Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of group number 5748 of order 960
General information on the group
- The group order factors as 26 · 3 · 5.
- It is non-abelian.
- It has 2-Rank 2.
- The centre of a Sylow 2-subgroup has rank 2.
- Its Sylow 2-subgroup has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 2.
Structure of the cohomology ring
The computation was based on 14 stability conditions for H*(Syl2(U3(4)); GF(2)).
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
(1 + t3 + t6) · (1 − 2·t + 3·t2 − 5·t3 + 7·t4 − 6·t5 + 9·t6 − 10·t7 + 11·t8 − 12·t9 + 11·t10 − 11·t11 + 11·t12 − 12·t13 + 11·t14 − 10·t15 + 9·t16 − 6·t17 + 7·t18 − 5·t19 + 3·t20 − 2·t21 + t22) |
| ( − 1 + t)2 · (1 − t + t2) · (1 + t + t2) · (1 + t2)2 · (1 − t2 + t4) · (1 + t4)2 · (1 − t4 + t8) |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Ring generators
The cohomology ring has 55 minimal generators of maximal degree 27:
- a_5_2, a nilpotent element of degree 5
- a_5_1, a nilpotent element of degree 5
- a_5_0, a nilpotent element of degree 5
- a_6_3, a nilpotent element of degree 6
- a_6_2, a nilpotent element of degree 6
- a_6_1, a nilpotent element of degree 6
- a_6_0, a nilpotent element of degree 6
- a_7_1, a nilpotent element of degree 7
- a_7_0, a nilpotent element of degree 7
- a_8_3, a nilpotent element of degree 8
- a_8_2, a nilpotent element of degree 8
- a_8_1, a nilpotent element of degree 8
- a_8_0, a nilpotent element of degree 8
- a_9_2, a nilpotent element of degree 9
- a_9_1, a nilpotent element of degree 9
- a_9_0, a nilpotent element of degree 9
- a_11_1, a nilpotent element of degree 11
- a_11_0, a nilpotent element of degree 11
- a_12_3, a nilpotent element of degree 12
- a_12_2, a nilpotent element of degree 12
- a_12_1, a nilpotent element of degree 12
- a_12_0, a nilpotent element of degree 12
- a_13_1, a nilpotent element of degree 13
- a_13_0, a nilpotent element of degree 13
- a_15_1, a nilpotent element of degree 15
- a_15_0, a nilpotent element of degree 15
- c_16_0, a Duflot element of degree 16
- a_17_1, a nilpotent element of degree 17
- a_17_0, a nilpotent element of degree 17
- a_18_3, a nilpotent element of degree 18
- a_18_2, a nilpotent element of degree 18
- a_18_1, a nilpotent element of degree 18
- a_18_0, a nilpotent element of degree 18
- a_19_3, a nilpotent element of degree 19
- a_19_2, a nilpotent element of degree 19
- a_19_1, a nilpotent element of degree 19
- a_19_0, a nilpotent element of degree 19
- a_20_3, a nilpotent element of degree 20
- a_20_2, a nilpotent element of degree 20
- a_20_1, a nilpotent element of degree 20
- a_20_0, a nilpotent element of degree 20
- a_21_4, a nilpotent element of degree 21
- a_21_3, a nilpotent element of degree 21
- a_23_3, a nilpotent element of degree 23
- a_23_2, a nilpotent element of degree 23
- c_24_5, a Duflot element of degree 24
- c_24_4, a Duflot element of degree 24
- a_25_1, a nilpotent element of degree 25
- a_25_0, a nilpotent element of degree 25
- a_26_3, a nilpotent element of degree 26
- a_26_2, a nilpotent element of degree 26
- a_26_1, a nilpotent element of degree 26
- a_26_0, a nilpotent element of degree 26
- a_27_1, a nilpotent element of degree 27
- a_27_0, a nilpotent element of degree 27
Ring relations
There are 1414 minimal relations of maximal degree 54:
- a_5_02
- a_5_0·a_5_1
- a_5_0·a_5_2
- a_5_12
- a_5_1·a_5_2
- a_5_22
- a_6_0·a_5_0
- a_6_0·a_5_1
- a_6_0·a_5_2
- a_6_1·a_5_0
- a_6_1·a_5_1
- a_6_1·a_5_2
- a_6_2·a_5_0
- a_6_2·a_5_1
- a_6_2·a_5_2
- a_6_3·a_5_0
- a_6_3·a_5_1
- a_6_3·a_5_2
- a_6_02
- a_6_0·a_6_1
- a_6_0·a_6_2
- a_6_0·a_6_3
- a_6_12
- a_6_1·a_6_2
- a_6_1·a_6_3
- a_6_22
- a_6_2·a_6_3
- a_6_32
- a_5_0·a_7_0
- a_5_0·a_7_1
- a_5_1·a_7_0
- a_5_1·a_7_1
- a_5_2·a_7_0
- a_5_2·a_7_1
- a_6_0·a_7_0
- a_6_0·a_7_1
- a_6_1·a_7_0
- a_6_1·a_7_1
- a_6_2·a_7_0
- a_6_2·a_7_1
- a_6_3·a_7_0
- a_6_3·a_7_1
- a_8_0·a_5_0
- a_8_0·a_5_1
- a_8_0·a_5_2
- a_8_1·a_5_0
- a_8_1·a_5_1
- a_8_1·a_5_2
- a_8_2·a_5_0
- a_8_2·a_5_1
- a_8_2·a_5_2
- a_8_3·a_5_0
- a_8_3·a_5_1
- a_8_3·a_5_2
- a_6_0·a_8_1
- a_6_0·a_8_2
- a_6_0·a_8_3 + a_6_0·a_8_0
- a_6_1·a_8_0 + a_6_0·a_8_0
- a_6_1·a_8_1 + a_6_0·a_8_0
- a_6_1·a_8_2 + a_6_0·a_8_0
- a_6_1·a_8_3
- a_6_2·a_8_0
- a_6_2·a_8_1 + a_6_0·a_8_0
- a_6_2·a_8_2
- a_6_2·a_8_3
- a_6_3·a_8_0 + a_6_0·a_8_0
- a_6_3·a_8_1
- a_6_3·a_8_2
- a_6_3·a_8_3
- a_5_0·a_9_0
- a_5_0·a_9_1 + a_6_0·a_8_0
- a_5_0·a_9_2 + a_6_0·a_8_0
- a_5_1·a_9_0
- a_5_1·a_9_1 + a_6_0·a_8_0
- a_5_1·a_9_2
- a_5_2·a_9_0 + a_6_0·a_8_0
- a_5_2·a_9_1
- a_5_2·a_9_2
- a_7_02
- a_7_0·a_7_1 + a_6_0·a_8_0
- a_7_12
- a_6_0·a_9_0
- a_6_0·a_9_1
- a_6_0·a_9_2
- a_6_1·a_9_0
- a_6_1·a_9_1
- a_6_1·a_9_2
- a_6_2·a_9_0
- a_6_2·a_9_1
- a_6_2·a_9_2
- a_6_3·a_9_0
- a_6_3·a_9_1
- a_6_3·a_9_2
- a_8_0·a_7_0
- a_8_0·a_7_1
- a_8_1·a_7_0
- a_8_1·a_7_1
- a_8_2·a_7_0
- a_8_2·a_7_1
- a_8_3·a_7_0
- a_8_3·a_7_1
- a_8_02
- a_8_0·a_8_1
- a_8_0·a_8_2
- a_8_0·a_8_3
- a_8_12
- a_8_1·a_8_2
- a_8_1·a_8_3
- a_8_22
- a_8_2·a_8_3
- a_8_32
- a_5_0·a_11_0
- a_5_0·a_11_1
- a_5_1·a_11_0
- a_5_1·a_11_1
- a_5_2·a_11_0
- a_5_2·a_11_1
- a_7_0·a_9_0
- a_7_0·a_9_1
- a_7_0·a_9_2
- a_7_1·a_9_0
- a_7_1·a_9_1
- a_7_1·a_9_2
- a_6_0·a_11_0
- a_6_0·a_11_1
- a_6_1·a_11_0
- a_6_1·a_11_1
- a_6_2·a_11_0
- a_6_2·a_11_1
- a_6_3·a_11_0
- a_6_3·a_11_1
- a_8_0·a_9_0
- a_8_0·a_9_1
- a_8_0·a_9_2
- a_8_1·a_9_0
- a_8_1·a_9_1
- a_8_1·a_9_2
- a_8_2·a_9_0
- a_8_2·a_9_1
- a_8_2·a_9_2
- a_8_3·a_9_0
- a_8_3·a_9_1
- a_8_3·a_9_2
- a_12_0·a_5_0
- a_12_0·a_5_1
- a_12_0·a_5_2
- a_12_1·a_5_0
- a_12_1·a_5_1
- a_12_1·a_5_2
- a_12_2·a_5_0
- a_12_2·a_5_1
- a_12_2·a_5_2
- a_12_3·a_5_0
- a_12_3·a_5_1
- a_12_3·a_5_2
- a_6_0·a_12_0
- a_6_0·a_12_1
- a_6_0·a_12_2
- a_6_0·a_12_3
- a_6_1·a_12_0
- a_6_1·a_12_1
- a_6_1·a_12_2
- a_6_1·a_12_3
- a_6_2·a_12_0
- a_6_2·a_12_1
- a_6_2·a_12_2
- a_6_2·a_12_3
- a_6_3·a_12_0
- a_6_3·a_12_1
- a_6_3·a_12_2
- a_6_3·a_12_3
- a_5_0·a_13_0
- a_5_0·a_13_1
- a_5_1·a_13_0
- a_5_1·a_13_1
- a_5_2·a_13_0
- a_5_2·a_13_1
- a_7_0·a_11_0
- a_7_0·a_11_1
- a_7_1·a_11_0
- a_7_1·a_11_1
- a_9_02
- a_9_0·a_9_1
- a_9_0·a_9_2
- a_9_12
- a_9_1·a_9_2
- a_9_22
- a_6_0·a_13_0
- a_6_0·a_13_1
- a_6_1·a_13_0
- a_6_1·a_13_1
- a_6_2·a_13_0
- a_6_2·a_13_1
- a_6_3·a_13_0
- a_6_3·a_13_1
- a_8_0·a_11_0
- a_8_0·a_11_1
- a_8_1·a_11_0
- a_8_1·a_11_1
- a_8_2·a_11_0
- a_8_2·a_11_1
- a_8_3·a_11_0
- a_8_3·a_11_1
- a_12_0·a_7_0
- a_12_0·a_7_1
- a_12_1·a_7_0
- a_12_1·a_7_1
- a_12_2·a_7_0
- a_12_2·a_7_1
- a_12_3·a_7_0
- a_12_3·a_7_1
- a_8_0·a_12_0
- a_8_0·a_12_1
- a_8_0·a_12_2
- a_8_0·a_12_3
- a_8_1·a_12_0
- a_8_1·a_12_1
- a_8_1·a_12_2
- a_8_1·a_12_3
- a_8_2·a_12_0
- a_8_2·a_12_1
- a_8_2·a_12_2
- a_8_2·a_12_3
- a_8_3·a_12_0
- a_8_3·a_12_1
- a_8_3·a_12_2
- a_8_3·a_12_3
- a_5_0·a_15_0
- a_5_0·a_15_1
- a_5_1·a_15_0
- a_5_1·a_15_1
- a_5_2·a_15_0
- a_5_2·a_15_1
- a_7_0·a_13_0
- a_7_0·a_13_1
- a_7_1·a_13_0
- a_7_1·a_13_1
- a_9_0·a_11_0
- a_9_0·a_11_1
- a_9_1·a_11_0
- a_9_1·a_11_1
- a_9_2·a_11_0
- a_9_2·a_11_1
- a_6_0·a_15_0
- a_6_0·a_15_1
- a_6_1·a_15_0
- a_6_1·a_15_1
- a_6_2·a_15_0
- a_6_2·a_15_1
- a_6_3·a_15_0
- a_6_3·a_15_1
- a_8_0·a_13_0
- a_8_0·a_13_1
- a_8_1·a_13_0
- a_8_1·a_13_1
- a_8_2·a_13_0
- a_8_2·a_13_1
- a_8_3·a_13_0
- a_8_3·a_13_1
- a_12_0·a_9_0
- a_12_0·a_9_1
- a_12_0·a_9_2
- a_12_1·a_9_0
- a_12_1·a_9_1
- a_12_1·a_9_2
- a_12_2·a_9_0
- a_12_2·a_9_1
- a_12_2·a_9_2
- a_12_3·a_9_0
- a_12_3·a_9_1
- a_12_3·a_9_2
- a_5_0·a_17_0
- a_5_0·a_17_1
- a_5_1·a_17_0
- a_5_1·a_17_1
- a_5_2·a_17_0
- a_5_2·a_17_1
- a_7_0·a_15_0
- a_7_0·a_15_1
- a_7_1·a_15_0
- a_7_1·a_15_1
- a_9_0·a_13_0
- a_9_0·a_13_1
- a_9_1·a_13_0
- a_9_1·a_13_1
- a_9_2·a_13_0
- a_9_2·a_13_1
- a_11_02
- a_11_0·a_11_1
- a_11_12
- a_6_0·a_17_0
- a_6_0·a_17_1
- a_6_1·a_17_0
- a_6_1·a_17_1
- a_6_2·a_17_0
- a_6_2·a_17_1
- a_6_3·a_17_0
- a_6_3·a_17_1
- a_8_0·a_15_0
- a_8_0·a_15_1
- a_8_1·a_15_0
- a_8_1·a_15_1
- a_8_2·a_15_0
- a_8_2·a_15_1
- a_8_3·a_15_0
- a_8_3·a_15_1
- a_12_0·a_11_0
- a_12_0·a_11_1
- a_12_1·a_11_0
- a_12_1·a_11_1
- a_12_2·a_11_0
- a_12_2·a_11_1
- a_12_3·a_11_0
- a_12_3·a_11_1
- a_18_0·a_5_0
- a_18_0·a_5_1
- a_18_0·a_5_2
- a_18_1·a_5_0
- a_18_1·a_5_1
- a_18_1·a_5_2
- a_18_2·a_5_0
- a_18_2·a_5_1
- a_18_2·a_5_2
- a_18_3·a_5_0
- a_18_3·a_5_1
- a_18_3·a_5_2
- a_6_0·a_18_0
- a_6_0·a_18_1
- a_6_0·a_18_2
- a_6_0·a_18_3
- a_6_1·a_18_0
- a_6_1·a_18_1
- a_6_1·a_18_2
- a_6_1·a_18_3
- a_6_2·a_18_0
- a_6_2·a_18_1
- a_6_2·a_18_2
- a_6_2·a_18_3
- a_6_3·a_18_0
- a_6_3·a_18_1
- a_6_3·a_18_2
- a_6_3·a_18_3
- a_12_02
- a_12_0·a_12_1
- a_12_0·a_12_2
- a_12_0·a_12_3
- a_12_12
- a_12_1·a_12_2
- a_12_1·a_12_3
- a_12_22
- a_12_2·a_12_3
- a_12_32
- a_5_0·a_19_0
- a_5_0·a_19_1
- a_5_0·a_19_2
- a_5_0·a_19_3
- a_5_1·a_19_0
- a_5_1·a_19_1
- a_5_1·a_19_2
- a_5_1·a_19_3
- a_5_2·a_19_0
- a_5_2·a_19_1
- a_5_2·a_19_2
- a_5_2·a_19_3
- a_7_0·a_17_0
- a_7_0·a_17_1
- a_7_1·a_17_0
- a_7_1·a_17_1
- a_9_0·a_15_0
- a_9_0·a_15_1
- a_9_1·a_15_0
- a_9_1·a_15_1
- a_9_2·a_15_0
- a_9_2·a_15_1
- a_11_0·a_13_0
- a_11_0·a_13_1
- a_11_1·a_13_0
- a_11_1·a_13_1
- a_6_0·a_19_0
- a_6_0·a_19_1
- a_6_0·a_19_2
- a_6_0·a_19_3
- a_6_1·a_19_0
- a_6_1·a_19_1
- a_6_1·a_19_2
- a_6_1·a_19_3
- a_6_2·a_19_0
- a_6_2·a_19_1
- a_6_2·a_19_2
- a_6_2·a_19_3
- a_6_3·a_19_0
- a_6_3·a_19_1
- a_6_3·a_19_2
- a_6_3·a_19_3
- a_8_0·a_17_0
- a_8_0·a_17_1
- a_8_1·a_17_0
- a_8_1·a_17_1
- a_8_2·a_17_0
- a_8_2·a_17_1
- a_8_3·a_17_0
- a_8_3·a_17_1
- a_12_0·a_13_0
- a_12_0·a_13_1
- a_12_1·a_13_0
- a_12_1·a_13_1
- a_12_2·a_13_0
- a_12_2·a_13_1
- a_12_3·a_13_0
- a_12_3·a_13_1
- a_18_0·a_7_0
- a_18_0·a_7_1
- a_18_1·a_7_0
- a_18_1·a_7_1
- a_18_2·a_7_0
- a_18_2·a_7_1
- a_18_3·a_7_0
- a_18_3·a_7_1
- a_20_0·a_5_0
- a_20_0·a_5_1
- a_20_0·a_5_2
- a_20_1·a_5_0
- a_20_1·a_5_1
- a_20_1·a_5_2
- a_20_2·a_5_0
- a_20_2·a_5_1
- a_20_2·a_5_2
- a_20_3·a_5_0
- a_20_3·a_5_1
- a_20_3·a_5_2
- a_6_0·a_20_0
- a_6_0·a_20_1
- a_6_0·a_20_2
- a_6_0·a_20_3
- a_6_1·a_20_0
- a_6_1·a_20_1
- a_6_1·a_20_2
- a_6_1·a_20_3
- a_6_2·a_20_0
- a_6_2·a_20_1
- a_6_2·a_20_2
- a_6_2·a_20_3
- a_6_3·a_20_0
- a_6_3·a_20_1
- a_6_3·a_20_2
- a_6_3·a_20_3
- a_8_0·a_18_0
- a_8_0·a_18_1
- a_8_0·a_18_2
- a_8_0·a_18_3
- a_8_1·a_18_0
- a_8_1·a_18_1
- a_8_1·a_18_2
- a_8_1·a_18_3
- a_8_2·a_18_0
- a_8_2·a_18_1
- a_8_2·a_18_2
- a_8_2·a_18_3
- a_8_3·a_18_0
- a_8_3·a_18_1
- a_8_3·a_18_2
- a_8_3·a_18_3
- a_5_0·a_21_3
- a_5_0·a_21_4
- a_5_1·a_21_3
- a_5_1·a_21_4
- a_5_2·a_21_3
- a_5_2·a_21_4
- a_7_0·a_19_0
- a_7_0·a_19_1
- a_7_0·a_19_2
- a_7_0·a_19_3
- a_7_1·a_19_0
- a_7_1·a_19_1
- a_7_1·a_19_2
- a_7_1·a_19_3
- a_9_0·a_17_0
- a_9_0·a_17_1
- a_9_1·a_17_0
- a_9_1·a_17_1
- a_9_2·a_17_0
- a_9_2·a_17_1
- a_11_0·a_15_0
- a_11_0·a_15_1
- a_11_1·a_15_0
- a_11_1·a_15_1
- a_13_02
- a_13_0·a_13_1
- a_13_12
- a_6_0·a_21_3
- a_6_0·a_21_4
- a_6_1·a_21_3
- a_6_1·a_21_4
- a_6_2·a_21_3
- a_6_2·a_21_4
- a_6_3·a_21_3
- a_6_3·a_21_4
- a_8_0·a_19_0
- a_8_0·a_19_1
- a_8_0·a_19_2
- a_8_0·a_19_3
- a_8_1·a_19_0
- a_8_1·a_19_1
- a_8_1·a_19_2
- a_8_1·a_19_3
- a_8_2·a_19_0
- a_8_2·a_19_1
- a_8_2·a_19_2
- a_8_2·a_19_3
- a_8_3·a_19_0
- a_8_3·a_19_1
- a_8_3·a_19_2
- a_8_3·a_19_3
- a_12_0·a_15_0
- a_12_0·a_15_1
- a_12_1·a_15_0
- a_12_1·a_15_1
- a_12_2·a_15_0
- a_12_2·a_15_1
- a_12_3·a_15_0
- a_12_3·a_15_1
- a_18_0·a_9_0
- a_18_0·a_9_1
- a_18_0·a_9_2
- a_18_1·a_9_0
- a_18_1·a_9_1
- a_18_1·a_9_2
- a_18_2·a_9_0
- a_18_2·a_9_1
- a_18_2·a_9_2
- a_18_3·a_9_0
- a_18_3·a_9_1
- a_18_3·a_9_2
- a_20_0·a_7_0
- a_20_0·a_7_1
- a_20_1·a_7_0
- a_20_1·a_7_1
- a_20_2·a_7_0
- a_20_2·a_7_1
- a_20_3·a_7_0
- a_20_3·a_7_1
- a_8_0·a_20_0
- a_8_0·a_20_1
- a_8_0·a_20_2
- a_8_0·a_20_3
- a_8_1·a_20_0
- a_8_1·a_20_1
- a_8_1·a_20_2
- a_8_1·a_20_3
- a_8_2·a_20_0
- a_8_2·a_20_1
- a_8_2·a_20_2
- a_8_2·a_20_3
- a_8_3·a_20_0
- a_8_3·a_20_1
- a_8_3·a_20_2
- a_8_3·a_20_3
- a_5_0·a_23_2
- a_5_0·a_23_3
- a_5_1·a_23_2
- a_5_1·a_23_3
- a_5_2·a_23_2
- a_5_2·a_23_3
- a_7_0·a_21_3
- a_7_0·a_21_4
- a_7_1·a_21_3
- a_7_1·a_21_4
- a_9_0·a_19_0
- a_9_0·a_19_1
- a_9_0·a_19_2
- a_9_0·a_19_3
- a_9_1·a_19_0
- a_9_1·a_19_1
- a_9_1·a_19_2
- a_9_1·a_19_3
- a_9_2·a_19_0
- a_9_2·a_19_1
- a_9_2·a_19_2
- a_9_2·a_19_3
- a_11_0·a_17_0
- a_11_0·a_17_1
- a_11_1·a_17_0
- a_11_1·a_17_1
- a_13_0·a_15_0
- a_13_0·a_15_1
- a_13_1·a_15_0
- a_13_1·a_15_1
- a_6_0·a_23_2
- a_6_0·a_23_3
- a_6_1·a_23_2
- a_6_1·a_23_3
- a_6_2·a_23_2
- a_6_2·a_23_3
- a_6_3·a_23_2
- a_6_3·a_23_3
- a_8_0·a_21_3
- a_8_0·a_21_4
- a_8_1·a_21_3
- a_8_1·a_21_4
- a_8_2·a_21_3
- a_8_2·a_21_4
- a_8_3·a_21_3
- a_8_3·a_21_4
- a_12_0·a_17_0
- a_12_0·a_17_1
- a_12_1·a_17_0
- a_12_1·a_17_1
- a_12_2·a_17_0
- a_12_2·a_17_1
- a_12_3·a_17_0
- a_12_3·a_17_1
- a_18_0·a_11_0
- a_18_0·a_11_1
- a_18_1·a_11_0
- a_18_1·a_11_1
- a_18_2·a_11_0
- a_18_2·a_11_1
- a_18_3·a_11_0
- a_18_3·a_11_1
- a_20_0·a_9_0
- a_20_0·a_9_1
- a_20_0·a_9_2
- a_20_1·a_9_0
- a_20_1·a_9_1
- a_20_1·a_9_2
- a_20_2·a_9_0
- a_20_2·a_9_1
- a_20_2·a_9_2
- a_20_3·a_9_0
- a_20_3·a_9_1
- a_20_3·a_9_2
- a_12_0·a_18_0
- a_12_0·a_18_1
- a_12_0·a_18_2
- a_12_0·a_18_3 + a_6_0·a_8_0·c_16_0
- a_12_1·a_18_0
- a_12_1·a_18_1
- a_12_1·a_18_2 + a_6_0·a_8_0·c_16_0
- a_12_1·a_18_3
- a_12_2·a_18_0
- a_12_2·a_18_1 + a_6_0·a_8_0·c_16_0
- a_12_2·a_18_2
- a_12_2·a_18_3
- a_12_3·a_18_0 + a_6_0·a_8_0·c_16_0
- a_12_3·a_18_1
- a_12_3·a_18_2
- a_12_3·a_18_3
- a_5_0·a_25_0
- a_5_0·a_25_1 + a_6_0·a_8_0·c_16_0
- a_5_1·a_25_0
- a_5_1·a_25_1
- a_5_2·a_25_0 + a_6_0·a_8_0·c_16_0
- a_5_2·a_25_1
- a_7_0·a_23_2
- a_7_0·a_23_3 + a_6_0·a_8_0·c_16_0
- a_7_1·a_23_2 + a_6_0·a_8_0·c_16_0
- a_7_1·a_23_3
- a_9_0·a_21_3
- a_9_0·a_21_4
- a_9_1·a_21_3
- a_9_1·a_21_4
- a_9_2·a_21_3
- a_9_2·a_21_4
- a_11_0·a_19_0 + a_6_0·a_8_0·c_16_0
- a_11_0·a_19_1 + a_6_0·a_8_0·c_16_0
- a_11_0·a_19_2
- a_11_0·a_19_3
- a_11_1·a_19_0 + a_6_0·a_8_0·c_16_0
- a_11_1·a_19_1
- a_11_1·a_19_2
- a_11_1·a_19_3
- a_13_0·a_17_0
- a_13_0·a_17_1 + a_6_0·a_8_0·c_16_0
- a_13_1·a_17_0 + a_6_0·a_8_0·c_16_0
- a_13_1·a_17_1
- a_15_02
- a_15_0·a_15_1 + a_6_0·a_8_0·c_16_0
- a_15_12
- a_6_0·a_25_0
- a_6_0·a_25_1
- a_6_1·a_25_0
- a_6_1·a_25_1
- a_6_2·a_25_0
- a_6_2·a_25_1
- a_6_3·a_25_0
- a_6_3·a_25_1
- a_8_0·a_23_2
- a_8_0·a_23_3
- a_8_1·a_23_2
- a_8_1·a_23_3
- a_8_2·a_23_2
- a_8_2·a_23_3
- a_8_3·a_23_2
- a_8_3·a_23_3
- a_12_0·a_19_0
- a_12_0·a_19_1
- a_12_0·a_19_2
- a_12_0·a_19_3
- a_12_1·a_19_0
- a_12_1·a_19_1
- a_12_1·a_19_2
- a_12_1·a_19_3
- a_12_2·a_19_0
- a_12_2·a_19_1
- a_12_2·a_19_2
- a_12_2·a_19_3
- a_12_3·a_19_0
- a_12_3·a_19_1
- a_12_3·a_19_2
- a_12_3·a_19_3
- a_18_0·a_13_0
- a_18_0·a_13_1
- a_18_1·a_13_0
- a_18_1·a_13_1
- a_18_2·a_13_0
- a_18_2·a_13_1
- a_18_3·a_13_0
- a_18_3·a_13_1
- a_20_0·a_11_0
- a_20_0·a_11_1
- a_20_1·a_11_0
- a_20_1·a_11_1
- a_20_2·a_11_0
- a_20_2·a_11_1
- a_20_3·a_11_0
- a_20_3·a_11_1
- a_26_0·a_5_0
- a_26_0·a_5_1
- a_26_0·a_5_2
- a_26_1·a_5_0
- a_26_1·a_5_1
- a_26_1·a_5_2
- a_26_2·a_5_0
- a_26_2·a_5_1
- a_26_2·a_5_2
- a_26_3·a_5_0
- a_26_3·a_5_1
- a_26_3·a_5_2
- a_6_0·a_26_0
- a_6_0·a_26_1
- a_6_0·a_26_2
- a_6_0·a_26_3
- a_6_1·a_26_0
- a_6_1·a_26_1
- a_6_1·a_26_2
- a_6_1·a_26_3
- a_6_2·a_26_0
- a_6_2·a_26_1
- a_6_2·a_26_2
- a_6_2·a_26_3
- a_6_3·a_26_0
- a_6_3·a_26_1
- a_6_3·a_26_2
- a_6_3·a_26_3
- a_12_0·a_20_0
- a_12_0·a_20_1
- a_12_0·a_20_2
- a_12_0·a_20_3
- a_12_1·a_20_0
- a_12_1·a_20_1
- a_12_1·a_20_2
- a_12_1·a_20_3
- a_12_2·a_20_0
- a_12_2·a_20_1
- a_12_2·a_20_2
- a_12_2·a_20_3
- a_12_3·a_20_0
- a_12_3·a_20_1
- a_12_3·a_20_2
- a_12_3·a_20_3
- a_5_0·a_27_0
- a_5_0·a_27_1
- a_5_1·a_27_0
- a_5_1·a_27_1
- a_5_2·a_27_0
- a_5_2·a_27_1
- a_7_0·a_25_0
- a_7_0·a_25_1
- a_7_1·a_25_0
- a_7_1·a_25_1
- a_9_0·a_23_2
- a_9_0·a_23_3
- a_9_1·a_23_2
- a_9_1·a_23_3
- a_9_2·a_23_2
- a_9_2·a_23_3
- a_11_0·a_21_3
- a_11_0·a_21_4
- a_11_1·a_21_3
- a_11_1·a_21_4
- a_13_0·a_19_0
- a_13_0·a_19_1
- a_13_0·a_19_2
- a_13_0·a_19_3
- a_13_1·a_19_0
- a_13_1·a_19_1
- a_13_1·a_19_2
- a_13_1·a_19_3
- a_15_0·a_17_0
- a_15_0·a_17_1
- a_15_1·a_17_0
- a_15_1·a_17_1
- a_6_0·a_27_0
- a_6_0·a_27_1
- a_6_1·a_27_0
- a_6_1·a_27_1
- a_6_2·a_27_0
- a_6_2·a_27_1
- a_6_3·a_27_0
- a_6_3·a_27_1
- a_8_0·a_25_0
- a_8_0·a_25_1
- a_8_1·a_25_0
- a_8_1·a_25_1
- a_8_2·a_25_0
- a_8_2·a_25_1
- a_8_3·a_25_0
- a_8_3·a_25_1
- a_12_0·a_21_3
- a_12_0·a_21_4
- a_12_1·a_21_3
- a_12_1·a_21_4
- a_12_2·a_21_3
- a_12_2·a_21_4
- a_12_3·a_21_3
- a_12_3·a_21_4
- a_18_0·a_15_0
- a_18_0·a_15_1
- a_18_1·a_15_0
- a_18_1·a_15_1
- a_18_2·a_15_0
- a_18_2·a_15_1
- a_18_3·a_15_0
- a_18_3·a_15_1
- a_20_0·a_13_0
- a_20_0·a_13_1
- a_20_1·a_13_0
- a_20_1·a_13_1
- a_20_2·a_13_0
- a_20_2·a_13_1
- a_20_3·a_13_0
- a_20_3·a_13_1
- a_26_0·a_7_0
- a_26_0·a_7_1
- a_26_1·a_7_0
- a_26_1·a_7_1
- a_26_2·a_7_0
- a_26_2·a_7_1
- a_26_3·a_7_0
- a_26_3·a_7_1
- a_8_0·a_26_0
- a_8_0·a_26_1
- a_8_0·a_26_2
- a_8_0·a_26_3
- a_8_1·a_26_0
- a_8_1·a_26_1
- a_8_1·a_26_2
- a_8_1·a_26_3
- a_8_2·a_26_0
- a_8_2·a_26_1
- a_8_2·a_26_2
- a_8_2·a_26_3
- a_8_3·a_26_0
- a_8_3·a_26_1
- a_8_3·a_26_2
- a_8_3·a_26_3
- a_7_0·a_27_0
- a_7_0·a_27_1
- a_7_1·a_27_0
- a_7_1·a_27_1
- a_9_0·a_25_0
- a_9_0·a_25_1
- a_9_1·a_25_0
- a_9_1·a_25_1
- a_9_2·a_25_0
- a_9_2·a_25_1
- a_11_0·a_23_2
- a_11_0·a_23_3
- a_11_1·a_23_2
- a_11_1·a_23_3
- a_13_0·a_21_3
- a_13_0·a_21_4
- a_13_1·a_21_3
- a_13_1·a_21_4
- a_15_0·a_19_0
- a_15_0·a_19_1
- a_15_0·a_19_2
- a_15_0·a_19_3
- a_15_1·a_19_0
- a_15_1·a_19_1
- a_15_1·a_19_2
- a_15_1·a_19_3
- a_17_02
- a_17_0·a_17_1
- a_17_12
- c_24_5·a_11_0 + c_24_4·a_11_1 + c_16_0·a_19_3 + c_16_0·a_19_2
- c_24_5·a_11_1 + c_24_4·a_11_1 + c_24_4·a_11_0 + c_16_0·a_19_2
- a_8_0·a_27_0
- a_8_0·a_27_1
- a_8_1·a_27_0
- a_8_1·a_27_1
- a_8_2·a_27_0
- a_8_2·a_27_1
- a_8_3·a_27_0
- a_8_3·a_27_1
- a_12_0·a_23_2
- a_12_0·a_23_3
- a_12_1·a_23_2
- a_12_1·a_23_3
- a_12_2·a_23_2
- a_12_2·a_23_3
- a_12_3·a_23_2
- a_12_3·a_23_3
- a_18_0·a_17_0
- a_18_0·a_17_1
- a_18_1·a_17_0
- a_18_1·a_17_1
- a_18_2·a_17_0
- a_18_2·a_17_1
- a_18_3·a_17_0
- a_18_3·a_17_1
- a_20_0·a_15_0
- a_20_0·a_15_1
- a_20_1·a_15_0
- a_20_1·a_15_1
- a_20_2·a_15_0
- a_20_2·a_15_1
- a_20_3·a_15_0
- a_20_3·a_15_1
- a_26_0·a_9_0
- a_26_0·a_9_1
- a_26_0·a_9_2
- a_26_1·a_9_0
- a_26_1·a_9_1
- a_26_1·a_9_2
- a_26_2·a_9_0
- a_26_2·a_9_1
- a_26_2·a_9_2
- a_26_3·a_9_0
- a_26_3·a_9_1
- a_26_3·a_9_2
- c_16_0·a_20_0 + a_12_1·c_24_5 + a_12_1·c_24_4 + a_12_0·c_24_4
- c_16_0·a_20_1 + a_12_1·c_24_5 + a_12_0·c_24_5 + a_12_0·c_24_4
- c_16_0·a_20_2 + a_12_3·c_24_5 + a_12_3·c_24_4 + a_12_2·c_24_4
- c_16_0·a_20_3 + a_12_3·c_24_5 + a_12_2·c_24_5 + a_12_2·c_24_4
- a_18_02
- a_18_0·a_18_1
- a_18_0·a_18_2
- a_18_0·a_18_3
- a_18_12
- a_18_1·a_18_2
- a_18_1·a_18_3
- a_18_22
- a_18_2·a_18_3
- a_18_32
- a_9_0·a_27_0
- a_9_0·a_27_1
- a_9_1·a_27_0
- a_9_1·a_27_1
- a_9_2·a_27_0
- a_9_2·a_27_1
- a_11_0·a_25_0
- a_11_0·a_25_1
- a_11_1·a_25_0
- a_11_1·a_25_1
- a_13_0·a_23_2
- a_13_0·a_23_3
- a_13_1·a_23_2
- a_13_1·a_23_3
- a_15_0·a_21_3
- a_15_0·a_21_4
- a_15_1·a_21_3
- a_15_1·a_21_4
- a_17_0·a_19_0
- a_17_0·a_19_1
- a_17_0·a_19_2
- a_17_0·a_19_3
- a_17_1·a_19_0
- a_17_1·a_19_1
- a_17_1·a_19_2
- a_17_1·a_19_3
- c_24_5·a_13_0 + c_24_4·a_13_1 + c_24_4·a_13_0 + c_16_0·a_21_4
- c_24_5·a_13_1 + c_24_4·a_13_0 + c_16_0·a_21_4 + c_16_0·a_21_3
- a_12_0·a_25_0
- a_12_0·a_25_1
- a_12_1·a_25_0
- a_12_1·a_25_1
- a_12_2·a_25_0
- a_12_2·a_25_1
- a_12_3·a_25_0
- a_12_3·a_25_1
- a_18_0·a_19_0
- a_18_0·a_19_1
- a_18_0·a_19_2
- a_18_0·a_19_3
- a_18_1·a_19_0
- a_18_1·a_19_1
- a_18_1·a_19_2
- a_18_1·a_19_3
- a_18_2·a_19_0
- a_18_2·a_19_1
- a_18_2·a_19_2
- a_18_2·a_19_3
- a_18_3·a_19_0
- a_18_3·a_19_1
- a_18_3·a_19_2
- a_18_3·a_19_3
- a_20_0·a_17_0
- a_20_0·a_17_1
- a_20_1·a_17_0
- a_20_1·a_17_1
- a_20_2·a_17_0
- a_20_2·a_17_1
- a_20_3·a_17_0
- a_20_3·a_17_1
- a_26_0·a_11_0
- a_26_0·a_11_1
- a_26_1·a_11_0
- a_26_1·a_11_1
- a_26_2·a_11_0
- a_26_2·a_11_1
- a_26_3·a_11_0
- a_26_3·a_11_1
- a_12_0·a_26_0
- a_12_0·a_26_1
- a_12_0·a_26_2 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_12_0·a_26_3 + a_6_0·a_8_0·c_24_5
- a_12_1·a_26_0
- a_12_1·a_26_1
- a_12_1·a_26_2 + a_6_0·a_8_0·c_24_4
- a_12_1·a_26_3 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_12_2·a_26_0 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_12_2·a_26_1 + a_6_0·a_8_0·c_24_5
- a_12_2·a_26_2
- a_12_2·a_26_3
- a_12_3·a_26_0 + a_6_0·a_8_0·c_24_4
- a_12_3·a_26_1 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_12_3·a_26_2
- a_12_3·a_26_3
- a_18_0·a_20_0
- a_18_0·a_20_1
- a_18_0·a_20_2 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_18_0·a_20_3 + a_6_0·a_8_0·c_24_5
- a_18_1·a_20_0
- a_18_1·a_20_1
- a_18_1·a_20_2 + a_6_0·a_8_0·c_24_4
- a_18_1·a_20_3 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_18_2·a_20_0 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_18_2·a_20_1 + a_6_0·a_8_0·c_24_5
- a_18_2·a_20_2
- a_18_2·a_20_3
- a_18_3·a_20_0 + a_6_0·a_8_0·c_24_4
- a_18_3·a_20_1 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_18_3·a_20_2
- a_18_3·a_20_3
- a_11_0·a_27_0 + a_6_0·a_8_0·c_24_4
- a_11_0·a_27_1 + a_6_0·a_8_0·c_24_5
- a_11_1·a_27_0 + a_6_0·a_8_0·c_24_5
- a_11_1·a_27_1 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_13_0·a_25_0 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_13_0·a_25_1 + a_6_0·a_8_0·c_24_4
- a_13_1·a_25_0 + a_6_0·a_8_0·c_24_5
- a_13_1·a_25_1 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_15_0·a_23_2 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_15_0·a_23_3 + a_6_0·a_8_0·c_24_4
- a_15_1·a_23_2 + a_6_0·a_8_0·c_24_5
- a_15_1·a_23_3 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_17_0·a_21_3 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_17_0·a_21_4 + a_6_0·a_8_0·c_24_4
- a_17_1·a_21_3 + a_6_0·a_8_0·c_24_5
- a_17_1·a_21_4 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_19_02
- a_19_0·a_19_1 + a_6_0·a_8_0·c_24_4
- a_19_0·a_19_2 + a_6_0·a_8_0·c_24_5
- a_19_0·a_19_3 + a_6_0·a_8_0·c_24_4
- a_19_12
- a_19_1·a_19_2 + a_6_0·a_8_0·c_24_4
- a_19_1·a_19_3 + a_6_0·a_8_0·c_24_5 + a_6_0·a_8_0·c_24_4
- a_19_22
- a_19_2·a_19_3
- a_19_32
- c_24_5·a_15_0 + c_24_4·a_15_1 + c_24_4·a_15_0 + c_16_0·a_23_3 + c_16_02·a_7_1
- c_24_5·a_15_1 + c_24_4·a_15_0 + c_16_0·a_23_3 + c_16_0·a_23_2 + c_16_02·a_7_1
+ c_16_02·a_7_0
- a_12_0·a_27_0
- a_12_0·a_27_1
- a_12_1·a_27_0
- a_12_1·a_27_1
- a_12_2·a_27_0
- a_12_2·a_27_1
- a_12_3·a_27_0
- a_12_3·a_27_1
- a_18_0·a_21_3
- a_18_0·a_21_4
- a_18_1·a_21_3
- a_18_1·a_21_4
- a_18_2·a_21_3
- a_18_2·a_21_4
- a_18_3·a_21_3
- a_18_3·a_21_4
- a_20_0·a_19_0
- a_20_0·a_19_1
- a_20_0·a_19_2
- a_20_0·a_19_3
- a_20_1·a_19_0
- a_20_1·a_19_1
- a_20_1·a_19_2
- a_20_1·a_19_3
- a_20_2·a_19_0
- a_20_2·a_19_1
- a_20_2·a_19_2
- a_20_2·a_19_3
- a_20_3·a_19_0
- a_20_3·a_19_1
- a_20_3·a_19_2
- a_20_3·a_19_3
- a_26_0·a_13_0
- a_26_0·a_13_1
- a_26_1·a_13_0
- a_26_1·a_13_1
- a_26_2·a_13_0
- a_26_2·a_13_1
- a_26_3·a_13_0
- a_26_3·a_13_1
- a_20_02
- a_20_0·a_20_1
- a_20_0·a_20_2
- a_20_0·a_20_3
- a_20_12
- a_20_1·a_20_2
- a_20_1·a_20_3
- a_20_22
- a_20_2·a_20_3
- a_20_32
- a_13_0·a_27_0
- a_13_0·a_27_1
- a_13_1·a_27_0
- a_13_1·a_27_1
- a_15_0·a_25_0
- a_15_0·a_25_1
- a_15_1·a_25_0
- a_15_1·a_25_1
- a_17_0·a_23_2
- a_17_0·a_23_3
- a_17_1·a_23_2
- a_17_1·a_23_3
- a_19_0·a_21_3
- a_19_0·a_21_4
- a_19_1·a_21_3
- a_19_1·a_21_4
- a_19_2·a_21_3
- a_19_2·a_21_4
- a_19_3·a_21_3
- a_19_3·a_21_4
- c_24_5·a_17_0 + c_24_4·a_17_1 + c_24_4·a_17_0 + c_16_0·a_25_1 + c_16_02·a_9_2
- c_24_5·a_17_1 + c_24_4·a_17_0 + c_16_0·a_25_1 + c_16_0·a_25_0 + c_16_02·a_9_2
+ c_16_02·a_9_0
- a_18_0·a_23_2
- a_18_0·a_23_3
- a_18_1·a_23_2
- a_18_1·a_23_3
- a_18_2·a_23_2
- a_18_2·a_23_3
- a_18_3·a_23_2
- a_18_3·a_23_3
- a_20_0·a_21_3
- a_20_0·a_21_4
- a_20_1·a_21_3
- a_20_1·a_21_4
- a_20_2·a_21_3
- a_20_2·a_21_4
- a_20_3·a_21_3
- a_20_3·a_21_4
- a_26_0·a_15_0
- a_26_0·a_15_1
- a_26_1·a_15_0
- a_26_1·a_15_1
- a_26_2·a_15_0
- a_26_2·a_15_1
- a_26_3·a_15_0
- a_26_3·a_15_1
- a_18_1·c_24_4 + a_18_0·c_24_5 + c_16_0·a_26_1 + c_16_0·a_26_0
- a_18_1·c_24_5 + a_18_0·c_24_5 + a_18_0·c_24_4 + c_16_0·a_26_1
- a_18_3·c_24_4 + a_18_2·c_24_5 + c_16_0·a_26_3 + c_16_0·a_26_2
- a_18_3·c_24_5 + a_18_2·c_24_5 + a_18_2·c_24_4 + c_16_0·a_26_3
- a_15_0·a_27_0
- a_15_0·a_27_1
- a_15_1·a_27_0
- a_15_1·a_27_1
- a_17_0·a_25_0
- a_17_0·a_25_1
- a_17_1·a_25_0
- a_17_1·a_25_1
- a_19_0·a_23_2
- a_19_0·a_23_3
- a_19_1·a_23_2
- a_19_1·a_23_3
- a_19_2·a_23_2
- a_19_2·a_23_3
- a_19_3·a_23_2
- a_19_3·a_23_3
- a_21_32
- a_21_3·a_21_4
- a_21_42
- c_24_5·a_19_0 + c_24_4·a_19_3 + c_24_4·a_19_1 + c_24_4·a_19_0 + c_16_0·a_27_1
+ c_16_02·a_11_1
- c_24_5·a_19_1 + c_24_4·a_19_2 + c_24_4·a_19_0 + c_16_0·a_27_1 + c_16_0·a_27_0
+ c_16_02·a_11_0
- c_24_5·a_19_2 + c_24_4·a_19_3 + c_24_4·a_19_2 + c_16_02·a_11_1
- c_24_5·a_19_3 + c_24_4·a_19_2 + c_16_02·a_11_1 + c_16_02·a_11_0
- a_18_0·a_25_0
- a_18_0·a_25_1
- a_18_1·a_25_0
- a_18_1·a_25_1
- a_18_2·a_25_0
- a_18_2·a_25_1
- a_18_3·a_25_0
- a_18_3·a_25_1
- a_20_0·a_23_2
- a_20_0·a_23_3
- a_20_1·a_23_2
- a_20_1·a_23_3
- a_20_2·a_23_2
- a_20_2·a_23_3
- a_20_3·a_23_2
- a_20_3·a_23_3
- a_26_0·a_17_0
- a_26_0·a_17_1
- a_26_1·a_17_0
- a_26_1·a_17_1
- a_26_2·a_17_0
- a_26_2·a_17_1
- a_26_3·a_17_0
- a_26_3·a_17_1
- a_20_1·c_24_4 + a_20_0·c_24_5 + a_20_0·c_24_4 + a_12_1·c_16_02
- a_20_1·c_24_5 + a_20_0·c_24_4 + a_12_1·c_16_02 + a_12_0·c_16_02
- a_20_3·c_24_4 + a_20_2·c_24_5 + a_20_2·c_24_4 + a_12_3·c_16_02
- a_20_3·c_24_5 + a_20_2·c_24_4 + a_12_3·c_16_02 + a_12_2·c_16_02
- a_18_0·a_26_0
- a_18_0·a_26_1
- a_18_0·a_26_2
- a_18_0·a_26_3
- a_18_1·a_26_0
- a_18_1·a_26_1
- a_18_1·a_26_2
- a_18_1·a_26_3
- a_18_2·a_26_0
- a_18_2·a_26_1
- a_18_2·a_26_2
- a_18_2·a_26_3
- a_18_3·a_26_0
- a_18_3·a_26_1
- a_18_3·a_26_2
- a_18_3·a_26_3
- a_17_0·a_27_0
- a_17_0·a_27_1
- a_17_1·a_27_0
- a_17_1·a_27_1
- a_19_0·a_25_0
- a_19_0·a_25_1
- a_19_1·a_25_0
- a_19_1·a_25_1
- a_19_2·a_25_0
- a_19_2·a_25_1
- a_19_3·a_25_0
- a_19_3·a_25_1
- a_21_3·a_23_2
- a_21_3·a_23_3
- a_21_4·a_23_2
- a_21_4·a_23_3
- c_24_5·a_21_3 + c_24_4·a_21_4 + c_16_02·a_13_1 + c_16_02·a_13_0
- c_24_5·a_21_4 + c_24_4·a_21_4 + c_24_4·a_21_3 + c_16_02·a_13_0
- a_18_0·a_27_0
- a_18_0·a_27_1
- a_18_1·a_27_0
- a_18_1·a_27_1
- a_18_2·a_27_0
- a_18_2·a_27_1
- a_18_3·a_27_0
- a_18_3·a_27_1
- a_20_0·a_25_0
- a_20_0·a_25_1
- a_20_1·a_25_0
- a_20_1·a_25_1
- a_20_2·a_25_0
- a_20_2·a_25_1
- a_20_3·a_25_0
- a_20_3·a_25_1
- a_26_0·a_19_0
- a_26_0·a_19_1
- a_26_0·a_19_2
- a_26_0·a_19_3
- a_26_1·a_19_0
- a_26_1·a_19_1
- a_26_1·a_19_2
- a_26_1·a_19_3
- a_26_2·a_19_0
- a_26_2·a_19_1
- a_26_2·a_19_2
- a_26_2·a_19_3
- a_26_3·a_19_0
- a_26_3·a_19_1
- a_26_3·a_19_2
- a_26_3·a_19_3
- a_20_0·a_26_0
- a_20_0·a_26_1
- a_20_0·a_26_2
- a_20_0·a_26_3 + a_6_0·a_8_0·c_16_02
- a_20_1·a_26_0
- a_20_1·a_26_1
- a_20_1·a_26_2 + a_6_0·a_8_0·c_16_02
- a_20_1·a_26_3
- a_20_2·a_26_0
- a_20_2·a_26_1 + a_6_0·a_8_0·c_16_02
- a_20_2·a_26_2
- a_20_2·a_26_3
- a_20_3·a_26_0 + a_6_0·a_8_0·c_16_02
- a_20_3·a_26_1
- a_20_3·a_26_2
- a_20_3·a_26_3
- a_19_0·a_27_0
- a_19_0·a_27_1 + a_6_0·a_8_0·c_16_02
- a_19_1·a_27_0 + a_6_0·a_8_0·c_16_02
- a_19_1·a_27_1
- a_19_2·a_27_0 + a_6_0·a_8_0·c_16_02
- a_19_2·a_27_1 + a_6_0·a_8_0·c_16_02
- a_19_3·a_27_0 + a_6_0·a_8_0·c_16_02
- a_19_3·a_27_1
- a_21_3·a_25_0
- a_21_3·a_25_1 + a_6_0·a_8_0·c_16_02
- a_21_4·a_25_0 + a_6_0·a_8_0·c_16_02
- a_21_4·a_25_1
- a_23_22
- a_23_2·a_23_3
- a_23_32
- c_24_5·a_23_2 + c_24_4·a_23_3 + c_16_0·c_24_5·a_7_0 + c_16_0·c_24_4·a_7_1
+ c_16_02·a_15_1 + c_16_02·a_15_0
- c_24_5·a_23_3 + c_24_4·a_23_3 + c_24_4·a_23_2 + c_16_0·c_24_5·a_7_1
+ c_16_0·c_24_4·a_7_1 + c_16_0·c_24_4·a_7_0 + c_16_02·a_15_0
- a_20_0·a_27_0
- a_20_0·a_27_1
- a_20_1·a_27_0
- a_20_1·a_27_1
- a_20_2·a_27_0
- a_20_2·a_27_1
- a_20_3·a_27_0
- a_20_3·a_27_1
- a_26_0·a_21_3
- a_26_0·a_21_4
- a_26_1·a_21_3
- a_26_1·a_21_4
- a_26_2·a_21_3
- a_26_2·a_21_4
- a_26_3·a_21_3
- a_26_3·a_21_4
- c_24_52 + c_24_4·c_24_5 + c_24_42 + a_8_3·c_16_0·c_24_5 + a_8_1·c_16_0·c_24_4
+ c_16_03
- a_21_3·a_27_0
- a_21_3·a_27_1
- a_21_4·a_27_0
- a_21_4·a_27_1
- a_23_2·a_25_0
- a_23_2·a_25_1
- a_23_3·a_25_0
- a_23_3·a_25_1
- c_24_5·a_25_0 + c_24_4·a_25_1 + c_16_0·c_24_5·a_9_0 + c_16_0·c_24_4·a_9_2
+ c_16_02·a_17_1 + c_16_02·a_17_0
- c_24_5·a_25_1 + c_24_4·a_25_1 + c_24_4·a_25_0 + c_16_0·c_24_5·a_9_2
+ c_16_0·c_24_4·a_9_2 + c_16_0·c_24_4·a_9_0 + c_16_02·a_17_0
- a_26_0·a_23_2
- a_26_0·a_23_3
- a_26_1·a_23_2
- a_26_1·a_23_3
- a_26_2·a_23_2
- a_26_2·a_23_3
- a_26_3·a_23_2
- a_26_3·a_23_3
- c_24_5·a_26_0 + c_24_4·a_26_1 + c_24_4·a_26_0 + c_16_02·a_18_1
- c_24_5·a_26_1 + c_24_4·a_26_0 + c_16_02·a_18_1 + c_16_02·a_18_0
- c_24_5·a_26_2 + c_24_4·a_26_3 + c_24_4·a_26_2 + c_16_02·a_18_3
- c_24_5·a_26_3 + c_24_4·a_26_2 + c_16_02·a_18_3 + c_16_02·a_18_2
- a_23_2·a_27_0
- a_23_2·a_27_1
- a_23_3·a_27_0
- a_23_3·a_27_1
- a_25_02
- a_25_0·a_25_1
- a_25_12
- c_24_5·a_27_0 + c_24_4·a_27_1 + c_16_0·c_24_4·a_11_1 + c_16_02·a_19_3 + c_16_02·a_19_1
+ c_16_02·a_19_0
- c_24_5·a_27_1 + c_24_4·a_27_1 + c_24_4·a_27_0 + c_16_0·c_24_4·a_11_0 + c_16_02·a_19_2
+ c_16_02·a_19_0
- a_26_0·a_25_0
- a_26_0·a_25_1
- a_26_1·a_25_0
- a_26_1·a_25_1
- a_26_2·a_25_0
- a_26_2·a_25_1
- a_26_3·a_25_0
- a_26_3·a_25_1
- a_26_02
- a_26_0·a_26_1
- a_26_0·a_26_2
- a_26_0·a_26_3
- a_26_12
- a_26_1·a_26_2
- a_26_1·a_26_3
- a_26_22
- a_26_2·a_26_3
- a_26_32
- a_25_0·a_27_0
- a_25_0·a_27_1
- a_25_1·a_27_0
- a_25_1·a_27_1
- a_26_0·a_27_0
- a_26_0·a_27_1
- a_26_1·a_27_0
- a_26_1·a_27_1
- a_26_2·a_27_0
- a_26_2·a_27_1
- a_26_3·a_27_0
- a_26_3·a_27_1
- a_27_02
- a_27_0·a_27_1 + a_6_0·a_8_0·c_16_0·c_24_5
- a_27_12
Data used for the Hilbert-Poincaré test
- We proved completion in degree 54 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_16_0, an element of degree 16
- c_24_5, an element of degree 24
- The above filter regular HSOP forms a Duflot regular sequence.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 38].
Restriction maps
- a_5_2 → a_4_9·a_1_1 + a_4_8·a_1_1 + a_4_8·a_1_0 + a_1_04·a_1_3 + a_1_04·a_1_1
- a_5_1 → a_4_9·a_1_2 + a_4_8·a_1_3 + a_4_8·a_1_0 + a_1_03·a_1_2·a_1_3 + a_1_04·a_1_3
+ a_1_04·a_1_2
- a_5_0 → a_4_9·a_1_3 + a_4_8·a_1_3 + a_4_8·a_1_2 + a_4_8·a_1_1 + a_4_8·a_1_0 + a_1_03·a_1_1·a_1_3
+ a_1_04·a_1_3 + a_1_04·a_1_1
- a_6_3 → a_4_8·a_1_12 + a_4_8·a_1_0·a_1_1
- a_6_2 → a_4_8·a_1_1·a_1_2 + a_4_8·a_1_0·a_1_3 + a_4_8·a_1_0·a_1_1
- a_6_1 → a_4_8·a_1_1·a_1_3 + a_4_8·a_1_0·a_1_3 + a_4_8·a_1_02
- a_6_0 → a_4_8·a_1_2·a_1_3 + a_4_8·a_1_0·a_1_1
- a_7_1 → a_6_12·a_1_2 + a_6_10·a_1_3 + a_6_9·a_1_3 + a_6_9·a_1_2 + a_6_8·a_1_3 + a_6_8·a_1_2
+ a_6_8·a_1_1 + a_6_8·a_1_0 + a_4_8·a_1_0·a_1_1·a_1_3 + a_4_8·a_1_0·a_1_1·a_1_2 + a_4_8·a_1_02·a_1_3 + a_4_8·a_1_03
- a_7_0 → a_6_12·a_1_3 + a_6_10·a_1_3 + a_6_10·a_1_2 + a_6_8·a_1_3 + a_6_8·a_1_0
+ a_4_8·a_1_0·a_1_12 + a_4_8·a_1_03
- a_8_3 → a_6_8·a_1_12 + a_6_8·a_1_0·a_1_1 + a_6_8·a_1_02 + a_4_8·a_1_02·a_1_2·a_1_3
+ a_4_8·a_1_03·a_1_3 + a_4_8·a_1_03·a_1_2 + a_4_8·a_1_03·a_1_1
- a_8_2 → a_6_8·a_1_1·a_1_2 + a_6_8·a_1_0·a_1_3 + a_6_8·a_1_02 + a_4_8·a_1_02·a_1_2·a_1_3
+ a_4_8·a_1_02·a_1_1·a_1_3 + a_4_8·a_1_02·a_1_12 + a_4_8·a_1_03·a_1_1
- a_8_1 → a_6_8·a_1_1·a_1_3 + a_6_8·a_1_0·a_1_3 + a_6_8·a_1_0·a_1_2 + a_6_8·a_1_0·a_1_1
+ a_6_8·a_1_02 + a_4_8·a_1_02·a_1_2·a_1_3 + a_4_8·a_1_02·a_1_12 + a_4_8·a_1_03·a_1_3 + a_4_8·a_1_03·a_1_2 + a_4_8·a_1_04
- a_8_0 → a_6_8·a_1_2·a_1_3 + a_6_8·a_1_0·a_1_3 + a_6_8·a_1_0·a_1_2 + a_6_8·a_1_0·a_1_1
+ a_4_8·a_1_02·a_1_2·a_1_3 + a_4_8·a_1_02·a_1_12 + a_4_8·a_1_03·a_1_3 + a_4_8·a_1_03·a_1_2 + a_4_8·a_1_04
- a_9_2 → a_6_8·a_1_0·a_1_1·a_1_2 + a_6_8·a_1_02·a_1_3 + a_6_8·a_1_02·a_1_1
- a_9_1 → a_6_8·a_1_0·a_1_1·a_1_3 + a_6_8·a_1_02·a_1_3 + a_6_8·a_1_03
- a_9_0 → a_6_8·a_1_0·a_1_2·a_1_3 + a_6_8·a_1_02·a_1_1
- a_11_1 → c_8_17·a_1_12·a_1_3 + c_8_17·a_1_0·a_1_2·a_1_3 + c_8_17·a_1_0·a_1_1·a_1_3
+ c_8_17·a_1_0·a_1_1·a_1_2 + c_8_17·a_1_0·a_1_12 + c_8_17·a_1_02·a_1_3 + c_8_17·a_1_02·a_1_2 + c_8_16·a_1_1·a_1_2·a_1_3 + c_8_16·a_1_12·a_1_3 + c_8_16·a_1_0·a_1_1·a_1_3 + c_8_16·a_1_02·a_1_3 + c_8_16·a_1_02·a_1_2 + c_8_16·a_1_03
- a_11_0 → c_8_17·a_1_1·a_1_2·a_1_3 + c_8_17·a_1_0·a_1_2·a_1_3 + c_8_17·a_1_0·a_1_1·a_1_2
+ c_8_17·a_1_0·a_1_12 + c_8_17·a_1_03 + c_8_16·a_1_12·a_1_3 + c_8_16·a_1_0·a_1_2·a_1_3 + c_8_16·a_1_0·a_1_1·a_1_3 + c_8_16·a_1_0·a_1_1·a_1_2 + c_8_16·a_1_0·a_1_12 + c_8_16·a_1_02·a_1_3 + c_8_16·a_1_02·a_1_2
- a_12_3 → c_8_17·a_1_02·a_1_12 + c_8_17·a_1_03·a_1_1 + c_8_17·a_1_04
+ c_8_16·a_1_02·a_1_1·a_1_2 + c_8_16·a_1_02·a_1_12 + c_8_16·a_1_03·a_1_3 + c_8_16·a_1_03·a_1_1
- a_12_2 → c_8_17·a_1_02·a_1_1·a_1_2 + c_8_17·a_1_03·a_1_3 + c_8_17·a_1_04
+ c_8_16·a_1_02·a_1_12 + c_8_16·a_1_03·a_1_1 + c_8_16·a_1_04
- a_12_1 → c_8_17·a_1_02·a_1_1·a_1_3 + c_8_17·a_1_03·a_1_3 + c_8_17·a_1_03·a_1_2
+ c_8_17·a_1_03·a_1_1 + c_8_17·a_1_04 + c_8_16·a_1_02·a_1_2·a_1_3 + c_8_16·a_1_02·a_1_1·a_1_3 + c_8_16·a_1_04
- a_12_0 → c_8_17·a_1_02·a_1_2·a_1_3 + c_8_17·a_1_03·a_1_3 + c_8_17·a_1_03·a_1_2
+ c_8_17·a_1_03·a_1_1 + c_8_16·a_1_02·a_1_1·a_1_3 + c_8_16·a_1_03·a_1_3 + c_8_16·a_1_03·a_1_2 + c_8_16·a_1_03·a_1_1 + c_8_16·a_1_04
- a_13_1 → c_8_17·a_1_03·a_1_1·a_1_3 + c_8_17·a_1_04·a_1_3 + c_8_17·a_1_05
+ c_8_16·a_1_03·a_1_2·a_1_3 + c_8_16·a_1_04·a_1_1
- a_13_0 → c_8_17·a_1_03·a_1_2·a_1_3 + c_8_17·a_1_04·a_1_1 + c_8_16·a_1_03·a_1_2·a_1_3
+ c_8_16·a_1_03·a_1_1·a_1_3 + c_8_16·a_1_04·a_1_3 + c_8_16·a_1_04·a_1_1 + c_8_16·a_1_05
- a_15_1 → a_6_12·c_8_17·a_1_2 + a_6_12·c_8_16·a_1_3 + a_6_10·c_8_17·a_1_3 + a_6_10·c_8_17·a_1_2
+ a_6_10·c_8_16·a_1_2 + a_6_9·c_8_17·a_1_2 + a_6_9·c_8_16·a_1_3 + a_6_9·c_8_16·a_1_2 + a_6_9·c_8_16·a_1_1 + a_6_8·c_8_17·a_1_1 + a_6_8·c_8_17·a_1_0 + a_6_8·c_8_16·a_1_3 + a_6_8·c_8_16·a_1_1 + a_6_8·c_8_16·a_1_0 + a_4_8·c_8_17·a_1_0·a_1_1·a_1_3 + a_4_8·c_8_17·a_1_0·a_1_12 + a_4_8·c_8_17·a_1_02·a_1_3 + a_4_8·c_8_17·a_1_02·a_1_2 + a_4_8·c_8_17·a_1_02·a_1_1 + a_4_8·c_8_16·a_1_0·a_1_1·a_1_3 + a_4_8·c_8_16·a_1_02·a_1_3 + a_4_8·c_8_16·a_1_02·a_1_2
- a_15_0 → a_6_12·c_8_17·a_1_3 + a_6_12·c_8_16·a_1_3 + a_6_12·c_8_16·a_1_2 + a_6_10·c_8_17·a_1_2
+ a_6_10·c_8_16·a_1_3 + a_6_9·c_8_17·a_1_3 + a_6_9·c_8_17·a_1_2 + a_6_9·c_8_17·a_1_1 + a_6_9·c_8_16·a_1_3 + a_6_9·c_8_16·a_1_1 + a_6_8·c_8_17·a_1_3 + a_6_8·c_8_17·a_1_1 + a_6_8·c_8_17·a_1_0 + a_6_8·c_8_16·a_1_3 + a_4_8·c_8_17·a_1_0·a_1_1·a_1_3 + a_4_8·c_8_17·a_1_02·a_1_3 + a_4_8·c_8_17·a_1_02·a_1_2 + a_4_8·c_8_16·a_1_0·a_1_12 + a_4_8·c_8_16·a_1_02·a_1_1
- c_16_0 → a_6_8·c_8_17·a_1_1·a_1_3 + a_6_8·c_8_17·a_1_12 + a_6_8·c_8_17·a_1_0·a_1_3
+ a_6_8·c_8_17·a_1_0·a_1_1 + a_6_8·c_8_16·a_1_1·a_1_3 + a_6_8·c_8_16·a_1_0·a_1_3 + a_6_8·c_8_16·a_1_0·a_1_2 + a_4_8·c_8_17·a_1_02·a_1_1·a_1_2 + a_4_8·c_8_17·a_1_03·a_1_3 + a_4_8·c_8_17·a_1_03·a_1_2 + a_4_8·c_8_17·a_1_03·a_1_1 + a_4_8·c_8_17·a_1_04 + a_4_8·c_8_16·a_1_02·a_1_2·a_1_3 + a_4_8·c_8_16·a_1_02·a_1_1·a_1_2 + a_4_8·c_8_16·a_1_03·a_1_3 + a_4_8·c_8_16·a_1_03·a_1_1 + a_4_8·c_8_16·a_1_04 + c_8_172 + c_8_16·c_8_17 + c_8_162
- a_17_1 → c_8_17·a_9_19 + c_8_16·a_9_20 + c_8_16·a_9_18 + c_8_16·a_9_15
+ a_6_8·c_8_17·a_1_0·a_1_1·a_1_2 + a_6_8·c_8_17·a_1_02·a_1_2 + a_6_8·c_8_17·a_1_03 + a_6_8·c_8_16·a_1_0·a_1_2·a_1_3 + a_6_8·c_8_16·a_1_02·a_1_3 + a_6_8·c_8_16·a_1_02·a_1_2 + a_6_8·c_8_16·a_1_02·a_1_1 + c_8_172·a_1_3 + c_8_172·a_1_2 + c_8_16·c_8_17·a_1_3 + c_8_16·c_8_17·a_1_2 + c_8_162·a_1_3 + c_8_162·a_1_2
- a_17_0 → c_8_17·a_9_20 + c_8_17·a_9_18 + c_8_17·a_9_15 + c_8_16·a_9_20 + c_8_16·a_9_19
+ c_8_16·a_9_18 + c_8_16·a_9_15 + a_6_8·c_8_17·a_1_0·a_1_2·a_1_3 + a_6_8·c_8_17·a_1_02·a_1_3 + a_6_8·c_8_17·a_1_02·a_1_2 + a_6_8·c_8_17·a_1_02·a_1_1 + a_6_8·c_8_16·a_1_0·a_1_2·a_1_3 + a_6_8·c_8_16·a_1_0·a_1_1·a_1_2 + a_6_8·c_8_16·a_1_02·a_1_3 + a_6_8·c_8_16·a_1_02·a_1_1 + a_6_8·c_8_16·a_1_03 + c_8_172·a_1_2 + c_8_172·a_1_1 + c_8_16·c_8_17·a_1_2 + c_8_16·c_8_17·a_1_1 + c_8_162·a_1_2 + c_8_162·a_1_1
- a_18_3 → a_4_8·a_6_13·c_8_16 + a_4_8·a_6_12·c_8_17 + a_4_8·a_6_12·c_8_16 + a_4_8·a_6_11·c_8_17
+ a_4_8·a_6_10·c_8_16 + a_4_8·a_6_9·c_8_17 + a_4_8·a_6_9·c_8_16 + a_4_8·a_6_8·c_8_17 + a_6_8·c_8_17·a_1_03·a_1_2 + a_6_8·c_8_17·a_1_03·a_1_1 + a_6_8·c_8_17·a_1_04 + a_6_8·c_8_16·a_1_03·a_1_3 + a_6_8·c_8_16·a_1_04
- a_18_2 → a_4_8·a_6_13·c_8_17 + a_4_8·a_6_12·c_8_16 + a_4_8·a_6_11·c_8_17 + a_4_8·a_6_11·c_8_16
+ a_4_8·a_6_10·c_8_17 + a_4_8·a_6_9·c_8_16 + a_4_8·a_6_8·c_8_17 + a_4_8·a_6_8·c_8_16 + a_6_8·c_8_17·a_1_03·a_1_3 + a_6_8·c_8_17·a_1_03·a_1_2 + a_6_8·c_8_17·a_1_03·a_1_1 + a_6_8·c_8_16·a_1_03·a_1_2 + a_6_8·c_8_16·a_1_03·a_1_1 + a_6_8·c_8_16·a_1_04
- a_18_1 → a_4_8·a_6_15·c_8_16 + a_4_8·a_6_14·c_8_17 + a_4_8·a_6_14·c_8_16 + a_4_8·a_6_10·c_8_16
+ a_4_8·a_6_9·c_8_16 + a_6_8·c_8_17·a_1_03·a_1_3 + a_6_8·c_8_17·a_1_04 + a_6_8·c_8_16·a_1_03·a_1_3 + a_6_8·c_8_16·a_1_03·a_1_1 + a_6_8·c_8_16·a_1_04
- a_18_0 → a_4_8·a_6_15·c_8_17 + a_4_8·a_6_14·c_8_16 + a_4_8·a_6_10·c_8_17 + a_4_8·a_6_9·c_8_17
+ a_6_8·c_8_17·a_1_03·a_1_1 + a_6_8·c_8_16·a_1_03·a_1_3 + a_6_8·c_8_16·a_1_04
- a_19_3 → c_8_172·a_1_12·a_1_3 + c_8_172·a_1_0·a_1_2·a_1_3 + c_8_172·a_1_0·a_1_1·a_1_3
+ c_8_172·a_1_0·a_1_1·a_1_2 + c_8_172·a_1_0·a_1_12 + c_8_172·a_1_02·a_1_3 + c_8_172·a_1_02·a_1_2 + c_8_162·a_1_1·a_1_2·a_1_3 + c_8_162·a_1_12·a_1_3 + c_8_162·a_1_0·a_1_1·a_1_3 + c_8_162·a_1_02·a_1_3 + c_8_162·a_1_02·a_1_2 + c_8_162·a_1_03
- a_19_2 → c_8_172·a_1_1·a_1_2·a_1_3 + c_8_172·a_1_0·a_1_2·a_1_3 + c_8_172·a_1_0·a_1_1·a_1_2
+ c_8_172·a_1_0·a_1_12 + c_8_172·a_1_03 + c_8_162·a_1_12·a_1_3 + c_8_162·a_1_0·a_1_2·a_1_3 + c_8_162·a_1_0·a_1_1·a_1_3 + c_8_162·a_1_0·a_1_1·a_1_2 + c_8_162·a_1_0·a_1_12 + c_8_162·a_1_02·a_1_3 + c_8_162·a_1_02·a_1_2
- a_19_1 → c_8_17·a_11_28 + c_8_16·a_11_29 + a_4_8·a_6_11·c_8_17·a_1_3
+ a_4_8·a_6_11·c_8_16·a_1_3 + a_4_8·a_6_9·c_8_17·a_1_3 + a_4_8·a_6_9·c_8_17·a_1_2 + a_4_8·a_6_8·c_8_17·a_1_3 + a_4_8·a_6_8·c_8_16·a_1_0 + c_8_172·a_1_02·a_1_1 + c_8_16·c_8_17·a_1_1·a_1_2·a_1_3 + c_8_16·c_8_17·a_1_12·a_1_3 + c_8_16·c_8_17·a_1_02·a_1_3 + c_8_16·c_8_17·a_1_02·a_1_1 + c_8_162·a_1_1·a_1_2·a_1_3 + c_8_162·a_1_0·a_1_1·a_1_3 + c_8_162·a_1_0·a_1_12 + c_8_162·a_1_02·a_1_3 + c_8_162·a_1_02·a_1_2 + c_8_162·a_1_03
- a_19_0 → c_8_17·a_11_29 + c_8_16·a_11_29 + c_8_16·a_11_28 + a_4_8·a_6_11·c_8_17·a_1_3
+ a_4_8·a_6_9·c_8_16·a_1_3 + a_4_8·a_6_9·c_8_16·a_1_2 + a_4_8·a_6_8·c_8_17·a_1_0 + a_4_8·a_6_8·c_8_16·a_1_3 + a_4_8·a_6_8·c_8_16·a_1_0 + c_8_172·a_1_02·a_1_1 + c_8_16·c_8_17·a_1_0·a_1_2·a_1_3 + c_8_16·c_8_17·a_1_0·a_1_1·a_1_3 + c_8_16·c_8_17·a_1_0·a_1_1·a_1_2 + c_8_16·c_8_17·a_1_02·a_1_3 + c_8_16·c_8_17·a_1_02·a_1_2 + c_8_162·a_1_1·a_1_2·a_1_3 + c_8_162·a_1_0·a_1_12 + c_8_162·a_1_02·a_1_3
- a_20_3 → c_8_172·a_1_02·a_1_12 + c_8_172·a_1_03·a_1_1 + c_8_172·a_1_04
+ c_8_162·a_1_02·a_1_1·a_1_2 + c_8_162·a_1_02·a_1_12 + c_8_162·a_1_03·a_1_3 + c_8_162·a_1_03·a_1_1
- a_20_2 → c_8_172·a_1_02·a_1_1·a_1_2 + c_8_172·a_1_03·a_1_3 + c_8_172·a_1_04
+ c_8_162·a_1_02·a_1_12 + c_8_162·a_1_03·a_1_1 + c_8_162·a_1_04
- a_20_1 → c_8_172·a_1_02·a_1_1·a_1_3 + c_8_172·a_1_03·a_1_3 + c_8_172·a_1_03·a_1_2
+ c_8_172·a_1_03·a_1_1 + c_8_172·a_1_04 + c_8_162·a_1_02·a_1_2·a_1_3 + c_8_162·a_1_02·a_1_1·a_1_3 + c_8_162·a_1_04
- a_20_0 → c_8_172·a_1_02·a_1_2·a_1_3 + c_8_172·a_1_03·a_1_3 + c_8_172·a_1_03·a_1_2
+ c_8_172·a_1_03·a_1_1 + c_8_162·a_1_02·a_1_1·a_1_3 + c_8_162·a_1_03·a_1_3 + c_8_162·a_1_03·a_1_2 + c_8_162·a_1_03·a_1_1 + c_8_162·a_1_04
- a_21_4 → c_8_172·a_1_03·a_1_1·a_1_3 + c_8_172·a_1_04·a_1_3 + c_8_172·a_1_05
+ c_8_162·a_1_03·a_1_2·a_1_3 + c_8_162·a_1_04·a_1_1
- a_21_3 → c_8_172·a_1_03·a_1_2·a_1_3 + c_8_172·a_1_04·a_1_1 + c_8_162·a_1_03·a_1_2·a_1_3
+ c_8_162·a_1_03·a_1_1·a_1_3 + c_8_162·a_1_04·a_1_3 + c_8_162·a_1_04·a_1_1 + c_8_162·a_1_05
- a_23_3 → a_6_12·c_8_16·c_8_17·a_1_2 + a_6_12·c_8_162·a_1_3 + a_6_12·c_8_162·a_1_2
+ a_6_10·c_8_172·a_1_2 + a_6_10·c_8_16·c_8_17·a_1_3 + a_6_10·c_8_162·a_1_3 + a_6_10·c_8_162·a_1_2 + a_6_9·c_8_172·a_1_3 + a_6_9·c_8_16·c_8_17·a_1_3 + a_6_9·c_8_16·c_8_17·a_1_2 + a_6_9·c_8_162·a_1_1 + a_6_8·c_8_172·a_1_3 + a_6_8·c_8_172·a_1_2 + a_6_8·c_8_16·c_8_17·a_1_3 + a_6_8·c_8_16·c_8_17·a_1_2 + a_6_8·c_8_16·c_8_17·a_1_1 + a_6_8·c_8_16·c_8_17·a_1_0 + a_6_8·c_8_162·a_1_2 + a_4_8·c_8_172·a_1_0·a_1_1·a_1_2 + a_4_8·c_8_172·a_1_0·a_1_12 + a_4_8·c_8_172·a_1_02·a_1_2 + a_4_8·c_8_172·a_1_02·a_1_1 + a_4_8·c_8_172·a_1_03 + a_4_8·c_8_16·c_8_17·a_1_0·a_1_1·a_1_3 + a_4_8·c_8_16·c_8_17·a_1_0·a_1_1·a_1_2 + a_4_8·c_8_16·c_8_17·a_1_02·a_1_3 + a_4_8·c_8_16·c_8_17·a_1_03 + a_4_8·c_8_162·a_1_0·a_1_1·a_1_2 + a_4_8·c_8_162·a_1_02·a_1_2 + a_4_8·c_8_162·a_1_03
- a_23_2 → a_6_12·c_8_16·c_8_17·a_1_3 + a_6_12·c_8_162·a_1_2 + a_6_10·c_8_172·a_1_3
+ a_6_10·c_8_16·c_8_17·a_1_3 + a_6_10·c_8_16·c_8_17·a_1_2 + a_6_10·c_8_162·a_1_2 + a_6_9·c_8_172·a_1_3 + a_6_9·c_8_172·a_1_2 + a_6_9·c_8_172·a_1_1 + a_6_9·c_8_162·a_1_3 + a_6_9·c_8_162·a_1_1 + a_6_8·c_8_172·a_1_1 + a_6_8·c_8_16·c_8_17·a_1_3 + a_6_8·c_8_16·c_8_17·a_1_0 + a_6_8·c_8_162·a_1_0 + a_4_8·c_8_172·a_1_0·a_1_1·a_1_3 + a_4_8·c_8_172·a_1_0·a_1_12 + a_4_8·c_8_172·a_1_02·a_1_3 + a_4_8·c_8_172·a_1_02·a_1_2 + a_4_8·c_8_172·a_1_03 + a_4_8·c_8_16·c_8_17·a_1_0·a_1_12 + a_4_8·c_8_16·c_8_17·a_1_03 + a_4_8·c_8_162·a_1_02·a_1_1 + a_4_8·c_8_162·a_1_03
- c_24_5 → a_6_8·c_8_172·a_1_0·a_1_1 + a_6_8·c_8_172·a_1_02
+ a_6_8·c_8_16·c_8_17·a_1_1·a_1_3 + a_6_8·c_8_16·c_8_17·a_1_0·a_1_3 + a_6_8·c_8_16·c_8_17·a_1_0·a_1_2 + a_6_8·c_8_16·c_8_17·a_1_0·a_1_1 + a_6_8·c_8_16·c_8_17·a_1_02 + a_6_8·c_8_162·a_1_1·a_1_3 + a_6_8·c_8_162·a_1_12 + a_6_8·c_8_162·a_1_0·a_1_3 + a_6_8·c_8_162·a_1_02 + a_4_8·c_8_172·a_1_02·a_1_1·a_1_2 + a_4_8·c_8_172·a_1_02·a_1_12 + a_4_8·c_8_172·a_1_03·a_1_2 + a_4_8·c_8_172·a_1_03·a_1_1 + a_4_8·c_8_16·c_8_17·a_1_02·a_1_2·a_1_3 + a_4_8·c_8_16·c_8_17·a_1_02·a_1_12 + a_4_8·c_8_16·c_8_17·a_1_03·a_1_3 + a_4_8·c_8_16·c_8_17·a_1_03·a_1_2 + a_4_8·c_8_16·c_8_17·a_1_04 + a_4_8·c_8_162·a_1_02·a_1_12 + a_4_8·c_8_162·a_1_03·a_1_3 + a_4_8·c_8_162·a_1_04 + c_8_173 + c_8_162·c_8_17 + c_8_163
- c_24_4 → a_6_8·c_8_172·a_1_0·a_1_2 + a_6_8·c_8_172·a_1_02 + a_6_8·c_8_16·c_8_17·a_1_12
+ a_6_8·c_8_16·c_8_17·a_1_0·a_1_1 + a_6_8·c_8_16·c_8_17·a_1_02 + a_6_8·c_8_162·a_1_1·a_1_3 + a_6_8·c_8_162·a_1_0·a_1_3 + a_6_8·c_8_162·a_1_02 + a_4_8·c_8_172·a_1_03·a_1_3 + a_4_8·c_8_172·a_1_03·a_1_1 + a_4_8·c_8_16·c_8_17·a_1_02·a_1_2·a_1_3 + a_4_8·c_8_16·c_8_17·a_1_03·a_1_3 + a_4_8·c_8_16·c_8_17·a_1_03·a_1_2 + a_4_8·c_8_16·c_8_17·a_1_03·a_1_1 + a_4_8·c_8_162·a_1_02·a_1_2·a_1_3 + a_4_8·c_8_162·a_1_02·a_1_1·a_1_2 + a_4_8·c_8_162·a_1_04 + c_8_173 + c_8_16·c_8_172 + c_8_163
- a_25_1 → c_8_172·a_9_19 + c_8_162·a_9_20 + c_8_162·a_9_18 + c_8_162·a_9_15
+ a_6_8·c_8_172·a_1_02·a_1_3 + a_6_8·c_8_172·a_1_02·a_1_2 + a_6_8·c_8_172·a_1_02·a_1_1 + a_6_8·c_8_172·a_1_03 + a_6_8·c_8_16·c_8_17·a_1_0·a_1_1·a_1_2 + a_6_8·c_8_16·c_8_17·a_1_02·a_1_3 + a_6_8·c_8_16·c_8_17·a_1_02·a_1_1 + a_6_8·c_8_162·a_1_0·a_1_2·a_1_3 + a_6_8·c_8_162·a_1_0·a_1_1·a_1_2 + a_6_8·c_8_162·a_1_02·a_1_2 + c_8_173·a_1_3 + c_8_173·a_1_2 + c_8_16·c_8_172·a_1_3 + c_8_16·c_8_172·a_1_1 + c_8_162·c_8_17·a_1_2 + c_8_162·c_8_17·a_1_1 + c_8_163·a_1_3 + c_8_163·a_1_2
- a_25_0 → c_8_172·a_9_20 + c_8_172·a_9_18 + c_8_172·a_9_15 + c_8_162·a_9_20 + c_8_162·a_9_19
+ c_8_162·a_9_18 + c_8_162·a_9_15 + a_6_8·c_8_172·a_1_02·a_1_3 + a_6_8·c_8_172·a_1_02·a_1_2 + a_6_8·c_8_16·c_8_17·a_1_0·a_1_2·a_1_3 + a_6_8·c_8_16·c_8_17·a_1_02·a_1_1 + a_6_8·c_8_162·a_1_0·a_1_1·a_1_2 + a_6_8·c_8_162·a_1_02·a_1_3 + a_6_8·c_8_162·a_1_03 + c_8_173·a_1_2 + c_8_173·a_1_1 + c_8_16·c_8_172·a_1_3 + c_8_16·c_8_172·a_1_2 + c_8_162·c_8_17·a_1_3 + c_8_162·c_8_17·a_1_1 + c_8_163·a_1_2 + c_8_163·a_1_1
- a_26_3 → a_4_8·a_6_13·c_8_162 + a_4_8·a_6_12·c_8_172 + a_4_8·a_6_12·c_8_162
+ a_4_8·a_6_11·c_8_172 + a_4_8·a_6_10·c_8_162 + a_4_8·a_6_9·c_8_172 + a_4_8·a_6_9·c_8_162 + a_4_8·a_6_8·c_8_172 + a_6_8·c_8_172·a_1_03·a_1_2 + a_6_8·c_8_172·a_1_03·a_1_1 + a_6_8·c_8_172·a_1_04 + a_6_8·c_8_162·a_1_03·a_1_3 + a_6_8·c_8_162·a_1_04
- a_26_2 → a_4_8·a_6_13·c_8_172 + a_4_8·a_6_12·c_8_162 + a_4_8·a_6_11·c_8_172
+ a_4_8·a_6_11·c_8_162 + a_4_8·a_6_10·c_8_172 + a_4_8·a_6_9·c_8_162 + a_4_8·a_6_8·c_8_172 + a_4_8·a_6_8·c_8_162 + a_6_8·c_8_172·a_1_03·a_1_3 + a_6_8·c_8_172·a_1_03·a_1_2 + a_6_8·c_8_172·a_1_03·a_1_1 + a_6_8·c_8_162·a_1_03·a_1_2 + a_6_8·c_8_162·a_1_03·a_1_1 + a_6_8·c_8_162·a_1_04
- a_26_1 → a_4_8·a_6_15·c_8_162 + a_4_8·a_6_14·c_8_172 + a_4_8·a_6_14·c_8_162
+ a_4_8·a_6_10·c_8_162 + a_4_8·a_6_9·c_8_162 + a_6_8·c_8_172·a_1_03·a_1_3 + a_6_8·c_8_172·a_1_04 + a_6_8·c_8_162·a_1_03·a_1_3 + a_6_8·c_8_162·a_1_03·a_1_1 + a_6_8·c_8_162·a_1_04
- a_26_0 → a_4_8·a_6_15·c_8_172 + a_4_8·a_6_14·c_8_162 + a_4_8·a_6_10·c_8_172
+ a_4_8·a_6_9·c_8_172 + a_6_8·c_8_172·a_1_03·a_1_1 + a_6_8·c_8_162·a_1_03·a_1_3 + a_6_8·c_8_162·a_1_04
- a_27_1 → c_8_172·a_11_28 + c_8_162·a_11_29 + a_4_8·a_6_11·c_8_172·a_1_3
+ a_4_8·a_6_11·c_8_162·a_1_3 + a_4_8·a_6_9·c_8_172·a_1_3 + a_4_8·a_6_9·c_8_172·a_1_2 + a_4_8·a_6_8·c_8_172·a_1_3 + a_4_8·a_6_8·c_8_162·a_1_0 + c_8_173·a_1_02·a_1_1 + c_8_16·c_8_172·a_1_12·a_1_3 + c_8_16·c_8_172·a_1_0·a_1_2·a_1_3 + c_8_16·c_8_172·a_1_0·a_1_1·a_1_2 + c_8_16·c_8_172·a_1_0·a_1_12 + c_8_16·c_8_172·a_1_02·a_1_3 + c_8_16·c_8_172·a_1_03 + c_8_162·c_8_17·a_1_1·a_1_2·a_1_3 + c_8_162·c_8_17·a_1_0·a_1_2·a_1_3 + c_8_162·c_8_17·a_1_0·a_1_1·a_1_2 + c_8_162·c_8_17·a_1_0·a_1_12 + c_8_162·c_8_17·a_1_02·a_1_1 + c_8_162·c_8_17·a_1_03 + c_8_163·a_1_1·a_1_2·a_1_3 + c_8_163·a_1_0·a_1_1·a_1_3 + c_8_163·a_1_0·a_1_12 + c_8_163·a_1_02·a_1_3 + c_8_163·a_1_02·a_1_2 + c_8_163·a_1_03
- a_27_0 → c_8_172·a_11_29 + c_8_162·a_11_29 + c_8_162·a_11_28 + a_4_8·a_6_11·c_8_172·a_1_3
+ a_4_8·a_6_9·c_8_162·a_1_3 + a_4_8·a_6_9·c_8_162·a_1_2 + a_4_8·a_6_8·c_8_172·a_1_0 + a_4_8·a_6_8·c_8_162·a_1_3 + a_4_8·a_6_8·c_8_162·a_1_0 + c_8_173·a_1_02·a_1_1 + c_8_16·c_8_172·a_1_12·a_1_3 + c_8_16·c_8_172·a_1_0·a_1_12 + c_8_162·c_8_17·a_1_12·a_1_3 + c_8_162·c_8_17·a_1_0·a_1_2·a_1_3 + c_8_162·c_8_17·a_1_0·a_1_1·a_1_3 + c_8_162·c_8_17·a_1_0·a_1_1·a_1_2 + c_8_162·c_8_17·a_1_0·a_1_12 + c_8_162·c_8_17·a_1_02·a_1_3 + c_8_162·c_8_17·a_1_02·a_1_2 + c_8_163·a_1_1·a_1_2·a_1_3 + c_8_163·a_1_0·a_1_12 + c_8_163·a_1_02·a_1_3
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 2
- a_5_2 → 0, an element of degree 5
- a_5_1 → 0, an element of degree 5
- a_5_0 → 0, an element of degree 5
- a_6_3 → 0, an element of degree 6
- a_6_2 → 0, an element of degree 6
- a_6_1 → 0, an element of degree 6
- a_6_0 → 0, an element of degree 6
- a_7_1 → 0, an element of degree 7
- a_7_0 → 0, an element of degree 7
- a_8_3 → 0, an element of degree 8
- a_8_2 → 0, an element of degree 8
- a_8_1 → 0, an element of degree 8
- a_8_0 → 0, an element of degree 8
- a_9_2 → 0, an element of degree 9
- a_9_1 → 0, an element of degree 9
- a_9_0 → 0, an element of degree 9
- a_11_1 → 0, an element of degree 11
- a_11_0 → 0, an element of degree 11
- a_12_3 → 0, an element of degree 12
- a_12_2 → 0, an element of degree 12
- a_12_1 → 0, an element of degree 12
- a_12_0 → 0, an element of degree 12
- a_13_1 → 0, an element of degree 13
- a_13_0 → 0, an element of degree 13
- a_15_1 → 0, an element of degree 15
- a_15_0 → 0, an element of degree 15
- c_16_0 → c_1_116 + c_1_08·c_1_18 + c_1_016, an element of degree 16
- a_17_1 → 0, an element of degree 17
- a_17_0 → 0, an element of degree 17
- a_18_3 → 0, an element of degree 18
- a_18_2 → 0, an element of degree 18
- a_18_1 → 0, an element of degree 18
- a_18_0 → 0, an element of degree 18
- a_19_3 → 0, an element of degree 19
- a_19_2 → 0, an element of degree 19
- a_19_1 → 0, an element of degree 19
- a_19_0 → 0, an element of degree 19
- a_20_3 → 0, an element of degree 20
- a_20_2 → 0, an element of degree 20
- a_20_1 → 0, an element of degree 20
- a_20_0 → 0, an element of degree 20
- a_21_4 → 0, an element of degree 21
- a_21_3 → 0, an element of degree 21
- a_23_3 → 0, an element of degree 23
- a_23_2 → 0, an element of degree 23
- c_24_5 → c_1_124 + c_1_08·c_1_116 + c_1_024, an element of degree 24
- c_24_4 → c_1_124 + c_1_016·c_1_18 + c_1_024, an element of degree 24
- a_25_1 → 0, an element of degree 25
- a_25_0 → 0, an element of degree 25
- a_26_3 → 0, an element of degree 26
- a_26_2 → 0, an element of degree 26
- a_26_1 → 0, an element of degree 26
- a_26_0 → 0, an element of degree 26
- a_27_1 → 0, an element of degree 27
- a_27_0 → 0, an element of degree 27
|