Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-3-Cohomology of HigmanSims, a group of order 44352000
General information on the group
- HigmanSims is a group of order 44352000.
- The group order factors as 29 · 32 · 53 · 7 · 11.
- The group is defined by Group([(1,60)(2,72)(3,81)(4,43)(5,11)(6,87)(7,34)(9,63)(12,46)(13,28)(14,71)(15,42)(16,97)(18,57)(19,52)(21,32)(23,47)(24,54)(25,83)(26,78)(29,89)(30,39)(33,61)(35,56)(37,67)(44,76)(45,88)(48,59)(49,86)(50,74)(51,66)(53,99)(55,75)(62,73)(65,79)(68,82)(77,92)(84,90)(85,98)(94,100),(1,86,13,10,47)(2,53,30,8,38)(3,40,48,25,17)(4,29,92,88,43)(5,98,66,54,65)(6,27,51,73,24)(7,83,16,20,28)(9,23,89,95,61)(11,42,46,91,32)(12,14,81,55,68)(15,90,31,56,37)(18,69,45,84,76)(19,59,79,35,93)(21,22,64,39,100)(26,58,96,85,77)(33,52,94,75,44)(34,62,87,78,50)(36,82,60,74,72)(41,80,70,49,67)(57,63,71,99,97)]).
- It is non-abelian.
- It has 3-Rank 2.
- The centre of a Sylow 3-subgroup has rank 2.
- Its Sylow 3-subgroup has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 2.
Structure of the cohomology ring
This cohomology ring is isomorphic to the cohomology ring of a subgroup, namely H*(SmallGroup(288,1027); GF(3)).
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
1 − 2·t + 3·t2 − 4·t3 + 4·t4 − 4·t5 + 4·t6 − 3·t7 + 3·t8 − 3·t9 + 4·t10 − 4·t11 + 4·t12 − 4·t13 + 3·t14 − 2·t15 + t16 |
| ( − 1 + t)2 · (1 + t2)2 · (1 + t4) · (1 + t8) |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Ring generators
The cohomology ring has 8 minimal generators of maximal degree 16:
- a_7_0, a nilpotent element of degree 7
- c_8_0, a Duflot element of degree 8
- a_10_0, a nilpotent element of degree 10
- a_11_0, a nilpotent element of degree 11
- a_11_1, a nilpotent element of degree 11
- c_12_0, a Duflot element of degree 12
- a_15_1, a nilpotent element of degree 15
- c_16_1, a Duflot element of degree 16
Ring relations
There are 4 "obvious" relations:
a_7_02, a_11_02, a_11_12, a_15_12
Apart from that, there are 16 minimal relations of maximal degree 27:
- a_10_0·a_7_0
- a_7_0·a_11_0 − c_8_0·a_10_0
- a_7_0·a_11_1 + c_8_0·a_10_0
- c_12_0·a_7_0 − c_8_0·a_11_1 − c_8_0·a_11_0
- a_10_02
- a_10_0·a_11_0
- a_10_0·a_11_1
- a_7_0·a_15_1 + a_10_0·c_12_0
- a_11_0·a_11_1 + a_10_0·c_12_0
- c_12_0·a_11_0 + c_8_0·a_15_1 − c_8_02·a_7_0
- c_16_1·a_7_0 + c_12_0·a_11_1 − c_8_0·a_15_1
- c_12_02 + c_8_0·c_16_1 − c_8_03
- a_10_0·a_15_1
- a_11_0·a_15_1 + c_8_02·a_10_0
- a_11_1·a_15_1 − a_10_0·c_16_1
- c_16_1·a_11_0 − c_12_0·a_15_1 + c_8_02·a_11_1
Data used for the Hilbert-Poincaré test
- We proved completion in degree 27 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_0, an element of degree 8
- c_16_1, an element of degree 16
- The above filter regular HSOP forms a Duflot regular sequence.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 22].
Restriction maps
- a_7_0 → a_7_0
- c_8_0 → c_8_0
- a_10_0 → a_10_0
- a_11_0 → a_11_0
- a_11_1 → a_11_1
- c_12_0 → c_12_0
- a_15_1 → a_15_1
- c_16_1 → c_16_1
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 2
- a_7_0 → c_2_23·a_1_1 + c_2_1·c_2_22·a_1_0 + c_2_12·c_2_2·a_1_1 + c_2_13·a_1_0, an element of degree 7
- c_8_0 → c_2_24 − c_2_12·c_2_22 + c_2_14, an element of degree 8
- a_10_0 → c_2_1·c_2_23·a_1_0·a_1_1 − c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- a_11_0 → c_2_25·a_1_1 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0 + c_2_15·a_1_0, an element of degree 11
- a_11_1 → c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- c_12_0 → c_2_26 + c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
- a_15_1 → c_2_1·c_2_26·a_1_0 − c_2_13·c_2_24·a_1_0 − c_2_14·c_2_23·a_1_1
+ c_2_16·c_2_2·a_1_1, an element of degree 15
- c_16_1 → c_2_12·c_2_26 + c_2_14·c_2_24 + c_2_16·c_2_22, an element of degree 16
|