + b_2_04·b_3_12 + b_2_04·b_3_0·b_3_1 + c_8_32·b_3_2·b_3_5
       + c_8_32·b_3_1·b_3_5 + c_8_32·b_3_1·b_3_3 + c_8_32·b_3_1·b_3_2 + c_8_32·b_3_0·b_3_3
       + c_8_32·b_3_0·b_3_2 + c_8_32·b_3_02 + b_6_19·c_8_32 + b_6_18·c_8_32 + b_2_1·c_12_74
       + b_2_02·b_2_1·c_8_32 + b_2_03·c_8_32
  144. b_5_8·b_9_42 + a_2_3·c_12_74 + a_2_3·c_12_73 + a_2_2·c_12_74
  145. b_5_8·b_9_43 + a_2_3·c_12_73 + a_2_2·c_12_74 + a_2_2·c_12_73
  146. b_5_9·b_9_26 + b_3_03·b_5_9 + b_3_03·b_5_8 + b_2_0·b_3_0·b_9_33 + b_2_0·b_3_0·b_9_26
       + b_2_0·b_3_02·b_3_1·b_3_2 + b_2_0·b_3_02·b_3_12 + b_2_0·b_3_03·b_3_3
       + b_2_0·b_3_04 + b_2_0·b_6_18·b_3_22 + b_2_0·b_6_18·b_3_0·b_3_3
       + b_2_0·b_6_18·b_3_0·b_3_1 + b_2_0·b_6_18·b_6_19 + b_2_0·b_6_7·b_3_2·b_3_5
       + b_2_0·b_6_7·b_3_2·b_3_4 + b_2_0·b_6_7·b_3_2·b_3_3 + b_2_0·b_6_7·b_3_1·b_3_2
       + b_2_0·b_6_7·b_3_0·b_3_4 + b_2_0·b_6_7·b_3_0·b_3_3 + b_2_0·b_6_7·b_3_02
       + b_2_0·b_6_7·b_6_19 + b_2_02·b_5_8·b_5_9 + b_2_03·b_3_2·b_5_12 + b_2_03·b_3_2·b_5_8
       + b_2_03·b_3_1·b_5_8 + b_2_03·b_3_0·b_5_12 + b_2_03·b_3_0·b_5_11
       + b_2_03·b_3_0·b_5_9 + b_2_04·b_3_2·b_3_4 + b_2_04·b_3_1·b_3_5 + b_2_04·b_3_1·b_3_4
       + b_2_04·b_3_1·b_3_2 + b_2_04·b_3_0·b_3_5 + b_2_04·b_3_0·b_3_4 + b_2_04·b_3_0·b_3_2
       + b_2_06·b_2_1 + c_8_32·b_3_1·b_3_5 + c_8_32·b_3_1·b_3_4 + c_8_32·b_3_1·b_3_3
       + c_8_32·b_3_1·b_3_2 + c_8_32·b_3_0·b_3_5 + c_8_32·b_3_0·b_3_3 + c_8_32·b_3_0·b_3_2
       + c_8_32·b_3_02 + b_6_19·c_8_32 + b_6_18·c_8_32 + b_2_1·c_12_74 + b_2_1·c_12_73
       + b_2_02·b_2_1·c_8_32
  147. b_5_9·b_9_33 + b_3_03·b_5_8 + b_2_0·b_3_1·b_9_33 + b_2_0·b_3_1·b_9_26
       + b_2_0·b_3_0·b_9_33 + b_2_0·b_3_0·b_9_26 + b_2_0·b_3_0·b_3_12·b_3_3
       + b_2_0·b_3_02·b_3_1·b_3_2 + b_2_0·b_3_02·b_3_12 + b_2_0·b_3_03·b_3_3
       + b_2_0·b_3_03·b_3_2 + b_2_0·b_6_18·b_3_0·b_3_1 + b_2_0·b_6_18·b_3_02
       + b_2_0·b_6_18·b_6_19 + b_2_0·b_6_182 + b_2_0·b_6_7·b_3_1·b_3_5
       + b_2_0·b_6_7·b_3_1·b_3_4 + b_2_0·b_6_7·b_3_1·b_3_3 + b_2_0·b_6_7·b_3_0·b_3_5
       + b_2_0·b_6_7·b_3_0·b_3_4 + b_2_0·b_6_7·b_3_0·b_3_2 + b_2_0·b_6_7·b_3_0·b_3_1
       + b_2_0·b_6_7·b_3_02 + b_2_0·b_6_7·b_6_19 + b_2_0·b_6_7·b_6_18 + b_2_0·b_6_72
       + b_2_02·b_5_82 + b_2_03·b_3_2·b_5_9 + b_2_03·b_3_1·b_5_12 + b_2_04·b_3_2·b_3_5
       + b_2_04·b_3_2·b_3_4 + b_2_04·b_3_1·b_3_4 + b_2_04·b_3_1·b_3_2 + b_2_04·b_3_02
       + b_2_04·b_6_18 + b_2_04·b_6_7 + b_2_06·b_2_1 + c_8_32·b_3_2·b_3_5
       + c_8_32·b_3_2·b_3_4 + c_8_32·b_3_1·b_3_5 + c_8_32·b_3_1·b_3_4 + c_8_32·b_3_12
       + c_8_32·b_3_0·b_3_2 + c_8_32·b_3_02 + b_6_18·c_8_32 + b_2_1·c_12_73 + b_2_03·c_8_32
  148. b_5_9·b_9_42 + a_2_3·c_12_74 + a_2_2·c_12_73
  149. b_5_9·b_9_43 + a_2_3·c_12_74 + a_2_3·c_12_73 + a_2_2·c_12_74
  150. b_5_11·b_9_26 + a_2_3·c_12_74 + a_2_3·c_12_73 + a_2_2·c_12_73
  151. b_5_11·b_9_33 + a_2_3·c_12_73 + a_2_2·c_12_74
  152. b_5_11·b_9_42 + b_6_18·c_8_32 + b_2_1·c_12_74 + b_2_0·c_12_74
  153. b_5_11·b_9_43 + b_6_19·c_8_32 + b_6_18·c_8_32 + b_2_1·c_12_74 + b_2_1·c_12_73
       + b_2_0·c_12_74 + b_2_0·c_12_73
  154. b_5_12·b_9_26 + a_2_3·c_12_74 + a_2_2·c_12_74 + a_2_2·c_12_73
  155. b_5_12·b_9_33 + a_2_3·c_12_74 + a_2_3·c_12_73 + a_2_2·c_12_73
  156. b_5_12·b_9_42 + b_6_19·c_8_32 + b_6_18·c_8_32 + b_2_1·c_12_73 + b_2_0·c_12_73
  157. b_5_12·b_9_43 + b_6_19·c_8_32 + b_2_1·c_12_74 + b_2_0·c_12_74
  158. b_6_18·b_9_26 + a_2_2·c_8_32·b_5_8
  159. b_6_18·b_9_33 + a_2_2·c_8_32·b_5_9 + a_2_2·c_8_32·b_5_8
  160. b_6_18·b_9_42 + c_12_74·b_3_4 + c_12_74·b_3_3 + c_12_74·b_3_2 + c_12_73·b_3_5
       + c_12_73·b_3_3 + b_2_0·c_8_32·b_5_11
  161. b_6_18·b_9_43 + c_12_74·b_3_5 + c_12_74·b_3_4 + c_12_74·b_3_2 + c_12_73·b_3_4
       + c_12_73·b_3_3 + c_12_73·b_3_2 + b_2_0·c_8_32·b_5_12 + b_2_0·c_8_32·b_5_11
  162. b_6_19·b_9_26 + a_2_2·c_8_32·b_5_9 + a_2_2·c_8_32·b_5_8
  163. b_6_19·b_9_33 + a_2_2·c_8_32·b_5_9
  164. b_6_19·b_9_42 + c_12_74·b_3_5 + c_12_74·b_3_3 + c_12_73·b_3_5 + c_12_73·b_3_4
       + c_12_73·b_3_2 + b_2_0·c_8_32·b_5_12 + b_2_0·c_8_32·b_5_11
  165. b_6_19·b_9_43 + c_12_74·b_3_4 + c_12_74·b_3_3 + c_12_74·b_3_2 + c_12_73·b_3_5
       + c_12_73·b_3_3 + b_2_0·c_8_32·b_5_12
  166. b_3_03·b_3_1·b_3_2 + b_3_03·b_3_12 + b_3_04·b_3_3 + b_6_18·b_6_19·b_3_0
       + b_6_182·b_3_3 + b_6_182·b_3_2 + b_6_182·b_3_1 + b_6_182·b_3_0 + b_6_7·b_9_33
       + b_6_7·b_3_13 + b_6_7·b_3_0·b_3_1·b_3_5 + b_6_7·b_3_0·b_3_12 + b_6_7·b_3_02·b_3_5
       + b_6_7·b_3_02·b_3_4 + b_6_7·b_3_02·b_3_2 + b_6_7·b_3_02·b_3_1 + b_6_7·b_6_18·b_3_1
       + b_6_72·b_3_3 + b_6_72·b_3_0 + b_2_0·b_3_2·b_5_8·b_5_9 + b_2_0·b_3_2·b_5_82
       + b_2_0·b_3_1·b_5_82 + b_2_0·b_3_0·b_5_8·b_5_9 + b_2_0·b_3_0·b_5_82
       + b_2_02·b_3_0·b_3_2·b_5_9 + b_2_02·b_3_0·b_3_2·b_5_8 + b_2_02·b_3_0·b_3_1·b_5_12
       + b_2_02·b_3_0·b_3_1·b_5_8 + b_2_02·b_3_02·b_5_12 + b_2_02·b_3_02·b_5_11
       + b_2_02·b_3_02·b_5_9 + b_2_02·b_6_7·b_5_12 + b_2_02·b_6_7·b_5_9 + b_2_03·b_9_42
       + b_2_03·b_9_26 + b_2_03·b_3_12·b_3_3 + b_2_03·b_3_0·b_3_1·b_3_5
       + b_2_03·b_3_0·b_3_12 + b_2_03·b_3_02·b_3_4 + b_2_03·b_3_03
       + b_2_03·b_6_19·b_3_1 + b_2_03·b_6_19·b_3_0 + b_2_03·b_6_18·b_3_3
       + b_2_03·b_6_18·b_3_2 + b_2_03·b_6_18·b_3_1 + b_2_03·b_6_7·b_3_2
       + b_2_03·b_6_7·b_3_1 + b_2_03·b_6_7·b_3_0 + b_2_05·b_5_11 + b_2_05·b_2_1·b_3_1
       + b_2_05·b_2_1·b_3_0 + b_2_06·b_3_5 + b_2_06·b_3_1 + b_2_06·b_3_0 + c_12_74·b_3_4
       + c_12_73·b_3_5 + c_12_73·b_3_4 + b_2_0·c_8_32·b_5_9 + b_2_02·c_8_32·b_3_5
       + b_2_02·c_8_32·b_3_4 + b_2_02·c_8_32·b_3_3 + b_2_02·c_8_32·b_3_1
  167. b_3_03·b_3_1·b_3_3 + b_3_04·b_3_3 + b_3_04·b_3_2 + b_3_05 + b_6_18·b_6_19·b_3_1
       + b_6_182·b_3_3 + b_6_182·b_3_0 + b_6_7·b_9_33 + b_6_7·b_9_26 + b_6_7·b_3_0·b_3_1·b_3_5
       + b_6_7·b_3_0·b_3_1·b_3_4 + b_6_7·b_3_0·b_3_12 + b_6_7·b_3_02·b_3_5
       + b_6_7·b_3_02·b_3_2 + b_6_7·b_3_02·b_3_1 + b_6_7·b_6_19·b_3_0 + b_6_7·b_6_18·b_3_2
       + b_6_7·b_6_18·b_3_1 + b_6_72·b_3_3 + b_6_72·b_3_2 + b_6_72·b_3_0
       + b_2_0·b_3_2·b_5_8·b_5_9 + b_2_0·b_3_1·b_5_8·b_5_9 + b_2_0·b_3_1·b_5_82
       + b_2_0·b_3_0·b_5_8·b_5_9 + b_2_02·b_3_0·b_3_2·b_5_9 + b_2_02·b_3_0·b_3_2·b_5_8
       + b_2_02·b_3_0·b_3_1·b_5_12 + b_2_02·b_3_0·b_3_1·b_5_11 + b_2_02·b_3_0·b_3_1·b_5_9
       + b_2_02·b_3_02·b_5_9 + b_2_02·b_6_7·b_5_9 + b_2_02·b_6_7·b_5_8 + b_2_03·b_9_33
       + b_2_03·b_3_13 + b_2_03·b_3_0·b_3_1·b_3_5 + b_2_03·b_3_0·b_3_1·b_3_3
       + b_2_03·b_3_0·b_3_1·b_3_2 + b_2_03·b_3_02·b_3_4 + b_2_03·b_3_02·b_3_3
       + b_2_03·b_3_02·b_3_1 + b_2_03·b_3_03 + b_2_03·b_6_18·b_3_2
       + b_2_03·b_6_18·b_3_1 + b_2_03·b_6_18·b_3_0 + b_2_03·b_6_7·b_3_3
       + b_2_03·b_6_7·b_3_1 + b_2_05·b_5_12 + b_2_05·b_5_9 + b_2_05·b_2_1·b_3_0
       + b_2_06·b_3_5 + b_2_06·b_3_1 + b_2_06·b_3_0 + c_12_74·b_3_5 + c_12_73·b_3_4
       + b_2_0·c_8_32·b_5_8 + b_2_0·b_2_1·c_8_32·b_3_1 + b_2_02·c_8_32·b_3_5
       + b_2_02·c_8_32·b_3_3 + b_2_02·c_8_32·b_3_0
  168. b_3_02·b_9_26 + b_3_02·b_3_12·b_3_3 + b_3_03·b_3_12 + b_3_04·b_3_1
       + b_6_182·b_3_2 + b_6_182·b_3_1 + b_6_7·b_9_33 + b_6_7·b_9_26 + b_6_7·b_3_0·b_3_22
       + b_6_7·b_3_0·b_3_1·b_3_5 + b_6_7·b_3_0·b_3_1·b_3_4 + b_6_7·b_3_0·b_3_1·b_3_3
       + b_6_7·b_3_0·b_3_12 + b_6_7·b_3_02·b_3_5 + b_6_7·b_3_02·b_3_4
       + b_6_7·b_3_02·b_3_1 + b_6_7·b_6_19·b_3_1 + b_6_7·b_6_18·b_3_3 + b_6_7·b_6_18·b_3_2
       + b_6_7·b_6_18·b_3_0 + b_6_72·b_3_5 + b_6_72·b_3_4 + b_6_72·b_3_0
       + b_2_0·b_3_1·b_5_8·b_5_9 + b_2_0·b_3_1·b_5_82 + b_2_0·b_3_0·b_5_8·b_5_9
       + b_2_0·b_3_0·b_5_82 + b_2_02·b_3_0·b_3_2·b_5_9 + b_2_02·b_3_0·b_3_1·b_5_9
       + b_2_02·b_3_02·b_5_11 + b_2_02·b_6_7·b_5_12 + b_2_03·b_9_33 + b_2_03·b_3_13
       + b_2_03·b_3_0·b_3_1·b_3_5 + b_2_03·b_3_0·b_3_1·b_3_3 + b_2_03·b_3_0·b_3_12
       + b_2_03·b_3_02·b_3_5 + b_2_03·b_3_02·b_3_1 + b_2_03·b_6_19·b_3_1
       + b_2_03·b_6_19·b_3_0 + b_2_03·b_6_18·b_3_3 + b_2_03·b_6_18·b_3_1
       + b_2_03·b_6_18·b_3_0 + b_2_03·b_6_7·b_3_5 + b_2_03·b_6_7·b_3_3
       + b_2_03·b_6_7·b_3_2 + b_2_03·b_6_7·b_3_0 + b_2_05·b_5_12 + b_2_05·b_5_11
       + b_2_05·b_2_1·b_3_1 + b_2_0·c_8_32·b_5_9 + b_2_0·c_8_32·b_5_8
       + b_2_0·b_2_1·c_8_32·b_3_1 + b_2_02·c_8_32·b_3_5 + b_2_02·c_8_32·b_3_4
       + b_2_02·c_8_32·b_3_2 + a_2_2·c_8_32·b_5_9
  169. b_3_02·b_9_33 + b_3_02·b_3_12·b_3_3 + b_3_03·b_3_12 + b_3_04·b_3_1 + b_3_05
       + b_6_7·b_9_26 + b_6_7·b_3_13 + b_6_7·b_3_0·b_3_22 + b_6_7·b_3_0·b_3_1·b_3_5
       + b_6_7·b_3_0·b_3_12 + b_6_7·b_3_02·b_3_5 + b_6_7·b_3_02·b_3_3
       + b_6_7·b_3_02·b_3_2 + b_6_7·b_6_19·b_3_0 + b_6_7·b_6_18·b_3_3 + b_6_7·b_6_18·b_3_2
       + b_6_72·b_3_4 + b_6_72·b_3_3 + b_6_72·b_3_2 + b_6_72·b_3_0 + b_2_0·b_3_1·b_5_8·b_5_9
       + b_2_0·b_3_0·b_5_8·b_5_9 + b_2_02·b_3_0·b_3_2·b_5_9 + b_2_02·b_3_0·b_3_2·b_5_8
       + b_2_02·b_3_0·b_3_1·b_5_9 + b_2_02·b_3_02·b_5_12 + b_2_02·b_3_02·b_5_9
       + b_2_02·b_3_02·b_5_8 + b_2_02·b_6_7·b_5_12 + b_2_02·b_6_7·b_5_11
       + b_2_02·b_6_7·b_5_9 + b_2_02·b_6_7·b_5_8 + b_2_03·b_9_33 + b_2_03·b_3_12·b_3_3
       + b_2_03·b_3_0·b_3_22 + b_2_03·b_3_0·b_3_1·b_3_5 + b_2_03·b_3_0·b_3_12
       + b_2_03·b_3_02·b_3_5 + b_2_03·b_3_02·b_3_2 + b_2_03·b_6_19·b_3_1
       + b_2_03·b_6_19·b_3_0 + b_2_03·b_6_18·b_3_3 + b_2_03·b_6_18·b_3_1
       + b_2_03·b_6_18·b_3_0 + b_2_03·b_6_7·b_3_5 + b_2_03·b_6_7·b_3_2
       + b_2_03·b_6_7·b_3_1 + b_2_05·b_5_11 + b_2_05·b_5_8 + b_2_05·b_2_1·b_3_1
       + b_2_06·b_3_5 + b_2_06·b_3_1 + b_2_06·b_3_0 + b_2_0·c_8_32·b_5_9
       + b_2_0·b_2_1·c_8_32·b_3_0 + b_2_02·c_8_32·b_3_5 + b_2_02·c_8_32·b_3_4
       + b_2_02·c_8_32·b_3_1 + a_2_2·c_8_32·b_5_8
  170. b_3_02·b_9_42 + b_6_18·b_6_19·b_3_1 + b_6_18·b_6_19·b_3_0 + b_6_182·b_3_1
       + b_6_182·b_3_0 + b_2_0·b_3_1·b_5_11·b_5_12 + b_2_0·b_3_0·b_5_11·b_5_12
       + c_12_74·b_3_5 + c_12_74·b_3_4 + c_12_74·b_3_2 + c_12_73·b_3_4 + c_12_73·b_3_3
       + c_12_73·b_3_2 + b_2_0·c_8_32·b_5_12 + a_2_2·c_8_32·b_5_9 + a_2_2·c_8_32·b_5_8
  171. b_3_02·b_9_43 + b_6_18·b_6_19·b_3_1 + b_6_18·b_6_19·b_3_0 + b_2_0·b_3_1·b_5_112
       + b_2_0·b_3_0·b_5_112 + c_12_74·b_3_5 + c_12_74·b_3_3 + c_12_73·b_3_5 + c_12_73·b_3_4
       + c_12_73·b_3_2 + b_2_0·c_8_32·b_5_11 + b_2_0·b_2_1·c_8_32·b_3_1
       + b_2_0·b_2_1·c_8_32·b_3_0 + b_2_02·c_8_32·b_3_1 + b_2_02·c_8_32·b_3_0
       + a_2_2·c_8_32·b_5_9
  172. b_3_0·b_3_1·b_9_42 + b_6_18·b_6_19·b_3_1 + b_6_7·b_9_42 + b_2_0·b_3_1·b_5_11·b_5_12
       + b_2_0·b_3_1·b_5_112 + c_12_74·b_3_4 + c_12_74·b_3_3 + c_12_74·b_3_2 + c_12_73·b_3_5
       + c_12_73·b_3_3 + b_2_0·c_8_32·b_5_11
  173. b_3_0·b_3_1·b_9_43 + b_6_182·b_3_1 + b_6_7·b_9_43 + b_2_0·b_3_1·b_5_11·b_5_12
       + c_12_74·b_3_5 + c_12_74·b_3_4 + c_12_74·b_3_2 + c_12_73·b_3_4 + c_12_73·b_3_3
       + c_12_73·b_3_2 + b_2_0·c_8_32·b_5_12 + b_2_0·c_8_32·b_5_11 + b_2_0·b_2_1·c_8_32·b_3_1
       + b_2_02·c_8_32·b_3_1
  174. b_3_12·b_9_26 + b_3_04·b_3_3 + b_3_04·b_3_2 + b_6_18·b_6_19·b_3_0 + b_6_182·b_3_3
       + b_6_182·b_3_2 + b_6_182·b_3_1 + b_6_7·b_9_33 + b_6_7·b_9_26 + b_6_7·b_3_13
       + b_6_7·b_3_0·b_3_22 + b_6_7·b_3_0·b_3_1·b_3_2 + b_6_7·b_3_0·b_3_12
       + b_6_7·b_3_02·b_3_3 + b_6_7·b_3_02·b_3_2 + b_6_7·b_3_03 + b_6_7·b_6_19·b_3_1
       + b_6_7·b_6_18·b_3_3 + b_6_7·b_6_18·b_3_2 + b_6_7·b_6_18·b_3_1 + b_6_7·b_6_18·b_3_0
       + b_6_72·b_3_5 + b_6_72·b_3_4 + b_6_72·b_3_2 + b_6_72·b_3_1 + b_6_72·b_3_0
       + b_2_0·b_3_2·b_5_8·b_5_9 + b_2_0·b_3_2·b_5_82 + b_2_0·b_3_1·b_5_82
       + b_2_02·b_3_0·b_3_2·b_5_9 + b_2_02·b_3_0·b_3_2·b_5_8 + b_2_02·b_3_0·b_3_1·b_5_11
       + b_2_02·b_3_02·b_5_9 + b_2_02·b_6_7·b_5_11 + b_2_02·b_6_7·b_5_9 + b_2_03·b_9_42
       + b_2_03·b_9_33 + b_2_03·b_9_26 + b_2_03·b_3_13 + b_2_03·b_3_0·b_3_1·b_3_5
       + b_2_03·b_3_0·b_3_1·b_3_4 + b_2_03·b_3_0·b_3_1·b_3_3 + b_2_03·b_3_0·b_3_12
       + b_2_03·b_3_02·b_3_5 + b_2_03·b_3_02·b_3_4 + b_2_03·b_3_02·b_3_3
       + b_2_03·b_3_02·b_3_1 + b_2_03·b_3_03 + b_2_03·b_6_19·b_3_0
       + b_2_03·b_6_18·b_3_1 + b_2_03·b_6_7·b_3_5 + b_2_03·b_6_7·b_3_4
       + b_2_03·b_6_7·b_3_1 + b_2_05·b_5_8 + b_2_05·b_2_1·b_3_1 + b_2_06·b_3_5
       + c_12_74·b_3_5 + c_12_74·b_3_4 + c_12_73·b_3_5 + b_2_0·b_2_1·c_8_32·b_3_1
       + b_2_02·c_8_32·b_3_3 + b_2_02·c_8_32·b_3_1 + b_2_02·c_8_32·b_3_0
       + a_2_2·c_8_32·b_5_9 + a_2_2·c_8_32·b_5_8
  175. b_3_12·b_9_33 + b_3_03·b_3_12 + b_3_04·b_3_3 + b_3_04·b_3_2 + b_6_18·b_6_19·b_3_0
       + b_6_182·b_3_3 + b_6_182·b_3_1 + b_6_182·b_3_0 + b_6_7·b_9_33 + b_6_7·b_3_13
       + b_6_7·b_3_0·b_3_22 + b_6_7·b_3_0·b_3_1·b_3_5 + b_6_7·b_3_0·b_3_1·b_3_4
       + b_6_7·b_3_0·b_3_1·b_3_3 + b_6_7·b_3_0·b_3_1·b_3_2 + b_6_7·b_3_0·b_3_12
       + b_6_7·b_3_02·b_3_5 + b_6_7·b_3_02·b_3_4 + b_6_7·b_3_02·b_3_3 + b_6_7·b_3_02·b_3_2
       + b_6_7·b_3_03 + b_6_7·b_6_19·b_3_1 + b_6_7·b_6_19·b_3_0 + b_6_7·b_6_18·b_3_2
       + b_6_7·b_6_18·b_3_0 + b_6_72·b_3_5 + b_6_72·b_3_4 + b_6_72·b_3_2 + b_6_72·b_3_0
       + b_2_0·b_3_0·b_5_8·b_5_9 + b_2_02·b_3_0·b_3_2·b_5_9 + b_2_02·b_3_0·b_3_2·b_5_8
       + b_2_02·b_3_0·b_3_1·b_5_12 + b_2_02·b_3_0·b_3_1·b_5_8 + b_2_02·b_3_02·b_5_12
       + b_2_02·b_6_7·b_5_8 + b_2_03·b_9_43 + b_2_03·b_9_42 + b_2_03·b_3_12·b_3_3
       + b_2_03·b_3_13 + b_2_03·b_3_0·b_3_1·b_3_4 + b_2_03·b_3_0·b_3_1·b_3_2
       + b_2_03·b_3_0·b_3_12 + b_2_03·b_3_02·b_3_1 + b_2_03·b_6_18·b_3_3
       + b_2_03·b_6_18·b_3_2 + b_2_03·b_6_18·b_3_1 + b_2_03·b_6_18·b_3_0
       + b_2_03·b_6_7·b_3_5 + b_2_03·b_6_7·b_3_4 + b_2_03·b_6_7·b_3_2 + b_2_03·b_6_7·b_3_1
       + b_2_05·b_5_11 + b_2_05·b_2_1·b_3_0 + b_2_06·b_3_1 + b_2_06·b_3_0 + c_12_74·b_3_5
       + c_12_74·b_3_4 + c_12_73·b_3_5 + b_2_0·c_8_32·b_5_8 + b_2_0·b_2_1·c_8_32·b_3_1
       + b_2_02·c_8_32·b_3_5 + b_2_02·c_8_32·b_3_4 + b_2_02·c_8_32·b_3_1
       + a_2_2·c_8_32·b_5_9
  176. b_3_12·b_9_42 + b_6_18·b_6_19·b_3_1 + b_6_182·b_3_1 + b_6_182·b_3_0
       + b_2_0·b_3_1·b_5_11·b_5_12 + b_2_0·b_3_0·b_5_112 + c_12_74·b_3_5 + c_12_74·b_3_3
       + c_12_73·b_3_5 + c_12_73·b_3_4 + c_12_73·b_3_2 + b_2_0·c_8_32·b_5_12
       + b_2_0·c_8_32·b_5_11 + a_2_2·c_8_32·b_5_9
  177. b_3_12·b_9_43 + b_6_18·b_6_19·b_3_1 + b_6_18·b_6_19·b_3_0 + b_6_182·b_3_0
       + b_2_0·b_3_1·b_5_112 + b_2_0·b_3_0·b_5_11·b_5_12 + b_2_0·b_3_0·b_5_112
       + c_12_74·b_3_4 + c_12_74·b_3_3 + c_12_74·b_3_2 + c_12_73·b_3_5 + c_12_73·b_3_3
       + b_2_0·c_8_32·b_5_12 + b_2_0·b_2_1·c_8_32·b_3_1 + b_2_02·c_8_32·b_3_1
       + a_2_2·c_8_32·b_5_8
  178. b_5_83 + b_3_03·b_3_12 + b_3_04·b_3_3 + b_3_04·b_3_2 + b_3_04·b_3_1 + b_3_05
       + b_6_18·b_6_19·b_3_0 + b_6_182·b_3_3 + b_6_182·b_3_1 + b_6_7·b_3_0·b_3_22
       + b_6_7·b_3_0·b_3_1·b_3_4 + b_6_7·b_3_0·b_3_1·b_3_2 + b_6_7·b_3_0·b_3_12
       + b_6_7·b_3_02·b_3_5 + b_6_7·b_3_02·b_3_4 + b_6_7·b_3_02·b_3_3 + b_6_7·b_3_02·b_3_1
       + b_6_7·b_6_19·b_3_1 + b_6_7·b_6_18·b_3_3 + b_6_7·b_6_18·b_3_0 + b_6_72·b_3_1
       + b_6_72·b_3_0 + b_2_0·b_3_1·b_5_8·b_5_9 + b_2_0·b_3_0·b_5_8·b_5_9
       + b_2_02·b_3_0·b_3_2·b_5_8 + b_2_02·b_3_0·b_3_1·b_5_11 + b_2_02·b_3_02·b_5_11
       + b_2_02·b_3_02·b_5_9 + b_2_02·b_3_02·b_5_8 + b_2_02·b_6_7·b_5_11
       + b_2_02·b_6_7·b_5_9 + b_2_03·b_9_43 + b_2_03·b_9_42 + b_2_03·b_9_33 + b_2_03·b_9_26
       + b_2_03·b_3_12·b_3_3 + b_2_03·b_3_0·b_3_22 + b_2_03·b_3_02·b_3_5
       + b_2_03·b_3_02·b_3_4 + b_2_03·b_3_02·b_3_3 + b_2_03·b_3_02·b_3_1
       + b_2_03·b_6_19·b_3_1 + b_2_03·b_6_7·b_3_4 + b_2_03·b_6_7·b_3_3
       + b_2_03·b_6_7·b_3_1 + b_2_03·b_6_7·b_3_0 + b_2_05·b_5_12 + b_2_05·b_5_8
       + b_2_05·b_2_1·b_3_1 + b_2_06·b_3_5 + b_2_06·b_3_1 + b_2_06·b_3_0 + c_12_74·b_3_4
       + c_12_73·b_3_5 + b_2_0·c_8_32·b_5_8 + b_2_0·b_2_1·c_8_32·b_3_1
       + b_2_0·b_2_1·c_8_32·b_3_0 + b_2_02·c_8_32·b_3_5 + b_2_02·c_8_32·b_3_4
       + b_2_02·c_8_32·b_3_1 + b_2_02·c_8_32·b_3_0
  179. b_5_82·b_5_9 + b_3_02·b_3_12·b_3_3 + b_3_04·b_3_1 + b_3_05 + b_6_182·b_3_2
       + b_6_182·b_3_0 + b_6_7·b_3_13 + b_6_7·b_3_0·b_3_1·b_3_4 + b_6_7·b_3_0·b_3_12
       + b_6_7·b_3_02·b_3_4 + b_6_7·b_3_02·b_3_3 + b_6_7·b_6_19·b_3_1 + b_6_7·b_6_19·b_3_0
       + b_6_7·b_6_18·b_3_3 + b_6_7·b_6_18·b_3_1 + b_6_7·b_6_18·b_3_0
       + b_2_0·b_3_1·b_5_8·b_5_9 + b_2_0·b_3_0·b_5_82 + b_2_02·b_3_0·b_3_2·b_5_8
       + b_2_02·b_3_0·b_3_1·b_5_12 + b_2_02·b_3_0·b_3_1·b_5_11 + b_2_02·b_6_7·b_5_11
       + b_2_02·b_6_7·b_5_9 + b_2_02·b_6_7·b_5_8 + b_2_03·b_9_43 + b_2_03·b_9_26
       + b_2_03·b_3_12·b_3_3 + b_2_03·b_3_0·b_3_22 + b_2_03·b_3_0·b_3_1·b_3_5
       + b_2_03·b_3_0·b_3_1·b_3_2 + b_2_03·b_3_02·b_3_5 + b_2_03·b_3_02·b_3_4
       + b_2_03·b_3_02·b_3_2 + b_2_03·b_3_02·b_3_1 + b_2_03·b_3_03
       + b_2_03·b_6_19·b_3_1 + b_2_03·b_6_18·b_3_3 + b_2_03·b_6_18·b_3_2
       + b_2_03·b_6_18·b_3_0 + b_2_03·b_6_7·b_3_3 + b_2_03·b_6_7·b_3_2
       + b_2_03·b_6_7·b_3_0 + b_2_05·b_5_12 + b_2_05·b_5_11 + b_2_05·b_5_8
       + b_2_05·b_2_1·b_3_0 + c_12_74·b_3_5 + c_12_73·b_3_5 + c_12_73·b_3_4
       + b_2_0·c_8_32·b_5_9 + b_2_0·c_8_32·b_5_8 + b_2_0·b_2_1·c_8_32·b_3_0
       + b_2_02·c_8_32·b_3_5 + b_2_02·c_8_32·b_3_4 + b_2_02·c_8_32·b_3_3
       + b_2_02·c_8_32·b_3_1 + b_2_02·c_8_32·b_3_0
  180. b_5_113 + c_12_74·b_3_5 + c_12_74·b_3_4 + c_12_74·b_3_2 + c_12_73·b_3_5 + c_12_73·b_3_3
       + b_2_0·c_8_32·b_5_11
  181. b_5_112·b_5_12 + c_12_74·b_3_5 + c_12_74·b_3_3 + c_12_73·b_3_4 + c_12_73·b_3_3
       + c_12_73·b_3_2 + b_2_0·c_8_32·b_5_12 + b_2_0·c_8_32·b_5_11
  182. c_12_74·b_5_11 + c_12_73·b_5_12 + c_12_73·b_5_11 + c_8_32·b_9_43 + c_8_32·b_9_42
  183. c_12_74·b_5_12 + c_12_73·b_5_11 + c_8_32·b_9_42
  184. b_2_0·b_3_0·b_3_1·b_9_26 + b_2_0·b_3_04·b_3_3 + b_2_0·b_6_18·b_6_19·b_3_1
       + b_2_0·b_6_18·b_6_19·b_3_0 + b_2_0·b_6_182·b_3_3 + b_2_0·b_6_182·b_3_0
       + b_2_0·b_6_7·b_9_33 + b_2_0·b_6_7·b_9_26 + b_2_0·b_6_7·b_3_0·b_3_22
       + b_2_0·b_6_7·b_3_0·b_3_1·b_3_5 + b_2_0·b_6_7·b_3_0·b_3_12
       + b_2_0·b_6_7·b_3_02·b_3_4 + b_2_0·b_6_7·b_6_19·b_3_1 + b_2_0·b_6_7·b_6_18·b_3_3
       + b_2_0·b_6_7·b_6_18·b_3_1 + b_2_0·b_6_72·b_3_1 + b_2_0·b_6_72·b_3_0
       + b_2_02·b_3_2·b_5_8·b_5_9 + b_2_02·b_3_0·b_5_8·b_5_9 + b_2_03·b_3_0·b_3_2·b_5_9
       + b_2_03·b_3_0·b_3_2·b_5_8 + b_2_03·b_3_0·b_3_1·b_5_12 + b_2_03·b_3_0·b_3_1·b_5_9
       + b_2_03·b_3_0·b_3_1·b_5_8 + b_2_03·b_3_02·b_5_11 + b_2_03·b_3_02·b_5_9
       + b_2_03·b_6_7·b_5_12 + b_2_03·b_6_7·b_5_11 + b_2_04·b_9_26 + b_2_04·b_3_12·b_3_3
       + b_2_04·b_3_13 + b_2_04·b_3_0·b_3_22 + b_2_04·b_3_0·b_3_1·b_3_5
       + b_2_04·b_3_0·b_3_1·b_3_4 + b_2_04·b_3_0·b_3_1·b_3_3 + b_2_04·b_3_02·b_3_3
       + b_2_04·b_3_03 + b_2_04·b_6_19·b_3_1 + b_2_04·b_6_19·b_3_0 + b_2_04·b_6_18·b_3_3
       + b_2_04·b_6_18·b_3_2 + b_2_04·b_6_18·b_3_1 + b_2_04·b_6_18·b_3_0
       + b_2_04·b_6_7·b_3_4 + b_2_04·b_6_7·b_3_3 + b_2_04·b_6_7·b_3_2 + b_2_06·b_5_12
       + b_2_06·b_5_11 + b_2_06·b_5_9 + b_2_06·b_2_1·b_3_1 + b_2_06·b_2_1·b_3_0
       + c_12_74·b_5_8 + c_12_73·b_5_9 + c_12_73·b_5_8 + c_8_32·b_9_26 + c_8_32·b_3_12·b_3_3
       + c_8_32·b_3_13 + c_8_32·b_3_0·b_3_22 + c_8_32·b_3_0·b_3_1·b_3_2
       + c_8_32·b_3_0·b_3_12 + c_8_32·b_3_02·b_3_4 + c_8_32·b_3_02·b_3_3
       + c_8_32·b_3_02·b_3_2 + c_8_32·b_3_03 + b_6_19·c_8_32·b_3_0 + b_6_7·c_8_32·b_3_3
       + b_6_7·c_8_32·b_3_1 + b_6_7·c_8_32·b_3_0 + b_2_1·c_12_74·b_3_0 + b_2_1·c_12_73·b_3_1
       + b_2_1·c_12_73·b_3_0 + b_2_0·c_12_74·b_3_5 + b_2_0·c_12_73·b_3_4
       + b_2_02·c_8_32·b_5_12 + b_2_02·c_8_32·b_5_9 + b_2_02·c_8_32·b_5_8
       + b_2_03·c_8_32·b_3_5 + b_2_03·c_8_32·b_3_4 + b_2_03·c_8_32·b_3_3
       + b_2_03·c_8_32·b_3_1 + b_2_03·c_8_32·b_3_0
  185. b_2_0·b_3_0·b_3_1·b_9_33 + b_2_0·b_3_04·b_3_3 + b_2_0·b_3_04·b_3_2
       + b_2_0·b_6_18·b_6_19·b_3_0 + b_2_0·b_6_182·b_3_3 + b_2_0·b_6_182·b_3_2
       + b_2_0·b_6_182·b_3_1 + b_2_0·b_6_7·b_9_33 + b_2_0·b_6_7·b_9_26
       + b_2_0·b_6_7·b_3_12·b_3_3 + b_2_0·b_6_7·b_3_13 + b_2_0·b_6_7·b_3_0·b_3_22
       + b_2_0·b_6_7·b_3_0·b_3_1·b_3_5 + b_2_0·b_6_7·b_3_0·b_3_1·b_3_4
       + b_2_0·b_6_7·b_3_0·b_3_1·b_3_3 + b_2_0·b_6_7·b_3_0·b_3_12 + b_2_0·b_6_7·b_3_03
       + b_2_0·b_6_72·b_3_4 + b_2_0·b_6_72·b_3_1 + b_2_02·b_3_2·b_5_82
       + b_2_02·b_3_1·b_5_8·b_5_9 + b_2_02·b_3_1·b_5_82 + b_2_02·b_3_0·b_5_8·b_5_9
       + b_2_02·b_3_0·b_5_82 + b_2_03·b_3_0·b_3_2·b_5_9 + b_2_03·b_3_0·b_3_2·b_5_8
       + b_2_03·b_3_0·b_3_1·b_5_11 + b_2_03·b_3_0·b_3_1·b_5_9 + b_2_03·b_3_02·b_5_8
       + b_2_03·b_6_7·b_5_9 + b_2_03·b_6_7·b_5_8 + b_2_04·b_9_42 + b_2_04·b_3_13
       + b_2_04·b_3_0·b_3_1·b_3_5 + b_2_04·b_3_0·b_3_1·b_3_4 + b_2_04·b_3_0·b_3_1·b_3_3
       + b_2_04·b_3_0·b_3_12 + b_2_04·b_3_02·b_3_3 + b_2_04·b_3_02·b_3_1
       + b_2_04·b_6_19·b_3_1 + b_2_04·b_6_19·b_3_0 + b_2_04·b_6_18·b_3_2
       + b_2_04·b_6_18·b_3_1 + b_2_04·b_6_7·b_3_5 + b_2_04·b_6_7·b_3_3
       + b_2_04·b_6_7·b_3_1 + b_2_06·b_5_12 + b_2_06·b_2_1·b_3_1 + b_2_06·b_2_1·b_3_0
       + b_2_07·b_3_1 + b_2_07·b_3_0 + c_12_74·b_5_9 + c_12_73·b_5_8 + c_8_32·b_9_33
       + c_8_32·b_3_13 + c_8_32·b_3_0·b_3_22 + c_8_32·b_3_0·b_3_1·b_3_2
       + c_8_32·b_3_02·b_3_3 + c_8_32·b_3_03 + b_6_19·c_8_32·b_3_1 + b_6_18·c_8_32·b_3_3
       + b_6_18·c_8_32·b_3_2 + b_6_18·c_8_32·b_3_1 + b_6_18·c_8_32·b_3_0 + b_6_7·c_8_32·b_3_4
       + b_6_7·c_8_32·b_3_3 + b_6_7·c_8_32·b_3_2 + b_6_7·c_8_32·b_3_1 + b_2_1·c_12_74·b_3_1
       + b_2_1·c_12_73·b_3_0 + b_2_02·c_8_32·b_5_12 + b_2_02·c_8_32·b_5_11
       + b_2_02·c_8_32·b_5_9 + b_2_02·c_8_32·b_5_8 + b_2_02·b_2_1·c_8_32·b_3_1
       + b_2_02·b_2_1·c_8_32·b_3_0 + b_2_03·c_8_32·b_3_5 + b_2_03·c_8_32·b_3_3
       + b_2_03·c_8_32·b_3_1 + b_2_03·c_8_32·b_3_0
  186. c_8_32·b_5_112 + b_6_19·c_12_74 + b_6_18·c_12_73
  187. c_8_32·b_5_11·b_5_12 + b_6_19·c_12_73 + b_6_18·c_12_74 + b_6_18·c_12_73
       + b_2_1·c_8_322 + b_2_0·c_8_322
  188. b_3_06 + b_6_7·b_3_1·b_9_43 + b_6_7·b_3_1·b_9_26 + b_6_7·b_3_0·b_9_43
       + b_6_7·b_3_0·b_9_42 + b_6_7·b_3_0·b_9_33 + b_6_7·b_3_0·b_9_26 + b_6_7·b_3_03·b_3_3
       + b_6_7·b_6_18·b_3_0·b_3_3 + b_6_72·b_3_1·b_3_2 + b_6_72·b_3_0·b_3_4
       + b_6_72·b_3_02 + b_2_0·b_3_0·b_3_2·b_5_8·b_5_9 + b_2_0·b_3_0·b_3_1·b_5_11·b_5_12
       + b_2_0·b_3_0·b_3_1·b_5_8·b_5_9 + b_2_0·b_3_0·b_3_1·b_5_82
       + b_2_0·b_3_02·b_5_8·b_5_9 + b_2_0·b_3_02·b_5_82 + b_2_0·b_6_7·b_5_112
       + b_2_0·b_6_7·b_5_8·b_5_9 + b_2_0·b_6_7·b_5_82 + b_2_02·b_3_03·b_5_9
       + b_2_02·b_3_03·b_5_8 + b_2_02·b_6_7·b_3_2·b_5_11 + b_2_02·b_6_7·b_3_2·b_5_9
       + b_2_02·b_6_7·b_3_1·b_5_8 + b_2_02·b_6_7·b_3_0·b_5_12 + b_2_03·b_3_1·b_9_33
       + b_2_03·b_3_1·b_9_26 + b_2_03·b_3_0·b_9_42 + b_2_03·b_3_0·b_3_12·b_3_3
       + b_2_03·b_3_0·b_3_13 + b_2_03·b_3_02·b_3_1·b_3_2 + b_2_03·b_3_03·b_3_3
       + b_2_03·b_6_18·b_3_0·b_3_3 + b_2_03·b_6_18·b_6_19 + b_2_03·b_6_7·b_3_1·b_3_5
       + b_2_03·b_6_7·b_3_1·b_3_2 + b_2_03·b_6_7·b_3_12 + b_2_03·b_6_7·b_3_0·b_3_4
       + b_2_03·b_6_7·b_3_0·b_3_1 + b_2_03·b_6_7·b_6_19 + b_2_04·b_5_11·b_5_12
       + b_2_04·b_5_112 + b_2_04·b_5_82 + b_2_05·b_3_2·b_5_8 + b_2_05·b_3_1·b_5_11
       + b_2_05·b_3_1·b_5_8 + b_2_05·b_3_0·b_5_12 + b_2_05·b_3_0·b_5_9
       + b_2_05·b_3_0·b_5_8 + b_2_06·b_3_2·b_3_4 + b_2_06·b_3_1·b_3_5 + b_2_06·b_3_1·b_3_2
       + b_2_06·b_3_0·b_3_5 + b_2_06·b_3_0·b_3_4 + b_2_06·b_3_0·b_3_2 + b_2_06·b_3_0·b_3_1
       + b_2_06·b_6_7 + b_2_08·b_2_1 + c_12_74·b_3_2·b_3_5 + c_12_74·b_3_2·b_3_4
       + c_12_74·b_3_2·b_3_3 + c_12_74·b_3_1·b_3_5 + c_12_74·b_3_1·b_3_2 + c_12_74·b_3_12
       + c_12_74·b_3_0·b_3_4 + c_12_74·b_3_0·b_3_3 + c_12_74·b_3_0·b_3_2 + c_12_73·b_3_2·b_3_4
       + c_12_73·b_3_22 + c_12_73·b_3_1·b_3_3 + c_12_73·b_3_02 + c_8_32·b_5_82
       + b_6_19·c_12_74 + b_6_19·c_12_73 + b_6_18·c_12_73 + b_2_0·c_8_32·b_3_2·b_5_11
       + b_2_0·c_8_32·b_3_1·b_5_8 + b_2_0·c_8_32·b_3_0·b_5_9 + b_2_02·c_8_32·b_3_22
       + b_2_02·c_8_32·b_3_1·b_3_5 + b_2_02·c_8_32·b_3_1·b_3_3 + b_2_02·c_8_32·b_3_12
       + b_2_02·c_8_32·b_3_0·b_3_4 + b_2_02·c_8_32·b_3_0·b_3_1 + b_2_02·c_8_32·b_3_02
       + b_2_02·b_6_19·c_8_32
  189. b_3_05·b_3_1 + b_6_7·b_3_1·b_9_43 + b_6_7·b_3_1·b_9_42 + b_6_7·b_3_0·b_9_42
       + b_6_7·b_3_0·b_3_12·b_3_3 + b_6_7·b_3_0·b_3_13 + b_6_7·b_3_02·b_3_1·b_3_3
       + b_6_7·b_3_02·b_3_12 + b_6_7·b_3_03·b_3_2 + b_6_7·b_6_18·b_3_22
       + b_6_7·b_6_18·b_3_0·b_3_2 + b_6_7·b_6_18·b_3_02 + b_6_7·b_6_18·b_6_19
       + b_6_72·b_3_2·b_3_5 + b_6_72·b_3_2·b_3_4 + b_6_72·b_3_2·b_3_3 + b_6_72·b_3_1·b_3_5
       + b_6_72·b_3_0·b_3_5 + b_6_72·b_3_02 + b_6_72·b_6_19
       + b_2_0·b_3_0·b_3_2·b_5_8·b_5_9 + b_2_0·b_3_0·b_3_1·b_5_112
       + b_2_0·b_3_0·b_3_1·b_5_8·b_5_9 + b_2_0·b_3_0·b_3_1·b_5_82
       + b_2_0·b_6_7·b_5_11·b_5_12 + b_2_0·b_6_7·b_5_112 + b_2_0·b_6_7·b_5_8·b_5_9
       + b_2_02·b_3_03·b_5_9 + b_2_02·b_3_03·b_5_8 + b_2_02·b_6_7·b_3_0·b_5_11
       + b_2_03·b_3_1·b_9_43 + b_2_03·b_3_1·b_9_42 + b_2_03·b_3_1·b_9_33
       + b_2_03·b_3_0·b_9_33 + b_2_03·b_3_0·b_3_12·b_3_3 + b_2_03·b_3_0·b_3_13
       + b_2_03·b_3_02·b_3_12 + b_2_03·b_3_04 + b_2_03·b_6_18·b_3_0·b_3_3
       + b_2_03·b_6_18·b_3_0·b_3_1 + b_2_03·b_6_182 + b_2_03·b_6_7·b_3_2·b_3_5
       + b_2_03·b_6_7·b_3_2·b_3_4 + b_2_03·b_6_7·b_3_1·b_3_5 + b_2_03·b_6_7·b_3_12
       + b_2_03·b_6_7·b_3_0·b_3_4 + b_2_03·b_6_7·b_3_0·b_3_3 + b_2_03·b_6_7·b_6_19
       + b_2_03·b_6_7·b_6_18 + b_2_04·b_5_112 + b_2_04·b_5_8·b_5_9 + b_2_05·b_3_2·b_5_9
       + b_2_05·b_3_1·b_5_8 + b_2_05·b_3_0·b_5_12 + b_2_05·b_3_0·b_5_11
       + b_2_06·b_3_2·b_3_5 + b_2_06·b_3_1·b_3_4 + b_2_06·b_3_12 + b_2_06·b_3_0·b_3_5
       + b_2_06·b_3_02 + c_12_74·b_3_2·b_3_3 + c_12_74·b_3_1·b_3_5 + c_12_74·b_3_1·b_3_4
       + c_12_74·b_3_1·b_3_3 + c_12_74·b_3_1·b_3_2 + c_12_74·b_3_12 + c_12_74·b_3_0·b_3_5
       + c_12_74·b_3_0·b_3_3 + c_12_74·b_3_0·b_3_2 + c_12_74·b_3_02 + c_12_73·b_3_2·b_3_4
       + c_12_73·b_3_22 + c_12_73·b_3_1·b_3_4 + c_12_73·b_3_1·b_3_2 + c_12_73·b_3_12
       + c_12_73·b_3_0·b_3_5 + c_12_73·b_3_0·b_3_4 + c_12_73·b_3_0·b_3_3 + c_12_73·b_3_0·b_3_2
       + c_8_32·b_5_8·b_5_9 + c_8_32·b_5_82 + b_6_19·c_12_73 + b_6_18·c_12_74
       + b_2_0·c_8_32·b_3_2·b_5_12 + b_2_0·c_8_32·b_3_2·b_5_11 + b_2_02·c_8_32·b_3_2·b_3_4
       + b_2_02·c_8_32·b_3_2·b_3_3 + b_2_02·c_8_32·b_3_1·b_3_2 + b_2_02·c_8_32·b_3_12
       + b_2_02·c_8_32·b_3_0·b_3_2 + b_2_02·b_6_18·c_8_32 + b_2_02·b_6_7·c_8_32
       + b_2_02·b_2_1·c_12_73 + b_2_03·c_12_73 + b_2_04·b_2_1·c_8_32 + b_2_1·c_8_322
  190. b_9_262 + b_6_7·b_3_1·b_9_26 + b_6_7·b_3_0·b_9_33 + b_6_7·b_3_0·b_9_26
       + b_6_7·b_3_02·b_3_1·b_3_3 + b_6_7·b_3_02·b_3_1·b_3_2 + b_6_7·b_3_03·b_3_3
       + b_6_7·b_3_04 + b_6_7·b_6_18·b_3_22 + b_6_7·b_6_18·b_3_0·b_3_3
       + b_6_7·b_6_18·b_3_0·b_3_1 + b_6_7·b_6_18·b_3_02 + b_6_72·b_3_2·b_3_3
       + b_6_72·b_3_1·b_3_3 + b_6_72·b_3_12 + b_6_72·b_3_0·b_3_4 + b_6_72·b_3_0·b_3_3
       + b_6_72·b_3_0·b_3_2 + b_6_72·b_6_19 + b_6_72·b_6_18 + b_2_0·b_3_0·b_3_2·b_5_8·b_5_9
       + b_2_0·b_3_0·b_3_2·b_5_82 + b_2_0·b_3_0·b_3_1·b_5_82 + b_2_0·b_3_02·b_5_8·b_5_9
       + b_2_0·b_3_02·b_5_82 + b_2_0·b_6_7·b_5_8·b_5_9 + b_2_02·b_3_03·b_5_8
       + b_2_02·b_6_7·b_3_2·b_5_12 + b_2_02·b_6_7·b_3_2·b_5_9 + b_2_02·b_6_7·b_3_1·b_5_11
       + b_2_02·b_6_7·b_3_1·b_5_8 + b_2_02·b_6_7·b_3_0·b_5_12 + b_2_03·b_3_1·b_9_33
       + b_2_03·b_3_1·b_9_26 + b_2_03·b_3_0·b_9_33 + b_2_03·b_3_0·b_3_13
       + b_2_03·b_3_02·b_3_1·b_3_3 + b_2_03·b_3_02·b_3_12 + b_2_03·b_3_03·b_3_3
       + b_2_03·b_3_03·b_3_2 + b_2_03·b_3_03·b_3_1 + b_2_03·b_3_04
       + b_2_03·b_6_18·b_3_22 + b_2_03·b_6_18·b_3_02 + b_2_03·b_6_182
       + b_2_03·b_6_7·b_3_2·b_3_5 + b_2_03·b_6_7·b_3_2·b_3_4 + b_2_03·b_6_7·b_3_2·b_3_3
       + b_2_03·b_6_7·b_3_1·b_3_5 + b_2_03·b_6_7·b_3_1·b_3_2 + b_2_03·b_6_7·b_3_0·b_3_5
       + b_2_03·b_6_7·b_3_0·b_3_3 + b_2_03·b_6_7·b_3_02 + b_2_03·b_6_7·b_6_19
       + b_2_03·b_6_72 + b_2_04·b_5_8·b_5_9 + b_2_05·b_3_2·b_5_12 + b_2_05·b_3_1·b_5_12
       + b_2_06·b_3_2·b_3_5 + b_2_06·b_3_1·b_3_3 + b_2_06·b_3_12 + b_2_06·b_3_0·b_3_4
       + b_2_06·b_3_0·b_3_3 + b_2_06·b_3_0·b_3_2 + b_2_06·b_3_0·b_3_1 + b_2_06·b_3_02
       + b_2_06·b_6_19 + c_12_74·b_3_2·b_3_4 + c_12_74·b_3_1·b_3_4 + c_12_74·b_3_1·b_3_3
       + c_12_74·b_3_1·b_3_2 + c_12_74·b_3_0·b_3_3 + c_12_74·b_3_0·b_3_2 + c_12_74·b_3_02
       + c_12_73·b_3_1·b_3_4 + c_12_73·b_3_1·b_3_3 + c_12_73·b_3_1·b_3_2 + c_12_73·b_3_0·b_3_3
       + c_12_73·b_3_0·b_3_2 + c_12_73·b_3_02 + c_8_32·b_5_8·b_5_9 + c_8_32·b_5_82
       + b_6_19·c_12_74 + b_6_19·c_12_73 + b_6_18·c_12_74 + b_6_18·c_12_73
       + b_2_0·c_8_32·b_3_1·b_5_9 + b_2_0·c_8_32·b_3_1·b_5_8 + b_2_0·c_8_32·b_3_0·b_5_8
       + b_2_02·c_8_32·b_3_1·b_3_2 + b_2_02·c_8_32·b_3_12 + b_2_02·c_8_32·b_3_0·b_3_4
       + b_2_02·c_8_32·b_3_0·b_3_2 + b_2_02·c_8_32·b_3_0·b_3_1 + b_2_02·c_8_32·b_3_02
       + b_2_02·b_2_1·c_12_73 + b_2_05·c_8_32 + b_2_1·c_8_322
  191. b_9_26·b_9_33 + b_6_7·b_3_1·b_9_26 + b_6_7·b_3_0·b_9_26 + b_6_7·b_3_0·b_3_13
       + b_6_7·b_3_03·b_3_2 + b_6_7·b_6_18·b_3_22 + b_6_7·b_6_18·b_3_0·b_3_3
       + b_6_7·b_6_18·b_3_0·b_3_2 + b_6_7·b_6_18·b_3_0·b_3_1 + b_6_7·b_6_18·b_6_19
       + b_6_7·b_6_182 + b_6_72·b_3_2·b_3_4 + b_6_72·b_3_2·b_3_3 + b_6_72·b_3_1·b_3_5
       + b_6_72·b_3_1·b_3_4 + b_6_72·b_3_1·b_3_3 + b_6_72·b_3_1·b_3_2 + b_6_72·b_3_12
       + b_6_72·b_3_0·b_3_5 + b_6_72·b_3_0·b_3_3 + b_6_72·b_3_0·b_3_2 + b_6_72·b_3_0·b_3_1
       + b_6_72·b_3_02 + b_6_72·b_6_19 + b_6_72·b_6_18 + b_6_73
       + b_2_0·b_3_0·b_3_2·b_5_8·b_5_9 + b_2_0·b_3_0·b_3_2·b_5_82
       + b_2_0·b_3_02·b_5_8·b_5_9 + b_2_0·b_6_7·b_5_8·b_5_9 + b_2_02·b_3_03·b_5_9
       + b_2_02·b_6_7·b_3_2·b_5_12 + b_2_02·b_6_7·b_3_2·b_5_9 + b_2_02·b_6_7·b_3_2·b_5_8
       + b_2_02·b_6_7·b_3_1·b_5_12 + b_2_02·b_6_7·b_3_1·b_5_11 + b_2_02·b_6_7·b_3_1·b_5_9
       + b_2_02·b_6_7·b_3_1·b_5_8 + b_2_02·b_6_7·b_3_0·b_5_9 + b_2_03·b_3_0·b_9_33
       + b_2_03·b_3_0·b_3_13 + b_2_03·b_3_02·b_3_1·b_3_2 + b_2_03·b_3_02·b_3_12
       + b_2_03·b_3_03·b_3_2 + b_2_03·b_3_03·b_3_1 + b_2_03·b_3_04
       + b_2_03·b_6_18·b_3_0·b_3_1 + b_2_03·b_6_18·b_3_02 + b_2_03·b_6_7·b_3_2·b_3_5
       + b_2_03·b_6_7·b_3_1·b_3_3 + b_2_03·b_6_7·b_3_1·b_3_2 + b_2_03·b_6_7·b_3_12
       + b_2_03·b_6_7·b_3_0·b_3_4 + b_2_03·b_6_7·b_3_0·b_3_3 + b_2_03·b_6_7·b_3_0·b_3_2
       + b_2_03·b_6_7·b_3_0·b_3_1 + b_2_03·b_6_7·b_6_19 + b_2_03·b_6_7·b_6_18
       + b_2_03·b_6_72 + b_2_04·b_5_8·b_5_9 + b_2_04·b_5_82 + b_2_05·b_3_2·b_5_8
       + b_2_05·b_3_1·b_5_9 + b_2_06·b_3_2·b_3_5 + b_2_06·b_3_1·b_3_4 + b_2_06·b_3_1·b_3_3
       + b_2_06·b_3_1·b_3_2 + b_2_06·b_3_0·b_3_4 + b_2_06·b_3_0·b_3_3 + b_2_06·b_3_0·b_3_2
       + b_2_06·b_3_02 + b_2_06·b_6_19 + b_2_06·b_6_18 + c_12_74·b_3_2·b_3_5
       + c_12_74·b_3_1·b_3_3 + c_12_74·b_3_1·b_3_2 + c_12_74·b_3_12 + c_12_74·b_3_0·b_3_5
       + c_12_74·b_3_0·b_3_3 + c_12_73·b_3_2·b_3_5 + c_12_73·b_3_1·b_3_5 + c_12_73·b_3_0·b_3_4
       + c_8_32·b_5_8·b_5_9 + c_8_32·b_5_82 + b_6_19·c_12_74 + b_2_0·c_8_32·b_3_2·b_5_9
       + b_2_0·c_8_32·b_3_2·b_5_8 + b_2_0·c_8_32·b_3_1·b_5_9 + b_2_0·c_8_32·b_3_1·b_5_8
       + b_2_0·c_8_32·b_3_0·b_5_9 + b_2_0·c_8_32·b_3_0·b_5_8 + b_2_02·c_8_32·b_3_2·b_3_4
       + b_2_02·c_8_32·b_3_1·b_3_5 + b_2_02·c_8_32·b_3_1·b_3_4
       + b_2_02·c_8_32·b_3_0·b_3_4 + b_2_02·b_2_1·c_12_74 + b_2_02·b_2_1·c_12_73
  192. b_9_26·b_9_42 + a_2_3·c_8_322 + a_2_2·c_8_322
  193. b_9_26·b_9_43 + a_2_2·c_8_322
  194. b_9_332 + b_6_7·b_3_0·b_3_13 + b_6_7·b_3_02·b_3_1·b_3_3
       + b_6_7·b_3_02·b_3_1·b_3_2 + b_6_7·b_3_02·b_3_12 + b_6_7·b_3_03·b_3_1
       + b_6_7·b_3_04 + b_6_7·b_6_18·b_3_0·b_3_3 + b_6_7·b_6_18·b_3_0·b_3_1
       + b_6_7·b_6_18·b_6_19 + b_6_7·b_6_182 + b_6_72·b_3_1·b_3_4 + b_6_72·b_3_1·b_3_3
       + b_6_72·b_3_1·b_3_2 + b_6_72·b_3_12 + b_6_72·b_3_0·b_3_4 + b_6_72·b_3_0·b_3_3
       + b_6_72·b_3_0·b_3_2 + b_6_72·b_3_0·b_3_1 + b_6_72·b_6_19 + b_6_72·b_6_18
       + b_2_0·b_3_0·b_3_2·b_5_82 + b_2_0·b_3_0·b_3_1·b_5_8·b_5_9 + b_2_0·b_6_7·b_5_82
       + b_2_02·b_6_7·b_3_2·b_5_9 + b_2_02·b_6_7·b_3_1·b_5_12 + b_2_02·b_6_7·b_3_1·b_5_9
       + b_2_02·b_6_7·b_3_0·b_5_12 + b_2_02·b_6_7·b_3_0·b_5_11 + b_2_02·b_6_7·b_3_0·b_5_8
       + b_2_03·b_3_1·b_9_33 + b_2_03·b_3_1·b_9_26 + b_2_03·b_3_0·b_9_26
       + b_2_03·b_3_0·b_3_12·b_3_3 + b_2_03·b_3_0·b_3_13 + b_2_03·b_3_02·b_3_1·b_3_3
       + b_2_03·b_3_03·b_3_3 + b_2_03·b_3_04 + b_2_03·b_6_18·b_3_22
       + b_2_03·b_6_18·b_3_0·b_3_3 + b_2_03·b_6_18·b_3_0·b_3_2 + b_2_03·b_6_18·b_3_02
       + b_2_03·b_6_18·b_6_19 + b_2_03·b_6_182 + b_2_03·b_6_7·b_3_2·b_3_3
       + b_2_03·b_6_7·b_3_1·b_3_5 + b_2_03·b_6_7·b_3_12 + b_2_03·b_6_7·b_3_0·b_3_5
       + b_2_03·b_6_7·b_3_0·b_3_4 + b_2_03·b_6_7·b_3_0·b_3_2 + b_2_03·b_6_7·b_3_0·b_3_1
       + b_2_03·b_6_7·b_6_19 + b_2_03·b_6_7·b_6_18 + b_2_04·b_5_8·b_5_9 + b_2_04·b_5_82
       + b_2_05·b_3_2·b_5_12 + b_2_05·b_3_2·b_5_8 + b_2_05·b_3_1·b_5_12
       + b_2_05·b_3_1·b_5_11 + b_2_05·b_3_1·b_5_9 + b_2_05·b_3_0·b_5_12
       + b_2_06·b_3_2·b_3_4 + b_2_06·b_3_12 + b_2_06·b_3_0·b_3_5 + b_2_06·b_3_0·b_3_4
       + b_2_06·b_3_0·b_3_2 + b_2_06·b_6_18 + b_2_06·b_6_7 + b_2_08·b_2_1
       + c_12_74·b_3_2·b_3_4 + c_12_74·b_3_1·b_3_4 + c_12_74·b_3_1·b_3_3 + c_12_74·b_3_1·b_3_2
       + c_12_74·b_3_12 + c_12_74·b_3_0·b_3_4 + c_12_74·b_3_0·b_3_3 + c_12_73·b_3_2·b_3_4
       + c_12_73·b_3_1·b_3_5 + c_12_73·b_3_1·b_3_3 + c_12_73·b_3_1·b_3_2 + c_12_73·b_3_12
       + c_12_73·b_3_0·b_3_5 + c_12_73·b_3_0·b_3_4 + c_12_73·b_3_0·b_3_3 + c_8_32·b_5_8·b_5_9
       + b_6_19·c_12_74 + b_6_19·c_12_73 + b_2_0·c_8_32·b_3_1·b_5_9 + b_2_0·c_8_32·b_3_0·b_5_9
       + b_2_0·c_8_32·b_3_0·b_5_8 + b_2_02·c_8_32·b_3_2·b_3_4 + b_2_02·c_8_32·b_3_1·b_3_4
       + b_2_02·c_8_32·b_3_12 + b_2_02·c_8_32·b_3_0·b_3_2 + b_2_02·c_8_32·b_3_02
       + b_2_02·b_6_18·c_8_32 + b_2_02·b_6_7·c_8_32 + b_2_02·b_2_1·c_12_73 + b_2_05·c_8_32
       + b_2_1·c_8_322
  195. b_9_33·b_9_42 + a_2_3·c_8_322
  196. b_9_33·b_9_43 + a_2_3·c_8_322 + a_2_2·c_8_322
  197. b_9_422 + b_6_19·c_12_74 + b_6_18·c_12_74 + b_6_18·c_12_73
  198. b_9_42·b_9_43 + b_6_19·c_12_74 + b_6_19·c_12_73 + b_6_18·c_12_73 + b_2_1·c_8_322
       + b_2_0·c_8_322
  199. b_9_432 + b_6_19·c_12_73 + b_6_18·c_12_74
  200. c_12_74·b_9_26 + c_12_74·b_3_0·b_3_22 + c_12_74·b_3_0·b_3_1·b_3_5
       + c_12_74·b_3_0·b_3_1·b_3_4 + c_12_74·b_3_0·b_3_1·b_3_2 + c_12_74·b_3_0·b_3_12
       + c_12_74·b_3_02·b_3_5 + c_12_74·b_3_02·b_3_4 + c_12_74·b_3_02·b_3_2
       + c_12_74·b_3_02·b_3_1 + c_12_73·b_9_33 + c_12_73·b_3_13 + c_12_73·b_3_0·b_3_1·b_3_3
       + c_12_73·b_3_0·b_3_1·b_3_2 + c_12_73·b_3_02·b_3_5 + c_12_73·b_3_02·b_3_2
       + c_12_73·b_3_02·b_3_1 + c_12_73·b_3_03 + b_6_19·c_12_73·b_3_1
       + b_6_19·c_12_73·b_3_0 + b_6_18·c_12_74·b_3_2 + b_6_18·c_12_74·b_3_1
       + b_6_18·c_12_74·b_3_0 + b_6_18·c_12_73·b_3_3 + b_6_7·c_12_74·b_3_5
       + b_6_7·c_12_74·b_3_1 + b_6_7·c_12_74·b_3_0 + b_6_7·c_12_73·b_3_4 + b_6_7·c_12_73·b_3_3
       + b_6_7·c_12_73·b_3_2 + b_6_7·c_12_73·b_3_0 + b_2_02·c_12_74·b_5_9
       + b_2_02·c_12_74·b_5_8 + b_2_02·c_12_73·b_5_12 + b_2_02·c_12_73·b_5_11
       + b_2_02·b_2_1·c_12_74·b_3_1 + b_2_02·b_2_1·c_12_74·b_3_0
       + b_2_02·b_2_1·c_12_73·b_3_1 + b_2_03·c_12_74·b_3_4 + b_2_03·c_12_73·b_3_5
       + c_8_322·b_5_8 + b_2_1·c_8_322·b_3_1
  201. c_12_74·b_9_33 + c_12_74·b_3_12·b_3_3 + c_12_74·b_3_0·b_3_22
       + c_12_74·b_3_0·b_3_1·b_3_4 + c_12_74·b_3_0·b_3_1·b_3_3 + c_12_74·b_3_0·b_3_12
       + c_12_74·b_3_02·b_3_5 + c_12_74·b_3_02·b_3_4 + c_12_73·b_9_33 + c_12_73·b_9_26
       + c_12_73·b_3_0·b_3_1·b_3_2 + c_12_73·b_3_02·b_3_1 + b_6_18·c_12_74·b_3_1
       + b_6_18·c_12_73·b_3_0 + b_6_7·c_12_74·b_3_5 + b_6_7·c_12_74·b_3_3
       + b_6_7·c_12_74·b_3_1 + b_6_7·c_12_73·b_3_5 + b_6_7·c_12_73·b_3_0
       + b_2_02·c_12_74·b_5_9 + b_2_02·c_12_73·b_5_11 + b_2_02·c_12_73·b_5_8
       + b_2_02·c_8_32·b_9_42 + b_2_02·b_2_1·c_12_74·b_3_1 + b_2_02·b_2_1·c_12_73·b_3_1
       + b_2_03·c_12_74·b_3_1 + b_2_03·c_12_74·b_3_0 + c_8_322·b_5_9
  202. c_12_74·b_9_42 + c_12_73·b_9_43 + c_8_322·b_5_12
  203. c_12_74·b_9_43 + c_12_73·b_9_43 + c_12_73·b_9_42 + c_8_322·b_5_12 + c_8_322·b_5_11
       + a_2_2·c_8_322·b_3_1
  204. c_12_74·b_3_0·b_3_12·b_3_3 + c_12_74·b_3_0·b_3_13 + c_12_74·b_3_03·b_3_1
       + c_12_73·b_3_0·b_3_13 + c_12_73·b_3_02·b_3_1·b_3_2 + c_12_73·b_3_02·b_3_12
       + c_12_73·b_3_03·b_3_3 + c_12_73·b_3_03·b_3_2 + c_12_73·b_3_03·b_3_1
       + c_12_73·b_3_04 + b_6_18·c_12_74·b_3_0·b_3_2 + b_6_18·c_12_74·b_3_0·b_3_1
       + b_6_18·c_12_74·b_3_02 + b_6_18·c_12_73·b_3_0·b_3_3 + b_6_18·c_12_73·b_3_0·b_3_2
       + b_6_18·c_12_73·b_3_02 + b_6_182·c_12_74 + b_6_7·c_12_74·b_3_2·b_3_5
       + b_6_7·c_12_74·b_3_1·b_3_4 + b_6_7·c_12_74·b_3_1·b_3_3 + b_6_7·c_12_74·b_3_1·b_3_2
       + b_6_7·c_12_74·b_3_0·b_3_3 + b_6_7·c_12_74·b_3_0·b_3_1 + b_6_7·c_12_73·b_3_1·b_3_5
       + b_6_7·c_12_73·b_3_1·b_3_2 + b_6_7·c_12_73·b_3_0·b_3_2 + b_6_7·c_12_73·b_3_0·b_3_1
       + b_6_7·b_6_18·c_12_74 + b_6_72·c_12_74 + b_2_02·c_12_74·b_3_2·b_5_9
       + b_2_02·c_12_74·b_3_2·b_5_8 + b_2_02·c_12_74·b_3_1·b_5_9
       + b_2_02·c_12_74·b_3_0·b_5_9 + b_2_02·c_12_74·b_3_0·b_5_8
       + b_2_02·c_12_73·b_3_2·b_5_9 + b_2_02·c_12_73·b_3_2·b_5_8
       + b_2_02·c_12_73·b_3_1·b_5_12 + b_2_02·c_12_73·b_3_0·b_5_12
       + b_2_02·c_12_73·b_3_0·b_5_9 + b_2_02·c_8_32·b_3_1·b_9_42
       + b_2_02·c_8_32·b_3_1·b_9_26 + b_2_02·c_8_32·b_3_0·b_9_33
       + b_2_02·c_8_32·b_3_0·b_9_26 + b_2_02·c_8_32·b_3_0·b_3_12·b_3_3
       + b_2_02·c_8_32·b_3_02·b_3_12 + b_2_02·c_8_32·b_3_03·b_3_3
       + b_2_02·c_8_32·b_3_03·b_3_2 + b_2_02·c_8_32·b_3_04
       + b_2_02·b_6_18·c_8_32·b_3_0·b_3_1 + b_2_02·b_6_18·b_6_19·c_8_32
       + b_2_02·b_6_7·c_8_32·b_3_1·b_3_5 + b_2_02·b_6_7·c_8_32·b_3_1·b_3_4
       + b_2_02·b_6_7·c_8_32·b_3_1·b_3_2 + b_2_02·b_6_7·c_8_32·b_3_0·b_3_4
       + b_2_02·b_6_7·c_8_32·b_3_0·b_3_3 + b_2_02·b_6_7·b_6_18·c_8_32
       + b_2_03·c_12_74·b_3_1·b_3_2 + b_2_03·c_12_74·b_3_0·b_3_4
       + b_2_03·c_12_74·b_3_0·b_3_2 + b_2_03·c_12_74·b_3_02
       + b_2_03·c_12_73·b_3_2·b_3_5 + b_2_03·c_12_73·b_3_1·b_3_5
       + b_2_03·c_12_73·b_3_1·b_3_4 + b_2_03·c_12_73·b_3_1·b_3_3
       + b_2_03·c_12_73·b_3_1·b_3_2 + b_2_03·c_12_73·b_3_12
       + b_2_03·c_12_73·b_3_0·b_3_4 + b_2_03·c_12_73·b_3_0·b_3_3
       + b_2_03·c_12_73·b_3_0·b_3_2 + b_2_03·c_12_73·b_3_0·b_3_1
       + b_2_03·c_12_73·b_3_02 + b_2_03·c_8_32·b_5_8·b_5_9 + b_2_03·c_8_32·b_5_82
       + b_2_03·b_6_19·c_12_73 + b_2_03·b_6_18·c_12_73 + b_2_03·b_6_7·c_12_74
       + b_2_04·c_8_32·b_3_1·b_5_11 + b_2_04·c_8_32·b_3_1·b_5_8
       + b_2_04·c_8_32·b_3_0·b_5_12 + b_2_04·c_8_32·b_3_0·b_5_11
       + b_2_04·c_8_32·b_3_0·b_5_8 + b_2_05·c_8_32·b_3_2·b_3_5
       + b_2_05·c_8_32·b_3_1·b_3_3 + b_2_05·c_8_32·b_3_12 + b_2_05·c_8_32·b_3_0·b_3_4
       + b_2_05·c_8_32·b_3_0·b_3_3 + b_2_05·c_8_32·b_3_0·b_3_2 + b_2_05·c_8_32·b_3_02
       + b_2_05·b_6_19·c_8_32 + b_2_05·b_6_7·c_8_32 + b_2_05·b_2_1·c_12_74 + c_12_742
       + c_12_73·c_12_74 + c_12_732 + c_8_322·b_3_2·b_5_12 + c_8_322·b_3_1·b_5_9
       + c_8_322·b_3_1·b_5_8 + c_8_322·b_3_0·b_5_9 + b_2_0·c_8_322·b_3_2·b_3_4
       + b_2_0·c_8_322·b_3_1·b_3_4 + b_2_0·b_6_19·c_8_322 + b_2_0·b_6_18·c_8_322
       + b_2_0·b_2_1·c_8_32·c_12_74 + b_2_02·c_8_32·c_12_74 + b_2_02·c_8_32·c_12_73
       + c_8_323


About the group Ring generators Ring relations Completion information Restriction maps

Data used for the Hilbert-Poincaré test

  • We proved completion in degree 24 using the Hilbert-Poincaré criterion.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_8_32, an element of degree 8
    2. c_12_74, an element of degree 12
    3. b_2_0, an element of degree 2
    4. b_3_2, an element of degree 3
  • A Duflot regular sequence is given by c_8_32, c_12_74.
  • The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 17, 17, 21].
  • We found that there exists some HSOP over a finite extension field, in degrees 8,12,3,3.


About the group Ring generators Ring relations Completion information Restriction maps

Restriction maps

Expressing the generators as elements of H*(Syl2(L3(4)); GF(2))

  1. a_2_3b_1_0·b_1_2 + b_1_02
  2. a_2_2b_1_0·b_1_3 + b_1_0·b_1_1 + b_1_02
  3. b_2_1b_1_12 + b_1_0·b_1_1 + b_1_02
  4. b_2_0b_1_32 + b_1_2·b_1_3 + b_1_22
  5. b_3_5b_1_0·b_1_12 + b_1_02·b_1_1
  6. b_3_4b_1_13 + b_1_02·b_1_1 + b_1_03
  7. b_3_3b_1_2·b_1_32 + b_1_22·b_1_3
  8. b_3_2b_1_33 + b_1_22·b_1_3 + b_1_23 + b_1_02·b_1_2 + b_1_03
  9. b_3_1b_3_10
  10. b_3_0b_3_11 + b_1_02·b_1_3
  11. b_5_12c_4_19·b_1_2 + c_4_19·b_1_0 + c_4_18·b_1_3 + c_4_18·b_1_2 + c_4_18·b_1_1
  12. b_5_11c_4_19·b_1_3 + c_4_19·b_1_1 + c_4_19·b_1_0 + c_4_18·b_1_2 + c_4_18·b_1_0
  13. b_5_9b_1_0·b_1_1·b_3_10 + b_1_02·b_3_11 + b_1_02·b_3_10 + b_1_03·b_1_12 + c_4_19·b_1_0
       + c_4_18·b_1_1 + c_4_18·b_1_0
  14. b_5_8b_1_0·b_1_1·b_3_11 + b_1_02·b_3_10 + b_1_02·b_1_13 + c_4_19·b_1_1 + c_4_18·b_1_0
  15. b_6_19c_4_19·b_1_22 + c_4_19·b_1_02 + c_4_18·b_1_32 + c_4_18·b_1_22 + c_4_18·b_1_12
  16. b_6_18c_4_19·b_1_32 + c_4_19·b_1_12 + c_4_19·b_1_02 + c_4_18·b_1_22 + c_4_18·b_1_02
  17. b_6_7b_1_22·b_1_3·b_3_11 + b_1_23·b_3_11 + b_1_03·b_3_10 + b_1_03·b_1_13
       + b_1_04·b_1_12 + b_1_06 + b_6_47 + c_4_19·b_1_0·b_1_3 + c_4_19·b_1_0·b_1_1
       + c_4_19·b_1_02 + c_4_18·b_1_32 + c_4_18·b_1_2·b_1_3 + c_4_18·b_1_0·b_1_3
       + c_4_18·b_1_0·b_1_2
  18. c_8_32c_4_19·b_1_1·b_3_10 + c_4_19·b_1_0·b_3_11 + c_4_19·b_1_0·b_3_10
       + c_4_19·b_1_02·b_1_12 + c_4_18·b_1_1·b_3_11 + c_4_18·b_1_14 + c_4_18·b_1_0·b_3_10
       + c_4_18·b_1_0·b_1_13 + c_4_18·b_1_03·b_1_1 + c_4_192 + c_4_18·c_4_19 + c_4_182
  19. b_9_43c_4_192·b_1_2 + c_4_192·b_1_0 + c_4_182·b_1_3 + c_4_182·b_1_2 + c_4_182·b_1_1
  20. b_9_42c_4_192·b_1_3 + c_4_192·b_1_1 + c_4_192·b_1_0 + c_4_182·b_1_2 + c_4_182·b_1_0
  21. b_9_33b_1_08·b_1_1 + b_1_09 + b_6_47·b_1_13 + b_6_47·b_1_0·b_1_12
       + c_4_19·b_1_12·b_3_10 + c_4_19·b_1_02·b_3_11 + c_4_19·b_1_02·b_3_10
       + c_4_19·b_1_04·b_1_1 + c_4_18·b_1_12·b_3_11 + c_4_18·b_1_12·b_3_10
       + c_4_18·b_1_0·b_1_14 + c_4_18·b_1_02·b_3_11 + c_4_192·b_1_1 + c_4_182·b_1_0
  22. b_9_26b_1_04·b_1_15 + b_6_47·b_1_0·b_1_12 + b_6_47·b_1_02·b_1_1 + b_6_47·b_1_03
       + c_4_19·b_1_12·b_3_11 + c_4_19·b_1_02·b_3_10 + c_4_19·b_1_02·b_1_13
       + c_4_19·b_1_03·b_1_12 + c_4_18·b_1_12·b_3_10 + c_4_18·b_1_0·b_1_14
       + c_4_18·b_1_02·b_3_11 + c_4_18·b_1_02·b_3_10 + c_4_18·b_1_02·b_1_13
       + c_4_18·b_1_03·b_1_12 + c_4_18·b_1_04·b_1_1 + c_4_18·b_1_05 + c_4_192·b_1_1
       + c_4_192·b_1_0 + c_4_182·b_1_1
  23. c_12_74c_4_18·b_1_0·b_1_14·b_3_11 + c_4_18·b_1_02·b_1_16
       + c_4_18·b_1_03·b_1_12·b_3_10 + c_4_18·b_1_04·b_1_1·b_3_11
       + c_4_18·b_1_04·b_1_14 + c_4_18·b_1_05·b_3_10 + c_4_18·b_1_07·b_1_1
       + c_4_18·b_6_47·b_1_12 + c_4_18·b_6_47·b_1_0·b_1_1 + c_4_18·b_6_47·b_1_02
       + c_4_18·c_4_19·b_1_14 + c_4_18·c_4_19·b_1_0·b_1_13 + c_4_18·c_4_19·b_1_03·b_1_1
       + c_4_182·b_1_1·b_3_10 + c_4_182·b_1_14 + c_4_182·b_1_0·b_3_11
       + c_4_182·b_1_0·b_3_10 + c_4_182·b_1_02·b_1_12 + c_4_18·c_4_192
       + c_4_182·c_4_19
  24. c_12_73c_4_18·b_1_18 + c_4_18·b_1_0·b_1_17 + c_4_18·b_1_03·b_1_12·b_3_10
       + c_4_18·b_1_04·b_1_1·b_3_10 + c_4_18·b_1_06·b_1_12 + c_4_18·b_1_07·b_1_1
       + c_4_18·b_1_08 + c_4_18·b_6_47·b_1_0·b_1_1 + c_4_18·b_6_47·b_1_02
       + c_4_192·b_1_1·b_3_10 + c_4_192·b_1_0·b_3_11 + c_4_192·b_1_0·b_3_10
       + c_4_192·b_1_02·b_1_12 + c_4_18·c_4_19·b_1_14 + c_4_18·c_4_19·b_1_0·b_1_13
       + c_4_18·c_4_19·b_1_02·b_1_12 + c_4_18·c_4_19·b_1_03·b_1_1 + c_4_182·b_1_04
       + c_4_193 + c_4_18·c_4_192 + c_4_183

Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 2

  1. a_2_30, an element of degree 2
  2. a_2_20, an element of degree 2
  3. b_2_10, an element of degree 2
  4. b_2_00, an element of degree 2
  5. b_3_50, an element of degree 3
  6. b_3_40, an element of degree 3
  7. b_3_30, an element of degree 3
  8. b_3_20, an element of degree 3
  9. b_3_10, an element of degree 3
  10. b_3_00, an element of degree 3
  11. b_5_120, an element of degree 5
  12. b_5_110, an element of degree 5
  13. b_5_90, an element of degree 5
  14. b_5_80, an element of degree 5
  15. b_6_190, an element of degree 6
  16. b_6_180, an element of degree 6
  17. b_6_70, an element of degree 6
  18. c_8_32c_1_18 + c_1_04·c_1_14 + c_1_08, an element of degree 8
  19. b_9_430, an element of degree 9
  20. b_9_420, an element of degree 9
  21. b_9_330, an element of degree 9
  22. b_9_260, an element of degree 9
  23. c_12_74c_1_04·c_1_18 + c_1_08·c_1_14, an element of degree 12
  24. c_12_73c_1_112 + c_1_04·c_1_18 + c_1_012, an element of degree 12

Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup

  1. a_2_30, an element of degree 2
  2. a_2_20, an element of degree 2
  3. b_2_10, an element of degree 2
  4. b_2_0c_1_32 + c_1_2·c_1_3 + c_1_22, an element of degree 2
  5. b_3_50, an element of degree 3
  6. b_3_40, an element of degree 3
  7. b_3_3c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  8. b_3_2c_1_33 + c_1_22·c_1_3 + c_1_23, an element of degree 3
  9. b_3_1c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
  10. b_3_0c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_32 + c_1_0·c_1_22 + c_1_02·c_1_3
       + c_1_02·c_1_2, an element of degree 3
  11. b_5_12c_1_1·c_1_34 + c_1_14·c_1_3 + c_1_0·c_1_24 + c_1_04·c_1_2, an element of degree 5
  12. b_5_11c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_24 + c_1_12·c_1_33
       + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_14·c_1_3 + c_1_14·c_1_2
       + c_1_0·c_1_34 + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_23·c_1_3 + c_1_0·c_1_24
       + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_23 + c_1_04·c_1_3, an element of degree 5
  13. b_5_90, an element of degree 5
  14. b_5_80, an element of degree 5
  15. b_6_19c_1_1·c_1_35 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_2·c_1_33
       + c_1_12·c_1_22·c_1_32 + c_1_14·c_1_32 + c_1_0·c_1_2·c_1_34
       + c_1_0·c_1_24·c_1_3 + c_1_0·c_1_25 + c_1_02·c_1_22·c_1_32
       + c_1_02·c_1_23·c_1_3 + c_1_04·c_1_22, an element of degree 6
  16. b_6_18c_1_1·c_1_22·c_1_33 + c_1_1·c_1_24·c_1_3 + c_1_1·c_1_25 + c_1_12·c_1_34
       + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_23·c_1_3 + c_1_14·c_1_32 + c_1_14·c_1_22
       + c_1_0·c_1_35 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_24·c_1_3 + c_1_0·c_1_25
       + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_24
       + c_1_04·c_1_32, an element of degree 6
  17. b_6_7c_1_1·c_1_35 + c_1_1·c_1_23·c_1_32 + c_1_1·c_1_24·c_1_3 + c_1_1·c_1_25
       + c_1_12·c_1_2·c_1_33 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3
       + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_0·c_1_35
       + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_1·c_1_34
       + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_33
       + c_1_0·c_1_12·c_1_22·c_1_3 + c_1_0·c_1_12·c_1_23 + c_1_02·c_1_23·c_1_3
       + c_1_02·c_1_24 + c_1_02·c_1_1·c_1_33 + c_1_02·c_1_1·c_1_2·c_1_32
       + c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_3
       + c_1_02·c_1_12·c_1_22 + c_1_03·c_1_2·c_1_32 + c_1_03·c_1_22·c_1_3
       + c_1_04·c_1_32 + c_1_04·c_1_2·c_1_3 + c_1_04·c_1_22, an element of degree 6
  18. c_8_32c_1_12·c_1_36 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_23·c_1_33
       + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_13·c_1_35 + c_1_14·c_1_34
       + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_15·c_1_33
       + c_1_15·c_1_2·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_18
       + c_1_0·c_1_1·c_1_36 + c_1_0·c_1_1·c_1_2·c_1_35 + c_1_0·c_1_1·c_1_22·c_1_34
       + c_1_0·c_1_1·c_1_23·c_1_33 + c_1_0·c_1_1·c_1_24·c_1_32
       + c_1_0·c_1_1·c_1_25·c_1_3 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_24·c_1_3
       + c_1_0·c_1_14·c_1_33 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3
       + c_1_0·c_1_14·c_1_23 + c_1_02·c_1_36 + c_1_02·c_1_2·c_1_35
       + c_1_02·c_1_23·c_1_33 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_26
       + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_03·c_1_25
       + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24
       + c_1_04·c_1_1·c_1_33 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3
       + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_14
       + c_1_05·c_1_2·c_1_32 + c_1_05·c_1_22·c_1_3 + c_1_05·c_1_23 + c_1_06·c_1_22
       + c_1_08, an element of degree 8
  19. b_9_43c_1_12·c_1_37 + c_1_12·c_1_2·c_1_36 + c_1_12·c_1_22·c_1_35
       + c_1_12·c_1_23·c_1_34 + c_1_12·c_1_24·c_1_33 + c_1_12·c_1_25·c_1_32
       + c_1_12·c_1_26·c_1_3 + c_1_14·c_1_2·c_1_34 + c_1_14·c_1_22·c_1_33
       + c_1_18·c_1_3 + c_1_02·c_1_2·c_1_36 + c_1_02·c_1_22·c_1_35
       + c_1_02·c_1_23·c_1_34 + c_1_02·c_1_24·c_1_33 + c_1_02·c_1_25·c_1_32
       + c_1_02·c_1_26·c_1_3 + c_1_02·c_1_27 + c_1_04·c_1_23·c_1_32
       + c_1_04·c_1_24·c_1_3 + c_1_08·c_1_2, an element of degree 9
  20. b_9_42c_1_12·c_1_2·c_1_36 + c_1_12·c_1_23·c_1_34 + c_1_12·c_1_25·c_1_32
       + c_1_12·c_1_26·c_1_3 + c_1_12·c_1_27 + c_1_14·c_1_35
       + c_1_14·c_1_22·c_1_33 + c_1_14·c_1_23·c_1_32 + c_1_18·c_1_3 + c_1_18·c_1_2
       + c_1_02·c_1_37 + c_1_02·c_1_23·c_1_34 + c_1_02·c_1_25·c_1_32
       + c_1_02·c_1_27 + c_1_04·c_1_22·c_1_33 + c_1_04·c_1_24·c_1_3
       + c_1_04·c_1_25 + c_1_08·c_1_3, an element of degree 9
  21. b_9_330, an element of degree 9
  22. b_9_260, an element of degree 9
  23. c_12_74c_1_13·c_1_23·c_1_36 + c_1_13·c_1_25·c_1_34 + c_1_13·c_1_26·c_1_33
       + c_1_13·c_1_28·c_1_3 + c_1_14·c_1_38 + c_1_14·c_1_2·c_1_37
       + c_1_14·c_1_22·c_1_36 + c_1_14·c_1_23·c_1_35 + c_1_14·c_1_24·c_1_34
       + c_1_14·c_1_25·c_1_33 + c_1_14·c_1_26·c_1_32 + c_1_15·c_1_37
       + c_1_15·c_1_2·c_1_36 + c_1_15·c_1_24·c_1_33 + c_1_16·c_1_36
       + c_1_16·c_1_2·c_1_35 + c_1_16·c_1_24·c_1_32 + c_1_18·c_1_34
       + c_1_19·c_1_33 + c_1_19·c_1_2·c_1_32 + c_1_19·c_1_22·c_1_3 + c_1_110·c_1_32
       + c_1_0·c_1_12·c_1_39 + c_1_0·c_1_12·c_1_22·c_1_37
       + c_1_0·c_1_12·c_1_24·c_1_35 + c_1_0·c_1_12·c_1_26·c_1_33
       + c_1_0·c_1_12·c_1_27·c_1_32 + c_1_0·c_1_12·c_1_28·c_1_3
       + c_1_0·c_1_12·c_1_29 + c_1_0·c_1_14·c_1_2·c_1_36
       + c_1_0·c_1_14·c_1_24·c_1_33 + c_1_0·c_1_14·c_1_25·c_1_32
       + c_1_0·c_1_18·c_1_33 + c_1_0·c_1_18·c_1_2·c_1_32 + c_1_0·c_1_18·c_1_22·c_1_3
       + c_1_0·c_1_18·c_1_23 + c_1_02·c_1_1·c_1_39 + c_1_02·c_1_1·c_1_2·c_1_38
       + c_1_02·c_1_1·c_1_22·c_1_37 + c_1_02·c_1_1·c_1_23·c_1_36
       + c_1_02·c_1_1·c_1_25·c_1_34 + c_1_02·c_1_1·c_1_27·c_1_32
       + c_1_02·c_1_1·c_1_29 + c_1_02·c_1_14·c_1_36
       + c_1_02·c_1_14·c_1_23·c_1_33 + c_1_02·c_1_14·c_1_24·c_1_32
       + c_1_02·c_1_14·c_1_26 + c_1_02·c_1_18·c_1_2·c_1_3 + c_1_03·c_1_2·c_1_38
       + c_1_03·c_1_23·c_1_36 + c_1_03·c_1_24·c_1_35 + c_1_03·c_1_26·c_1_33
       + c_1_04·c_1_22·c_1_36 + c_1_04·c_1_23·c_1_35 + c_1_04·c_1_24·c_1_34
       + c_1_04·c_1_25·c_1_33 + c_1_04·c_1_26·c_1_32 + c_1_04·c_1_27·c_1_3
       + c_1_04·c_1_28 + c_1_04·c_1_1·c_1_22·c_1_35 + c_1_04·c_1_1·c_1_23·c_1_34
       + c_1_04·c_1_1·c_1_26·c_1_3 + c_1_04·c_1_12·c_1_36
       + c_1_04·c_1_12·c_1_22·c_1_34 + c_1_04·c_1_12·c_1_23·c_1_33
       + c_1_04·c_1_12·c_1_26 + c_1_04·c_1_18 + c_1_05·c_1_23·c_1_34
       + c_1_05·c_1_26·c_1_3 + c_1_05·c_1_27 + c_1_06·c_1_22·c_1_34
       + c_1_06·c_1_25·c_1_3 + c_1_06·c_1_26 + c_1_08·c_1_24 + c_1_08·c_1_1·c_1_33
       + c_1_08·c_1_1·c_1_2·c_1_32 + c_1_08·c_1_1·c_1_22·c_1_3 + c_1_08·c_1_1·c_1_23
       + c_1_08·c_1_12·c_1_2·c_1_3 + c_1_08·c_1_14 + c_1_09·c_1_2·c_1_32
       + c_1_09·c_1_22·c_1_3 + c_1_09·c_1_23 + c_1_010·c_1_22, an element of degree 12
  24. c_12_73c_1_13·c_1_39 + c_1_13·c_1_2·c_1_38 + c_1_13·c_1_26·c_1_33
       + c_1_13·c_1_27·c_1_32 + c_1_13·c_1_29 + c_1_14·c_1_2·c_1_37
       + c_1_14·c_1_23·c_1_35 + c_1_14·c_1_25·c_1_33 + c_1_14·c_1_26·c_1_32
       + c_1_14·c_1_27·c_1_3 + c_1_15·c_1_37 + c_1_15·c_1_2·c_1_36
       + c_1_15·c_1_22·c_1_35 + c_1_15·c_1_25·c_1_32 + c_1_16·c_1_23·c_1_33
       + c_1_16·c_1_24·c_1_32 + c_1_16·c_1_26 + c_1_18·c_1_22·c_1_32
       + c_1_19·c_1_23 + c_1_110·c_1_32 + c_1_110·c_1_2·c_1_3 + c_1_112
       + c_1_0·c_1_12·c_1_2·c_1_38 + c_1_0·c_1_12·c_1_22·c_1_37
       + c_1_0·c_1_12·c_1_24·c_1_35 + c_1_0·c_1_12·c_1_27·c_1_32
       + c_1_0·c_1_14·c_1_37 + c_1_0·c_1_14·c_1_2·c_1_36
       + c_1_0·c_1_14·c_1_23·c_1_34 + c_1_0·c_1_18·c_1_33 + c_1_02·c_1_1·c_1_39
       + c_1_02·c_1_1·c_1_2·c_1_38 + c_1_02·c_1_1·c_1_23·c_1_36
       + c_1_02·c_1_1·c_1_28·c_1_3 + c_1_02·c_1_1·c_1_29 + c_1_02·c_1_12·c_1_38
       + c_1_02·c_1_12·c_1_22·c_1_36 + c_1_02·c_1_12·c_1_23·c_1_35
       + c_1_02·c_1_12·c_1_24·c_1_34 + c_1_02·c_1_12·c_1_25·c_1_33
       + c_1_02·c_1_12·c_1_26·c_1_32 + c_1_02·c_1_12·c_1_28
       + c_1_02·c_1_14·c_1_2·c_1_35 + c_1_02·c_1_14·c_1_22·c_1_34
       + c_1_02·c_1_14·c_1_23·c_1_33 + c_1_02·c_1_14·c_1_26
       + c_1_02·c_1_18·c_1_2·c_1_3 + c_1_02·c_1_18·c_1_22 + c_1_03·c_1_39
       + c_1_03·c_1_2·c_1_38 + c_1_03·c_1_22·c_1_37 + c_1_03·c_1_24·c_1_35
       + c_1_03·c_1_26·c_1_33 + c_1_03·c_1_28·c_1_3 + c_1_03·c_1_29
       + c_1_04·c_1_2·c_1_37 + c_1_04·c_1_24·c_1_34 + c_1_04·c_1_26·c_1_32
       + c_1_04·c_1_28 + c_1_04·c_1_1·c_1_22·c_1_35 + c_1_04·c_1_1·c_1_23·c_1_34
       + c_1_04·c_1_1·c_1_24·c_1_33 + c_1_04·c_1_1·c_1_27
       + c_1_04·c_1_12·c_1_22·c_1_34 + c_1_04·c_1_12·c_1_24·c_1_32
       + c_1_04·c_1_12·c_1_25·c_1_3 + c_1_04·c_1_12·c_1_26 + c_1_04·c_1_14·c_1_34
       + c_1_04·c_1_14·c_1_22·c_1_32 + c_1_04·c_1_14·c_1_24 + c_1_04·c_1_18
       + c_1_05·c_1_22·c_1_35 + c_1_05·c_1_23·c_1_34 + c_1_05·c_1_25·c_1_32
       + c_1_06·c_1_36 + c_1_06·c_1_23·c_1_33 + c_1_06·c_1_25·c_1_3
       + c_1_06·c_1_26 + c_1_08·c_1_22·c_1_32 + c_1_08·c_1_24
       + c_1_08·c_1_1·c_1_33 + c_1_08·c_1_1·c_1_2·c_1_32 + c_1_08·c_1_1·c_1_22·c_1_3
       + c_1_08·c_1_12·c_1_32 + c_1_09·c_1_33 + c_1_09·c_1_2·c_1_32
       + c_1_09·c_1_22·c_1_3 + c_1_09·c_1_23 + c_1_010·c_1_2·c_1_3 + c_1_012, an element of degree 12

Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup

  1. a_2_30, an element of degree 2
  2. a_2_20, an element of degree 2
  3. b_2_1c_1_32 + c_1_2·c_1_3 + c_1_22, an element of degree 2
  4. b_2_0c_1_32 + c_1_2·c_1_3 + c_1_22, an element of degree 2
  5. b_3_5c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  6. b_3_4c_1_33 + c_1_22·c_1_3 + c_1_23, an element of degree 3
  7. b_3_3c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  8. b_3_2c_1_33 + c_1_2·c_1_32 + c_1_23, an element of degree 3
  9. b_3_1c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_0·c_1_32
       + c_1_02·c_1_3, an element of degree 3
  10. b_3_0c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_32 + c_1_0·c_1_22 + c_1_02·c_1_3
       + c_1_02·c_1_2, an element of degree 3
  11. b_5_120, an element of degree 5
  12. b_5_110, an element of degree 5
  13. b_5_9c_1_1·c_1_34 + c_1_1·c_1_24 + c_1_14·c_1_3 + c_1_14·c_1_2 + c_1_0·c_1_34
       + c_1_04·c_1_3, an element of degree 5
  14. b_5_8c_1_2·c_1_34 + c_1_24·c_1_3 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3
       + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_14·c_1_2
       + c_1_0·c_1_2·c_1_33 + c_1_0·c_1_23·c_1_3 + c_1_02·c_1_33 + c_1_02·c_1_23
       + c_1_04·c_1_3 + c_1_04·c_1_2, an element of degree 5
  15. b_6_190, an element of degree 6
  16. b_6_180, an element of degree 6
  17. b_6_7c_1_2·c_1_35 + c_1_23·c_1_33 + c_1_24·c_1_32 + c_1_25·c_1_3
       + c_1_1·c_1_23·c_1_32 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_34
       + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_23·c_1_3 + c_1_14·c_1_32
       + c_1_0·c_1_2·c_1_34 + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_23·c_1_32
       + c_1_0·c_1_24·c_1_3 + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_23·c_1_3
       + c_1_02·c_1_24 + c_1_04·c_1_22, an element of degree 6
  18. c_8_32c_1_1·c_1_37 + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_27
       + c_1_12·c_1_36 + c_1_12·c_1_2·c_1_35 + c_1_13·c_1_2·c_1_34 + c_1_13·c_1_25
       + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32
       + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_22·c_1_3 + c_1_15·c_1_23
       + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_18 + c_1_0·c_1_37
       + c_1_0·c_1_2·c_1_36 + c_1_0·c_1_22·c_1_35 + c_1_0·c_1_24·c_1_33
       + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_1·c_1_36 + c_1_0·c_1_1·c_1_22·c_1_34
       + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_33
       + c_1_0·c_1_14·c_1_23 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_1·c_1_35
       + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_34
       + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24
       + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_03·c_1_35 + c_1_03·c_1_2·c_1_34
       + c_1_04·c_1_34 + c_1_04·c_1_2·c_1_33 + c_1_04·c_1_24
       + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_22
       + c_1_04·c_1_14 + c_1_05·c_1_33 + c_1_05·c_1_22·c_1_3 + c_1_06·c_1_32
       + c_1_06·c_1_2·c_1_3 + c_1_08, an element of degree 8
  19. b_9_430, an element of degree 9
  20. b_9_420, an element of degree 9
  21. b_9_33c_1_2·c_1_38 + c_1_22·c_1_37 + c_1_23·c_1_36 + c_1_24·c_1_35
       + c_1_27·c_1_32 + c_1_28·c_1_3 + c_1_1·c_1_38 + c_1_1·c_1_2·c_1_37
       + c_1_1·c_1_22·c_1_36 + c_1_1·c_1_23·c_1_35 + c_1_1·c_1_25·c_1_33
       + c_1_1·c_1_28 + c_1_12·c_1_2·c_1_36 + c_1_12·c_1_22·c_1_35
       + c_1_12·c_1_23·c_1_34 + c_1_13·c_1_36 + c_1_13·c_1_2·c_1_35
       + c_1_13·c_1_22·c_1_34 + c_1_13·c_1_23·c_1_33 + c_1_13·c_1_25·c_1_3
       + c_1_13·c_1_26 + c_1_14·c_1_2·c_1_34 + c_1_14·c_1_22·c_1_33
       + c_1_14·c_1_23·c_1_32 + c_1_14·c_1_25 + c_1_15·c_1_34 + c_1_15·c_1_24
       + c_1_16·c_1_33 + c_1_16·c_1_23 + c_1_18·c_1_2 + c_1_0·c_1_38
       + c_1_0·c_1_23·c_1_35 + c_1_0·c_1_24·c_1_34 + c_1_0·c_1_25·c_1_33
       + c_1_0·c_1_27·c_1_3 + c_1_0·c_1_1·c_1_37 + c_1_0·c_1_1·c_1_23·c_1_34
       + c_1_0·c_1_1·c_1_25·c_1_32 + c_1_0·c_1_1·c_1_26·c_1_3 + c_1_0·c_1_1·c_1_27
       + c_1_0·c_1_12·c_1_36 + c_1_0·c_1_12·c_1_22·c_1_34 + c_1_0·c_1_14·c_1_24
       + c_1_02·c_1_24·c_1_33 + c_1_02·c_1_27 + c_1_02·c_1_1·c_1_36
       + c_1_02·c_1_1·c_1_2·c_1_35 + c_1_02·c_1_1·c_1_23·c_1_33
       + c_1_02·c_1_1·c_1_25·c_1_3 + c_1_02·c_1_12·c_1_35
       + c_1_02·c_1_12·c_1_2·c_1_34 + c_1_02·c_1_12·c_1_25
       + c_1_02·c_1_14·c_1_2·c_1_32 + c_1_02·c_1_14·c_1_22·c_1_3
       + c_1_02·c_1_14·c_1_23 + c_1_03·c_1_36 + c_1_03·c_1_2·c_1_35
       + c_1_03·c_1_23·c_1_33 + c_1_03·c_1_24·c_1_32 + c_1_03·c_1_25·c_1_3
       + c_1_04·c_1_35 + c_1_04·c_1_2·c_1_34 + c_1_04·c_1_22·c_1_33
       + c_1_04·c_1_24·c_1_3 + c_1_04·c_1_1·c_1_24 + c_1_04·c_1_12·c_1_2·c_1_32
       + c_1_04·c_1_12·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_23 + c_1_05·c_1_34
       + c_1_06·c_1_33 + c_1_06·c_1_2·c_1_32 + c_1_06·c_1_22·c_1_3 + c_1_08·c_1_3
       + c_1_08·c_1_2, an element of degree 9
  22. b_9_26c_1_1·c_1_22·c_1_36 + c_1_1·c_1_23·c_1_35 + c_1_1·c_1_25·c_1_33
       + c_1_1·c_1_27·c_1_3 + c_1_12·c_1_2·c_1_36 + c_1_12·c_1_25·c_1_32
       + c_1_13·c_1_36 + c_1_14·c_1_22·c_1_33 + c_1_14·c_1_24·c_1_3
       + c_1_15·c_1_34 + c_1_16·c_1_33 + c_1_16·c_1_2·c_1_32 + c_1_16·c_1_22·c_1_3
       + c_1_18·c_1_3 + c_1_0·c_1_2·c_1_37 + c_1_0·c_1_22·c_1_36
       + c_1_0·c_1_26·c_1_32 + c_1_0·c_1_27·c_1_3 + c_1_0·c_1_1·c_1_2·c_1_36
       + c_1_0·c_1_1·c_1_22·c_1_35 + c_1_0·c_1_1·c_1_23·c_1_34
       + c_1_0·c_1_1·c_1_24·c_1_33 + c_1_0·c_1_1·c_1_25·c_1_32
       + c_1_0·c_1_1·c_1_26·c_1_3 + c_1_0·c_1_12·c_1_36 + c_1_0·c_1_12·c_1_2·c_1_35
       + c_1_0·c_1_12·c_1_22·c_1_34 + c_1_0·c_1_12·c_1_23·c_1_33
       + c_1_0·c_1_12·c_1_25·c_1_3 + c_1_0·c_1_12·c_1_26 + c_1_0·c_1_14·c_1_34
       + c_1_0·c_1_14·c_1_24 + c_1_02·c_1_22·c_1_35 + c_1_02·c_1_23·c_1_34
       + c_1_02·c_1_1·c_1_36 + c_1_02·c_1_1·c_1_2·c_1_35
       + c_1_02·c_1_1·c_1_23·c_1_33 + c_1_02·c_1_1·c_1_24·c_1_32
       + c_1_02·c_1_1·c_1_25·c_1_3 + c_1_02·c_1_1·c_1_26
       + c_1_02·c_1_12·c_1_2·c_1_34 + c_1_02·c_1_12·c_1_24·c_1_3
       + c_1_02·c_1_14·c_1_33 + c_1_02·c_1_14·c_1_23 + c_1_03·c_1_26
       + c_1_04·c_1_2·c_1_34 + c_1_04·c_1_23·c_1_32 + c_1_04·c_1_1·c_1_34
       + c_1_04·c_1_1·c_1_24 + c_1_04·c_1_12·c_1_33 + c_1_04·c_1_12·c_1_23
       + c_1_05·c_1_24 + c_1_06·c_1_2·c_1_32 + c_1_06·c_1_22·c_1_3 + c_1_06·c_1_23
       + c_1_08·c_1_2, an element of degree 9
  23. c_12_74c_1_24·c_1_38 + c_1_28·c_1_34 + c_1_1·c_1_22·c_1_39 + c_1_1·c_1_24·c_1_37
       + c_1_1·c_1_25·c_1_36 + c_1_1·c_1_26·c_1_35 + c_1_1·c_1_28·c_1_33
       + c_1_1·c_1_29·c_1_32 + c_1_12·c_1_2·c_1_39 + c_1_12·c_1_22·c_1_38
       + c_1_12·c_1_23·c_1_37 + c_1_12·c_1_24·c_1_36 + c_1_12·c_1_25·c_1_35
       + c_1_12·c_1_29·c_1_3 + c_1_13·c_1_22·c_1_37 + c_1_13·c_1_23·c_1_36
       + c_1_13·c_1_24·c_1_35 + c_1_13·c_1_26·c_1_33 + c_1_13·c_1_27·c_1_32
       + c_1_13·c_1_28·c_1_3 + c_1_14·c_1_38 + c_1_14·c_1_24·c_1_34
       + c_1_14·c_1_25·c_1_33 + c_1_14·c_1_27·c_1_3 + c_1_15·c_1_37
       + c_1_15·c_1_23·c_1_34 + c_1_15·c_1_24·c_1_33 + c_1_15·c_1_25·c_1_32
       + c_1_16·c_1_36 + c_1_16·c_1_2·c_1_35 + c_1_16·c_1_22·c_1_34
       + c_1_16·c_1_24·c_1_32 + c_1_18·c_1_34 + c_1_18·c_1_2·c_1_33
       + c_1_18·c_1_22·c_1_32 + c_1_18·c_1_23·c_1_3 + c_1_19·c_1_33
       + c_1_19·c_1_22·c_1_3 + c_1_110·c_1_32 + c_1_110·c_1_2·c_1_3
       + c_1_0·c_1_22·c_1_39 + c_1_0·c_1_25·c_1_36 + c_1_0·c_1_26·c_1_35
       + c_1_0·c_1_27·c_1_34 + c_1_0·c_1_12·c_1_2·c_1_38
       + c_1_0·c_1_12·c_1_24·c_1_35 + c_1_0·c_1_12·c_1_27·c_1_32
       + c_1_0·c_1_12·c_1_28·c_1_3 + c_1_0·c_1_14·c_1_37
       + c_1_0·c_1_14·c_1_22·c_1_35 + c_1_0·c_1_14·c_1_23·c_1_34
       + c_1_0·c_1_18·c_1_33 + c_1_0·c_1_18·c_1_2·c_1_32 + c_1_0·c_1_18·c_1_22·c_1_3
       + c_1_02·c_1_2·c_1_39 + c_1_02·c_1_22·c_1_38 + c_1_02·c_1_25·c_1_35
       + c_1_02·c_1_27·c_1_33 + c_1_02·c_1_1·c_1_23·c_1_36
       + c_1_02·c_1_1·c_1_25·c_1_34 + c_1_02·c_1_1·c_1_26·c_1_33
       + c_1_02·c_1_1·c_1_27·c_1_32 + c_1_02·c_1_12·c_1_38
       + c_1_02·c_1_12·c_1_2·c_1_37 + c_1_02·c_1_12·c_1_23·c_1_35
       + c_1_02·c_1_12·c_1_24·c_1_34 + c_1_02·c_1_12·c_1_26·c_1_32
       + c_1_02·c_1_12·c_1_27·c_1_3 + c_1_02·c_1_12·c_1_28 + c_1_02·c_1_14·c_1_36
       + c_1_02·c_1_14·c_1_23·c_1_33 + c_1_02·c_1_14·c_1_24·c_1_32
       + c_1_02·c_1_18·c_1_2·c_1_3 + c_1_02·c_1_18·c_1_22 + c_1_03·c_1_2·c_1_38
       + c_1_03·c_1_22·c_1_37 + c_1_03·c_1_24·c_1_35 + c_1_03·c_1_25·c_1_34
       + c_1_04·c_1_2·c_1_37 + c_1_04·c_1_22·c_1_36 + c_1_04·c_1_24·c_1_34
       + c_1_04·c_1_25·c_1_33 + c_1_04·c_1_26·c_1_32
       + c_1_04·c_1_1·c_1_22·c_1_35 + c_1_04·c_1_1·c_1_25·c_1_32
       + c_1_04·c_1_1·c_1_26·c_1_3 + c_1_04·c_1_1·c_1_27
       + c_1_04·c_1_12·c_1_23·c_1_33 + c_1_04·c_1_12·c_1_26
       + c_1_04·c_1_14·c_1_34 + c_1_04·c_1_14·c_1_22·c_1_32
       + c_1_04·c_1_14·c_1_24 + c_1_04·c_1_18 + c_1_05·c_1_22·c_1_35
       + c_1_05·c_1_24·c_1_33 + c_1_05·c_1_25·c_1_32 + c_1_06·c_1_22·c_1_34
       + c_1_06·c_1_24·c_1_32 + c_1_06·c_1_25·c_1_3 + c_1_08·c_1_2·c_1_33
       + c_1_08·c_1_1·c_1_22·c_1_3 + c_1_08·c_1_1·c_1_23 + c_1_08·c_1_12·c_1_32
       + c_1_08·c_1_14 + c_1_09·c_1_2·c_1_32 + c_1_010·c_1_2·c_1_3, an element of degree 12
  24. c_12_73c_1_22·c_1_310 + c_1_26·c_1_36 + c_1_28·c_1_34 + c_1_210·c_1_32
       + c_1_1·c_1_311 + c_1_1·c_1_22·c_1_39 + c_1_1·c_1_23·c_1_38
       + c_1_1·c_1_24·c_1_37 + c_1_1·c_1_27·c_1_34 + c_1_1·c_1_29·c_1_32
       + c_1_1·c_1_210·c_1_3 + c_1_1·c_1_211 + c_1_12·c_1_2·c_1_39
       + c_1_12·c_1_23·c_1_37 + c_1_12·c_1_24·c_1_36 + c_1_12·c_1_25·c_1_35
       + c_1_12·c_1_26·c_1_34 + c_1_12·c_1_28·c_1_32 + c_1_13·c_1_39
       + c_1_13·c_1_22·c_1_37 + c_1_13·c_1_23·c_1_36 + c_1_13·c_1_27·c_1_32
       + c_1_14·c_1_38 + c_1_14·c_1_2·c_1_37 + c_1_14·c_1_22·c_1_36
       + c_1_14·c_1_24·c_1_34 + c_1_14·c_1_27·c_1_3 + c_1_14·c_1_28
       + c_1_15·c_1_22·c_1_35 + c_1_15·c_1_27 + c_1_16·c_1_36
       + c_1_16·c_1_22·c_1_34 + c_1_16·c_1_23·c_1_33 + c_1_16·c_1_24·c_1_32
       + c_1_16·c_1_25·c_1_3 + c_1_18·c_1_22·c_1_32 + c_1_18·c_1_23·c_1_3
       + c_1_18·c_1_24 + c_1_19·c_1_33 + c_1_19·c_1_23 + c_1_110·c_1_2·c_1_3
       + c_1_112 + c_1_0·c_1_311 + c_1_0·c_1_23·c_1_38 + c_1_0·c_1_24·c_1_37
       + c_1_0·c_1_25·c_1_36 + c_1_0·c_1_26·c_1_35 + c_1_0·c_1_28·c_1_33
       + c_1_0·c_1_29·c_1_32 + c_1_0·c_1_12·c_1_39 + c_1_0·c_1_12·c_1_23·c_1_36
       + c_1_0·c_1_12·c_1_26·c_1_33 + c_1_0·c_1_14·c_1_22·c_1_35
       + c_1_0·c_1_14·c_1_23·c_1_34 + c_1_0·c_1_14·c_1_26·c_1_3
       + c_1_0·c_1_18·c_1_33 + c_1_0·c_1_18·c_1_22·c_1_3 + c_1_02·c_1_22·c_1_38
       + c_1_02·c_1_24·c_1_36 + c_1_02·c_1_25·c_1_35 + c_1_02·c_1_26·c_1_34
       + c_1_02·c_1_27·c_1_33 + c_1_02·c_1_29·c_1_3 + c_1_02·c_1_1·c_1_22·c_1_37
       + c_1_02·c_1_1·c_1_24·c_1_35 + c_1_02·c_1_1·c_1_26·c_1_33
       + c_1_02·c_1_1·c_1_27·c_1_32 + c_1_02·c_1_1·c_1_28·c_1_3
       + c_1_02·c_1_1·c_1_29 + c_1_02·c_1_14·c_1_23·c_1_33
       + c_1_02·c_1_18·c_1_22 + c_1_03·c_1_22·c_1_37 + c_1_03·c_1_23·c_1_36
       + c_1_03·c_1_24·c_1_35 + c_1_03·c_1_25·c_1_34 + c_1_03·c_1_27·c_1_32
       + c_1_04·c_1_38 + c_1_04·c_1_2·c_1_37 + c_1_04·c_1_22·c_1_36
       + c_1_04·c_1_23·c_1_35 + c_1_04·c_1_25·c_1_33 + c_1_04·c_1_1·c_1_37
       + c_1_04·c_1_1·c_1_22·c_1_35 + c_1_04·c_1_1·c_1_25·c_1_32
       + c_1_04·c_1_1·c_1_27 + c_1_04·c_1_12·c_1_2·c_1_35
       + c_1_04·c_1_12·c_1_24·c_1_32 + c_1_04·c_1_12·c_1_25·c_1_3 + c_1_04·c_1_18
       + c_1_05·c_1_37 + c_1_05·c_1_2·c_1_36 + c_1_05·c_1_22·c_1_35
       + c_1_05·c_1_23·c_1_34 + c_1_05·c_1_24·c_1_33 + c_1_05·c_1_26·c_1_3
       + c_1_06·c_1_2·c_1_35 + c_1_06·c_1_23·c_1_33 + c_1_06·c_1_26
       + c_1_08·c_1_34 + c_1_08·c_1_2·c_1_33 + c_1_08·c_1_23·c_1_3 + c_1_08·c_1_24
       + c_1_08·c_1_1·c_1_33 + c_1_08·c_1_1·c_1_22·c_1_3 + c_1_08·c_1_12·c_1_32
       + c_1_08·c_1_12·c_1_2·c_1_3 + c_1_09·c_1_33 + c_1_09·c_1_2·c_1_32
       + c_1_09·c_1_22·c_1_3 + c_1_010·c_1_2·c_1_3 + c_1_010·c_1_22 + c_1_012, an element of degree 12


About the group Ring generators Ring relations Completion information Restriction maps




Simon King
Department of Mathematics and Computer Science
Friedrich-Schiller-Universität Jena
07737 Jena
GERMANY
E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46161
Fax: +49 (0)3641 9-46162
Office: Zi. 3529, Ernst-Abbe-Platz 2



Last change: 14.12.2010