Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of group number 1088539 of order 768
General information on the group
- The group order factors as 28 · 3.
- It is non-abelian.
- It has 2-Rank 5.
- The centre of a Sylow 2-subgroup has rank 2.
- Its Sylow 2-subgroup has 5 conjugacy classes of maximal elementary abelian subgroups, which are of rank 4, 4, 5, 5 and 5, respectively.
Structure of the cohomology ring
The computation was based on 1 stability condition for H*(SmallGroup(256,26531); GF(2)).
General information
- The cohomology ring is of dimension 5 and depth 4.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
( − 1)·(1 + 2·t2 + t3 + t5) |
| (1 + t) · ( − 1 + t)5 · (1 + t2) · (1 + t + t2) |
- The a-invariants are -∞,-∞,-∞,-∞,-7,-5. They were obtained using the filter regular HSOP of the Benson test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -5, -5].
Ring generators
The cohomology ring has 9 minimal generators of maximal degree 4:
- c_1_2, a Duflot element of degree 1
- b_1_1, an element of degree 1
- b_1_0, an element of degree 1
- c_2_5, a Duflot element of degree 2
- b_2_4, an element of degree 2
- c_3_15, a Duflot element of degree 3
- b_3_1, an element of degree 3
- b_3_0, an element of degree 3
- c_4_24, a Duflot element of degree 4
Ring relations
There are 10 minimal relations of maximal degree 6:
- c_2_5·b_1_1 + b_1_1·c_1_22
- b_1_0·c_3_15 + c_2_5·b_1_0·c_1_2
- b_1_1·c_3_15 + b_1_1·c_1_23
- b_1_1·b_3_0 + b_1_0·b_3_1 + b_2_4·b_1_1·c_1_2
- b_2_4·c_3_15 + b_2_4·c_2_5·c_1_2
- c_2_5·b_3_1 + c_1_22·b_3_1
- b_3_0·c_3_15 + c_2_5·c_1_2·b_3_0
- b_3_1·c_3_15 + c_1_23·b_3_1
- b_3_02 + b_2_4·b_1_0·b_3_0 + c_4_24·b_1_02 + b_2_42·b_1_0·c_1_2 + b_2_42·c_2_5
- b_3_0·b_3_1 + b_2_4·b_1_0·b_3_1 + c_4_24·b_1_0·b_1_1 + b_2_4·c_1_2·b_3_1
Data used for the Benson test
- We proved completion in degree 19 using the Benson criterion.
- However, the last relation was already found in degree 6 and the last generator in degree 4.
- The following is a filter regular homogeneous system of parameters:
- c_1_2, an element of degree 1
- c_4_24, an element of degree 4
- b_1_1·b_3_1 + b_1_14 + b_1_0·b_3_0 + b_1_02·b_1_12 + b_1_04 + b_2_4·b_1_0·b_1_1
+ b_2_4·b_1_02 + b_2_42 + b_2_4·b_1_0·c_1_2 + c_2_52 + c_1_24, an element of degree 4
- b_3_12 + b_1_13·b_3_1 + b_1_0·b_1_12·b_3_1 + b_1_02·b_1_14 + b_1_03·b_3_1
+ b_1_03·b_3_0 + b_1_04·b_1_12 + b_2_4·b_1_1·b_3_1 + b_2_4·b_1_0·b_1_13 + b_2_4·b_1_04 + b_2_42·b_1_12 + b_2_42·b_1_0·b_1_1 + b_2_42·b_1_02 + c_4_24·b_1_12 + c_2_5·b_1_0·b_3_0 + b_2_4·b_1_03·c_1_2 + b_2_4·c_2_5·b_1_02 + b_2_42·c_2_5 + c_3_152 + b_1_0·c_1_22·b_3_0 + c_2_52·b_1_02 + b_2_4·b_1_02·c_1_22 + b_2_4·c_2_5·b_1_0·c_1_2 + b_2_42·c_1_22 + b_2_4·b_1_0·c_1_23 + b_1_02·c_1_24 + c_2_52·c_1_22, an element of degree 6
- b_1_1·b_3_12 + b_1_0·b_1_13·b_3_1 + b_1_02·b_1_12·b_3_1 + b_1_03·b_1_1·b_3_1
+ b_1_04·b_3_1 + b_2_4·b_1_12·b_3_1 + b_2_4·b_1_02·b_1_13 + b_2_4·b_1_04·b_1_1 + b_2_42·b_1_0·b_1_12 + b_2_42·b_1_02·b_1_1 + c_4_24·b_1_13 + c_2_5·b_1_02·b_3_0 + b_2_4·c_2_5·b_1_03 + b_2_42·c_2_5·b_1_0 + b_1_02·c_1_22·b_3_0 + b_2_4·b_1_03·c_1_22 + b_2_4·c_2_5·b_1_02·c_1_2 + b_2_42·b_1_0·c_1_22 + b_2_4·b_1_02·c_1_23, an element of degree 7
- A Duflot regular sequence is given by c_1_2, c_4_24.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, -1, 8, 17].
Restriction maps
- c_1_2 → b_1_0 + c_1_3
- b_1_1 → b_1_1
- b_1_0 → b_1_2
- c_2_5 → b_2_9 + c_1_32
- b_2_4 → b_2_10 + b_2_8
- c_3_15 → b_2_9·c_1_3 + b_1_0·c_1_32 + c_1_33
- b_3_1 → b_3_22
- b_3_0 → b_3_23 + b_2_10·c_1_3 + b_2_8·c_1_3
- c_4_24 → c_4_45
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 2
- c_1_2 → c_1_0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- c_2_5 → c_1_02, an element of degree 2
- b_2_4 → 0, an element of degree 2
- c_3_15 → c_1_03, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_24 → c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- c_1_2 → c_1_3 + c_1_1 + c_1_0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- c_2_5 → c_1_12 + c_1_02, an element of degree 2
- b_2_4 → c_1_2·c_1_3 + c_1_22, an element of degree 2
- c_3_15 → c_1_12·c_1_3 + c_1_13 + c_1_0·c_1_12 + c_1_02·c_1_3 + c_1_02·c_1_1 + c_1_03, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_1·c_1_2·c_1_3 + c_1_1·c_1_22 + c_1_0·c_1_2·c_1_3 + c_1_0·c_1_22, an element of degree 3
- c_4_24 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- c_1_2 → c_1_3 + c_1_1 + c_1_0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- c_2_5 → c_1_2·c_1_3 + c_1_22 + c_1_12 + c_1_02, an element of degree 2
- b_2_4 → 0, an element of degree 2
- c_3_15 → c_1_1·c_1_2·c_1_3 + c_1_1·c_1_22 + c_1_12·c_1_3 + c_1_13 + c_1_0·c_1_2·c_1_3
+ c_1_0·c_1_22 + c_1_0·c_1_12 + c_1_02·c_1_3 + c_1_02·c_1_1 + c_1_03, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_24 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 5 in a Sylow subgroup
- c_1_2 → c_1_1 + c_1_0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_0 → c_1_4, an element of degree 1
- c_2_5 → c_1_12 + c_1_02, an element of degree 2
- b_2_4 → c_1_2·c_1_4 + c_1_22 + c_1_1·c_1_4 + c_1_1·c_1_3, an element of degree 2
- c_3_15 → c_1_13 + c_1_0·c_1_12 + c_1_02·c_1_1 + c_1_03, an element of degree 3
- b_3_1 → c_1_2·c_1_3·c_1_4 + c_1_22·c_1_3 + c_1_1·c_1_3·c_1_4 + c_1_12·c_1_3, an element of degree 3
- b_3_0 → c_1_2·c_1_42 + c_1_22·c_1_4 + c_1_1·c_1_42 + c_1_1·c_1_2·c_1_4 + c_1_1·c_1_22
+ c_1_12·c_1_3 + c_1_0·c_1_2·c_1_4 + c_1_0·c_1_22 + c_1_0·c_1_1·c_1_4 + c_1_0·c_1_1·c_1_3, an element of degree 3
- c_4_24 → c_1_1·c_1_2·c_1_3·c_1_4 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_3·c_1_4
+ c_1_12·c_1_2·c_1_4 + c_1_12·c_1_22 + c_1_13·c_1_4 + c_1_13·c_1_3 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 5 in a Sylow subgroup
- c_1_2 → c_1_1 + c_1_0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_0 → 0, an element of degree 1
- c_2_5 → c_1_12 + c_1_02, an element of degree 2
- b_2_4 → c_1_42 + c_1_3·c_1_4 + c_1_2·c_1_4 + c_1_22 + c_1_1·c_1_3, an element of degree 2
- c_3_15 → c_1_13 + c_1_0·c_1_12 + c_1_02·c_1_1 + c_1_03, an element of degree 3
- b_3_1 → c_1_2·c_1_42 + c_1_2·c_1_3·c_1_4 + c_1_22·c_1_4 + c_1_22·c_1_3 + c_1_12·c_1_3, an element of degree 3
- b_3_0 → c_1_1·c_1_42 + c_1_1·c_1_3·c_1_4 + c_1_1·c_1_2·c_1_4 + c_1_1·c_1_22 + c_1_12·c_1_3
+ c_1_0·c_1_42 + c_1_0·c_1_3·c_1_4 + c_1_0·c_1_2·c_1_4 + c_1_0·c_1_22 + c_1_0·c_1_1·c_1_3, an element of degree 3
- c_4_24 → c_1_1·c_1_2·c_1_42 + c_1_1·c_1_2·c_1_3·c_1_4 + c_1_1·c_1_22·c_1_4
+ c_1_1·c_1_22·c_1_3 + c_1_12·c_1_42 + c_1_12·c_1_3·c_1_4 + c_1_12·c_1_2·c_1_4 + c_1_12·c_1_22 + c_1_13·c_1_3 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 5 in a Sylow subgroup
- c_1_2 → c_1_1 + c_1_0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_0 → c_1_3, an element of degree 1
- c_2_5 → c_1_42 + c_1_3·c_1_4 + c_1_12 + c_1_02, an element of degree 2
- b_2_4 → c_1_2·c_1_4 + c_1_2·c_1_3 + c_1_22 + c_1_1·c_1_3, an element of degree 2
- c_3_15 → c_1_1·c_1_42 + c_1_1·c_1_3·c_1_4 + c_1_13 + c_1_0·c_1_42 + c_1_0·c_1_3·c_1_4
+ c_1_0·c_1_12 + c_1_02·c_1_1 + c_1_03, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_2·c_1_42 + c_1_2·c_1_32 + c_1_22·c_1_4 + c_1_22·c_1_3 + c_1_1·c_1_32
+ c_1_1·c_1_2·c_1_4 + c_1_1·c_1_2·c_1_3 + c_1_1·c_1_22 + c_1_0·c_1_2·c_1_4 + c_1_0·c_1_2·c_1_3 + c_1_0·c_1_22 + c_1_0·c_1_1·c_1_3, an element of degree 3
- c_4_24 → c_1_1·c_1_2·c_1_42 + c_1_1·c_1_2·c_1_3·c_1_4 + c_1_1·c_1_22·c_1_4
+ c_1_12·c_1_42 + c_1_12·c_1_3·c_1_4 + c_1_12·c_1_2·c_1_4 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_13·c_1_3 + c_1_14, an element of degree 4
|