Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-3-Cohomology of L3(3).2, a group of order 11232
General information on the group
- L3(3).2 is a group of order 11232.
- The group order factors as 25 · 33 · 13.
- The group is defined by Group([(1,2)(3,5)(4,6)(7,10)(8,9)(11,15)(12,16)(13,18)(14,20)(17,22)(19,24)(21,23)(25,26),(1,3)(2,4,7,11)(5,8,12,17)(6,9,13,19)(10,14)(15,21,25,22)(16,20)(18,23)(24,26)]).
- It is non-abelian.
- It has 3-Rank 2.
- The centre of a Sylow 3-subgroup has rank 1.
- Its Sylow 3-subgroup has 4 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
The computation was based on 1 stability condition for H*(SmallGroup(216,87); GF(3)).
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
1 − 2·t + 3·t2 − 3·t3 + 4·t4 − 5·t5 + 6·t6 − 6·t7 + 7·t8 − 8·t9 + 10·t10 − 9·t11 + 9·t12 − 9·t13 + 10·t14 − 8·t15 + 7·t16 − 6·t17 + 6·t18 − 5·t19 + 4·t20 − 3·t21 + 3·t22 − 2·t23 + t24 |
| ( − 1 + t)2 · (1 − t + t2) · (1 + t + t2) · (1 + t2)2 · (1 − t2 + t4) · (1 + t4) · (1 + t8) |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Ring generators
The cohomology ring has 8 minimal generators of maximal degree 16:
- a_3_0, a nilpotent element of degree 3
- b_4_0, an element of degree 4
- a_10_0, a nilpotent element of degree 10
- a_11_1, a nilpotent element of degree 11
- a_11_0, a nilpotent element of degree 11
- c_12_1, a Duflot element of degree 12
- a_15_1, a nilpotent element of degree 15
- b_16_1, an element of degree 16
Ring relations
There are 4 "obvious" relations:
a_3_02, a_11_02, a_11_12, a_15_12
Apart from that, there are 16 minimal relations of maximal degree 27:
- a_10_0·a_3_0
- a_3_0·a_11_0
- b_4_0·a_10_0 − a_3_0·a_11_1
- b_4_0·a_11_0
- a_3_0·a_15_1 − b_4_0·a_3_0·a_11_1
- b_4_0·a_15_1 − b_4_02·a_11_1 + b_4_04·a_3_0 + b_4_0·c_12_1·a_3_0
- b_16_1·a_3_0 − b_4_04·a_3_0 − b_4_0·c_12_1·a_3_0
- a_10_02
- b_4_0·b_16_1 − b_4_05 − b_4_02·c_12_1
- a_10_0·a_11_0
- a_10_0·a_11_1
- a_11_0·a_11_1
- a_10_0·a_15_1
- a_11_1·a_15_1 − a_11_0·a_15_1 − b_4_03·a_3_0·a_11_1 − c_12_1·a_3_0·a_11_1
- a_10_0·b_16_1 − a_11_0·a_15_1 − b_4_03·a_3_0·a_11_1 − c_12_1·a_3_0·a_11_1
- b_16_1·a_11_1 − b_16_1·a_11_0 − b_4_04·a_11_1 − b_4_0·c_12_1·a_11_1
Data used for the Hilbert-Poincaré test
- We proved completion in degree 27 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_12_1, an element of degree 12
- b_16_1, an element of degree 16
- A Duflot regular sequence is given by c_12_1.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 26].
Restriction maps
- a_3_0 → a_3_1 + a_3_0
- b_4_0 → b_4_1 + b_4_0
- a_10_0 → a_10_0
- a_11_1 → a_11_1 + b_4_02·a_3_0
- a_11_0 → a_11_3
- c_12_1 → c_12_2
- a_15_1 → b_4_0·a_11_1 − c_12_2·a_3_0
- b_16_1 → b_4_04 + b_4_0·c_12_2
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_3_0 → 0, an element of degree 3
- b_4_0 → 0, an element of degree 4
- a_10_0 → 0, an element of degree 10
- a_11_1 → 0, an element of degree 11
- a_11_0 → 0, an element of degree 11
- c_12_1 → c_2_06, an element of degree 12
- a_15_1 → 0, an element of degree 15
- b_16_1 → 0, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → 0, an element of degree 3
- b_4_0 → 0, an element of degree 4
- a_10_0 → c_2_1·c_2_23·a_1_0·a_1_1 − c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- a_11_1 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_0 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- c_12_1 → c_2_26 + c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
- a_15_1 → c_2_1·c_2_26·a_1_0 − c_2_13·c_2_24·a_1_0 − c_2_14·c_2_23·a_1_1
+ c_2_16·c_2_2·a_1_1, an element of degree 15
- b_16_1 → − c_2_12·c_2_26 − c_2_14·c_2_24 − c_2_16·c_2_22, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → c_2_2·a_1_1, an element of degree 3
- b_4_0 → c_2_22, an element of degree 4
- a_10_0 → − c_2_1·c_2_23·a_1_0·a_1_1 + c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- a_11_1 → c_2_25·a_1_1 + c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_0 → 0, an element of degree 11
- c_12_1 → c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
- a_15_1 → c_2_1·c_2_26·a_1_0 + c_2_12·c_2_25·a_1_1 − c_2_13·c_2_24·a_1_0
− c_2_16·c_2_2·a_1_1, an element of degree 15
- b_16_1 → c_2_28 + c_2_12·c_2_26 + c_2_14·c_2_24 + c_2_16·c_2_22, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → 0, an element of degree 3
- b_4_0 → 0, an element of degree 4
- a_10_0 → c_2_1·c_2_23·a_1_0·a_1_1 − c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- a_11_1 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_0 → − c_2_1·c_2_24·a_1_0 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0
− c_2_14·c_2_2·a_1_1, an element of degree 11
- c_12_1 → c_2_26 + c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
- a_15_1 → c_2_1·c_2_26·a_1_0 − c_2_13·c_2_24·a_1_0 − c_2_14·c_2_23·a_1_1
+ c_2_16·c_2_2·a_1_1, an element of degree 15
- b_16_1 → − c_2_12·c_2_26 − c_2_14·c_2_24 − c_2_16·c_2_22, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → c_2_2·a_1_1, an element of degree 3
- b_4_0 → c_2_22, an element of degree 4
- a_10_0 → − c_2_1·c_2_23·a_1_0·a_1_1 + c_2_13·c_2_2·a_1_0·a_1_1, an element of degree 10
- a_11_1 → c_2_25·a_1_1 + c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- a_11_0 → 0, an element of degree 11
- c_12_1 → c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
- a_15_1 → c_2_1·c_2_26·a_1_0 + c_2_12·c_2_25·a_1_1 − c_2_13·c_2_24·a_1_0
− c_2_16·c_2_2·a_1_1, an element of degree 15
- b_16_1 → c_2_28 + c_2_12·c_2_26 + c_2_14·c_2_24 + c_2_16·c_2_22, an element of degree 16
|