Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-3-Cohomology of MathieuGroup(9), a group of order 72
General information on the group
- MathieuGroup(9) is a group of order 72.
- The group order factors as 23 · 32.
- The group is defined by Group([(1,4,9,8)(2,5,3,6),(1,6,5,2)(3,7,9,8)]).
- It is non-abelian.
- It has 3-Rank 2.
- The centre of a Sylow 3-subgroup has rank 2.
- Its Sylow 3-subgroup has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 2.
Structure of the cohomology ring
The computation was based on 7 stability conditions for H*(SmallGroup(9,2); GF(3)).
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
1 − 2·t + 4·t2 − 5·t3 + 5·t4 − 5·t5 + 4·t6 − 2·t7 + t8 |
| ( − 1 + t)2 · (1 + t2)2 · (1 + t4) |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Ring generators
The cohomology ring has 8 minimal generators of maximal degree 12:
- a_2_0, a nilpotent element of degree 2
- a_3_0, a nilpotent element of degree 3
- a_7_1, a nilpotent element of degree 7
- a_7_0, a nilpotent element of degree 7
- c_8_1, a Duflot element of degree 8
- c_8_0, a Duflot element of degree 8
- a_11_0, a nilpotent element of degree 11
- c_12_0, a Duflot element of degree 12
Ring relations
There are 4 "obvious" relations:
a_3_02, a_7_02, a_7_12, a_11_02
Apart from that, there are 16 minimal relations of maximal degree 24:
- a_2_02
- a_2_0·a_3_0
- a_2_0·a_7_0
- a_2_0·a_7_1
- a_3_0·a_7_0 − a_2_0·c_8_0
- a_3_0·a_7_1 − a_2_0·c_8_1
- a_2_0·a_11_0
- a_3_0·a_11_0 − a_2_0·c_12_0
- a_7_0·a_7_1 + a_2_0·c_12_0
- c_12_0·a_3_0 + c_8_1·a_7_0 − c_8_0·a_7_1
- a_7_0·a_11_0 − a_2_0·c_8_0·c_8_1
- a_7_1·a_11_0 − a_2_0·c_8_02
- c_12_0·a_7_0 − c_8_0·a_11_0 − c_8_0·c_8_1·a_3_0
- c_12_0·a_7_1 − c_8_1·a_11_0 − c_8_02·a_3_0
- c_12_0·a_11_0 + c_8_0·c_8_1·a_7_1 − c_8_02·a_7_0
- c_12_02 + c_8_0·c_8_12 − c_8_03
Data used for the Hilbert-Poincaré test
- We proved completion in degree 24 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_1, an element of degree 8
- c_8_0, an element of degree 8
- The above filter regular HSOP forms a Duflot regular sequence.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 14].
Restriction maps
- a_2_0 → a_1_0·a_1_1
- a_3_0 → c_2_2·a_1_0 − c_2_1·a_1_1
- a_7_1 → c_2_23·a_1_0 − c_2_13·a_1_1
- a_7_0 → c_2_23·a_1_1 + c_2_1·c_2_22·a_1_0 + c_2_12·c_2_2·a_1_1 + c_2_13·a_1_0
- c_8_1 → c_2_1·c_2_23 − c_2_13·c_2_2
- c_8_0 → c_2_24 − c_2_12·c_2_22 + c_2_14
- a_11_0 → c_2_25·a_1_1 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0 + c_2_15·a_1_0
- c_12_0 → c_2_26 + c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 2
- a_2_0 → a_1_0·a_1_1, an element of degree 2
- a_3_0 → c_2_2·a_1_0 − c_2_1·a_1_1, an element of degree 3
- a_7_1 → c_2_23·a_1_0 − c_2_13·a_1_1, an element of degree 7
- a_7_0 → c_2_23·a_1_1 + c_2_1·c_2_22·a_1_0 + c_2_12·c_2_2·a_1_1 + c_2_13·a_1_0, an element of degree 7
- c_8_1 → c_2_1·c_2_23 − c_2_13·c_2_2, an element of degree 8
- c_8_0 → c_2_24 − c_2_12·c_2_22 + c_2_14, an element of degree 8
- a_11_0 → c_2_25·a_1_1 + c_2_12·c_2_23·a_1_1 + c_2_13·c_2_22·a_1_0 + c_2_15·a_1_0, an element of degree 11
- c_12_0 → c_2_26 + c_2_12·c_2_24 + c_2_14·c_2_22 + c_2_16, an element of degree 12
|